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The impact of five-dimensional operators, which might originate from compactification of extra di-
mensions, is investigated on SO(10) grand unification with Pati-Salam (PS) symmetry as the intermediate
gauge group. When the PS group is left-right symmetric, the resulting equation for sin Ow is noted to be
independent of the parameter (e) of the nonrenormalizable Lagrangian, although the unification mass

(Mz) does depend upon it. In addition to solutions of the type obtained by Shafi and Wetterich, we find

new predictions with a much larger grand-unification mass, consistent with a larger compactification
scale. When parity and SU(2)& breaking are decoupled, the equation for ln(M&/Mw) is independent of
E', but sin Ow does depend upon it. The most interesting predictions include observable n-n oscillations,
rare kaon decays, and small neutrino masses, that are, however, measurable in the laboratory for v„and
v„corresponding to the low intermediate scale M& —10'—10 GeV. In such cases Mz is large and the
solutions are consistent with a larger compactification scale.

I. INTRODUCTION

Kaluza-Klein-type unification of other basic forces
with gravitation has received considerable attention over
the past years [1]. Originally proposed to unify gravity
and electromagnetism, the Kaluza-Klein framework with
several modifications has been extended to encompass the
standard and grand-unification symmetries including su-
pergravity and superstrings. Methods have been devised
to stabilize the vacuum corresponding to the observed
four-dimensional Universe obtained after the
compactification of extra dimensions. Several attractive
modifications of the model have been incorporated to
compute the coupling constants from extra dimensions
and also to generate the chiral fermions occurring as
different generations. In theories employing spontaneous
compactification, nonrenormalizable higher-dimensional
operators involving gauge and Higgs fields, but scaled by
suitable powers of the compactification mass (MG ), occur
very frequently [2,3]. Without invoking the idea of di-
mensional reduction such operators scaled by the Planck
mass (Mp&=10' GeV) can also be generated by quantum
gravity as correction to the renormalizable Lagrangian
[4]. Shafi and Wetterich (SW) [3] and Hill [4] have noted
that the presence of such five-dimensional operators
could make drastic modifications to the usual predictions
of grand unified theories (GUT's). While Hill [4] has not-
ed that the origin of such operators, scaled by Mp& =10'
GeV, could be due to the effects of quantum gravity, SW
have emphasized such operators to be originating from
the comp

actific

atio of extra dimensions with the
compactification mass (MG) 1—2 orders lower than Mp~.
A brief review of recent applications in GUT's has been
reported in Ref. [5], where it has been shown that the
presence of such an operator permits the single inter-

mediate symmetry SU(2)I XU(1)z XSU(4)c to survive
down to a scale as low as Mc —10 GeV, thus allowing
rare kaon decays to be observable by low-energy experi-
ments. Such predictions are accompanied by large pro-
ton lifetimes and small neutrino masses. In the context of
the minimal SU(5) model it has also been observed that
the presence of five- and six-dimensional operators can
make the proton extremely stable [6]. At first SW [3] es-
timated the modifications of the SO(10) predictions with
a single Pati-Salam (PS) intermediate symmetry [7]
SU(2)L X SU(2)~ XSU(4)c (g21 =g2~ )(—:Gz24p ) where
both parity (P) and SU(2)z break at the intermediate
scale Mc.

54 126
SO(10)~G22~p ~SU(2)L XU(1)r X SU(3)c

MU Mc

10
~U(1), XSU(3)c .
Mw

They noted that solutions with a compactification scale
M& —10' GeV allow a proton lifetime enhancement by a
factor 10—100 compared to the existing lower limit for
M&-—10' GeV, and sin 0~-—0.22.

In this paper we note that the equation for sin 0~ in
Eq. (1) is independent of the parameter (e) of the non-
renormalization term although In(M& /M~ ), and
az (=go/4vr, go=bare-GUT-coupling constant) do de-
pend upon it. In addition to solutions of the SW type [3],
other solutions, corresponding to much larger unification
mass and ~ with M& -Mp& are also allowed.

As the primary objective of this paper we then show
that, when compactification effects through the five-
dimensional operator are included in the new SO(10)
model with separate P- and SU(2)z-breaking scales [8], an
intermediate scale as low as M& —10 —10 GeV, is possi-
ble in the scenario:
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210
SO(10)~SU(2)L XSU(2)R XSU(4)c

MU

X (g2I&. g2R )( = G224)

126
—+SU(2)L XU(1)r X SU(3)c

c
10
—+U(1), XSU(3)c .
Mw

(2)

The model does not possess the well-known domain-wall
problem [9] and provides the minimal SO(10) scenario ob-
tained so far for observable n-n oscillations, rare kaon de-
cays, and small neutrino masses, but proton decay far
beyond the observable limit. The other solutions permit-
ted in this model correspond to larger values of M& and
smaller unification mass. In particular the SW-type
modification of MU, w, and sin 0~ is allowed for
Mc —10"—10' GeV and MG —10' GeV. For such solu-
tions, although proton decay is predicted to be observable
in foreseeable future, no other low-energy signature of
quark-lepton unification seems to be possible. In this
case the equations for in(MU/Mii ) and aG are noted to
be independent of the corresponding parameter (e), but
sin 0~ does depend upon it.

The paper is organized in the following manner. In
Sec. II we derive modifications of the gauge coupling con-
stants at the GUT scale for Eq. (2) due to suitable five-
dimensional operator and mention those obtained by SW
[3] for Eq. (1). In Sec. III we show how the formulas for
sin Oi4, 1n(MU/Mii, ), and aG' obtained as solutions to
the renormalization-group equations (RGE's), depend
upon the parameter (e) of the nonrenormalizable La-
grangian. In Sec. IV we present numerical solutions and
point out the implications of the GUT predictions on
low-energy experiments. In Sec. V, the results of this pa-
per are briefly discussed and conclusions are stated.

II. MODIFICATION OF GAUGE COUPLING
CONSTANTS AND GUT BOUNDARY CONDITIONS

+2L™U)(1+~2L) ~2R ™U)(1+~2R)

=a4C(MU )(1+E4C ) =aG, (3)

where a, (p) =g,. (p)/4n, g, being the gauge coupling con-
stant for the gauge group 6, in 6224 with i =2L, 2R, 4C.
The parameter e, is related to the nonrenormalizable
SO(10) Lagrangian (X&R ) as will be defined shortly in the
respective cases. After GUT symmetry is broken spon-
taneously in all such cases L~R is absorbed in the renor-
malizable kinetic-energy term (XR ) of the gauge fields
having the residual gauge symmetry when the gauge

In this section we mention the modification of the
gauge coupling constants and the boundary conditions at
the GUT scale as derived by SW [3] in Eq. (1). We also
derive the corresponding new modifications for Eq. (2) in
the presence of a five-dimensional operator. In all cases
the GUT boundary condition is expressed in a general-
ized form

fields are suitably rescaled and coupling constants
modified [3,4].

A. Modifications with G»4p intermediate symmetry

SW [3] considered the five-dimensional operator, ap-
propriate for Eq. (1), occurring in the SO(10)-invariant
nonrenormalizable Lagrangian

(@(g4)) = —diag(1, 1, 1, 1, 1, 1, ——,', —', , —', , —' ),

necessary for spontaneous symmetry breaking (SSB) at
the first stage of the chain, they obtained the e; parame-
ters occurring in Eq. (3):

2L
—e2R — 26~ E4C E ~

neo
v'30 MG

Thus, SW [3] demonstrated that, as in the case of SU(5),
the five-dimensional operator contributes to the
modification of the GUT boundary conditions.

B. Modifications with G»4 intermediate symmetry

We now derive the modifications of the GUT boundary
conditions for Eq. (2) where the four-index antisymmetric
tensor 210 drives SSB at the first stage. We follow the
convention [10,11] in which i,j = 1,2, . . . , (67, 8, 91 )0

denote the SO(6) [SO(4)] indices, and use the representa-
tion of generators by 16X 16 matrices [10]. Using
I;,i=1,2, . . . , 10, as the matrices defined in Ref. [10],
the 45 generators are given by ,' cr' J( I—/4i )[I, , I ],
i,j=1,2, . . . , 10. Representing the 45 gauge bosons by
the two-index antisymmetric tensor 8"„'~, the gauge-
boson matrix is 16X 16,

10

W„=—,
' g o'J W„'J,

i,j = 1

(7)

where every gauge boson occurs repeatedly in more than
one matrix element. This is in contrast with the SU(N)-
gauge-boson matrix where every gauge boson occurs in
only one matrix element of the corresponding N XN ma-
trix. Following the usual definition

F„=B„W—8 W'„—ig[W„, W ],
with W„given by Eq. (7) and the expression for the kinet-
ic energy,

45

( y(m) y(m)pv)
R 4 ~ pv 7

m =1
(9)

y( ) —g y( ) g y( ) ig[ V( ) V( )]
fLV P V V P. p

XivR: Tl(FIJ 4 (54)F )
2MG

where MG is the compactification scale. Using the vacu-
um expectation value (VEV) as
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where V„' ' (I = 1,2, . . . , 45 ) represents 45 components
of 8"', the corresponding expression in terms of I'„ that
reduces to (9) in the case of SO(10) is [12]

,'Tr—(F„F") . (10)

where

T«F„.@(z,o)F" ),
G

To the renormalizable Lagrangian given in (10) we add
the nonrenormalizable term containing the five-
dimensional operator

gauge theory which might originate from pure gravity in
eighteen dimensions coupled to Majorana-Weyl spinors.
In this theory the Higgs representations 210, 126, and 10
of SO(10) necessary for spontaneous symmetry breaking
at different stages of the chain in Eq. (2) have been
demonstrated to emerge from suitable SO(12) representa-
tions possessing a nonvani. shing coupling to the spinors
[12]. With SO(10) gauge symmetry preserved after
compactification of extra dimensions at a scale MG, the
five-dimensional operator in Eq. (11) is expected to occur
as a nonrenormalizable term in the Lagrangian. When

SO( 10)~Gzz4
MU

Wetterich [12] has shown how light generations of fer-
mions can be obtained from a six-dimensional SO(12)

I

with P broken at p-MU, P'J"' assumes a VEV in the
direction ( P ) =go%0. Using the normalized VEV

0—diag( —1, —1, —1, —1, —1, —1, —1, —1, 1, 1, 1, 1, 1, 1, 1, 1) (12)

in (11)we compute the e,. parameters occurring in Eq. (3),

n4'o

4&2MG 8 2moG

2L 2R ~ 4C

U

MG

(13)

ay= lO,
—41 a2L a3C

1 1 + ln, i = Y,21,3C,
a;(M~) a, (p) 2~ M~ '

where we have used the relation between the
superheavy-gauge-boson masses (MU ) and
Po, MU=(4maG/3)' Po. Compared to Eq. (1), we note
that in Eq. (2), uzi and Fzz are opposite in sign, and the
SU(4)c coupling at the GUT scale does not receive any
modification due to Xzz. When e,. parameters, given by
Eqs. (6) and (13), are used in Eq. (3) it is clear that the
GUT boundary conditions in the two cases are
significantly di6'erent. Such a dift'erence in the boundary
conditions rejects in the resulting solutions of the RGE's
as demonstrated in Secs. III and IV.

III. FORMULAS FOR ELECTROWEAK-MIXING
ANGLE, UNIFICATION MASS, AND GUT COUPLING

In this section, at first we obtain analytic expressions
for the electroweak mixing (sin Hii, ), unification mass

[In(MU/Mii, ) ], and the bare-GUT-coupling constant
(aG =go/4m) as solutions to the renormalization-group
equations (RGE's) for the gauge coupling constants un-
der the generalized boundary conditions given by Eq. (3).
Using the boundary conditions for Eqs. (1) and (2),
specified by SW and in Sec. II, we then show how certain
formulas are independent of e.

The gauge coupling constants g,.(p ), [a;(p )

=g; (p)/4'] in the two cases satisfy the following forms
of the RGE's in the two mass ranges.

Mc ~p~MU

1

a;(Mc )

a,-

+ ln, i =21,2R, 4C .a (p) 2~ Mc'

In the chain in Eq. (1) parity (P) is left unbroken down
to the scale Mc and the Higgs sector maintains left-right
symmetry having the decomposition under Gzz4p as
P(2, 2, 1)e61 (3, 1,

10)eh�~

(1,3, 10), in the mass range
Mc ~ p ~ MU. With three fermion generations the
coefficients occurring in Eq. (15) in this case, are

—11 ' — 14
2L a 2R 4C (16)

It was noted in Ref. [8] that the Gzz~ singlet,
q(1, 1, 1)C210, is odd under P when all couplings in the
SO(10)-invariant Lagrangian are real. In the chain in Eq.
(2), when SO(10)~Gzz& due to (zl)WO, P breaks at
p-MU, and the presence of the Higgs-scalar coupling of
the type 210X 126X 126 allows the left-handed triplet
A~ (3, 1, 10)C: 126 to becoming superheavy (p-MU)
whereas the right-handed triplet b,z(1,3, 10) remains
light (p-Mc). This has been realized within the con-
straint of minimal fine-tuning of parameters. The Higgs-
scalar multiplets contributing to the RGE's in the mass
range Mc ~ p, ~MU are P(2, 2, 1)eh+(1,3, 10) leading to
the values of the coeKcients
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a 2L ~2R a4C (17)

Using the RGE's (14) and (15) and the boundary condi-
tions in the generalized form (3), we follow the standard

procedure for obtaining formulas for ln(MU /MiY ),
sin OiY, and aG', through the combinations e (MiY)

gg3C(MiY), e (MiY) —
', g2—L(MiY), and e (MiY)

= Tg Y '(MW )+g 2L'(MW ):

Mv
ln

M~ I [2+e2L +e2R +—', ( 1+e4c ) ja. ' —(1+e4c )& I

1 Mc+ (L(
+—&4C)(-', aY+a2L 3 3C a2I. a2R) —(2+&2L+e'2R)(a3c a4c)1»D M~

(18)

» '(9m=
D a4C(1+~2L) a2L(1+~4c)+ ~ a2L(1+e2R)+ 3a2L(1+~4c) (a2R+3a4c)( +~2L)l

S

+
2

IIa3C(a2R+3a4C) 3a—Ya4CI(1+~2L)+(a2La4C a2La3C)( +~2R)

Mc+ ~ia 2L( a Y a3C ) a2La2R ~(1+4c ) Il"
M~

(19)

1 a4c
D a

a 2L +a 2g +—Q4c

s

M
I. 4C( 2L+ Y) 3C( 2L+ 2R+ 4C)f2n M~

(20)

where

a4C(2+~2L+~2R ) (a2L+a2R )(1+~4C)

A. Formulas ~ith G»4& intermediate symmetry

Mv 3~
ln

M~ 25 —10'
17—18m Mc

E ln-
50—20' M~

8

3cxs

1 7+ +
cx 3Ag

(22)

Using the coefficients from Eqs. (14) and (16), and the values of e2L, e2R, and e4c from Eq. (6) in Eqs. (18) and (21),
we obtain D = ——", (1——', e) and the formulas

r

1

50—20'
38 56, Mc

a 3a, 3m M~
(23)

It is clear that ln(MU/MiY) and aG ' are dependent upon e. But while computing sin OiY from Eq. (19), we find

a4c(1+e2L) —azL(l+e4C)= —(50—20m)/6, azL(l+e2R)+ —', a2I(1+E4C) (a2R+Ta4C)X(l+e2L)=(50 2@0) —/9,

Ia3c(azR+ —'a4c) laYa4c)( +~2L)+( 2L 4c 2La3c)( +&2R)

+ (a 2L ( —',a Y
——', a 3C )

—a 2L a 2R ]( 1+e4C ) = —", ( 50—20m) .

sin 0~= 1

2 3cxs

110 Mc
ln

3m M~
(24)

We show in Sec. IV that Eqs. (22)—(24), in addition to
predicting solutions of the SW type with MG —10' GeV,
also predict new types of solutions with a large Mv and
Mg -Mp) ~

Thus, the factor (50—20') occurs in the numerator and
the denominator D in Eq. (19), making it independent of
e, yielding

B. Formulas with Gz24 intermediate symmetry

8

3cxs
(25)

1 23
48 n

40
30,'

533 Mc
ln

6m M~
(26)

Using the coefficients from Eqs. (14) and (17) and the
values of e2L, e2R, and e4c from Eq. (13) in Eqs.
(18)—(21), we obtained D to be independent of F.,D = —16:

Mv
ln ln

M~ 16 a 48 M~



SPONTANEOUS-COMPACTIFICATION EFFECTS ON SO(10). . . 2183

2 7 2
sin 0~= +—

24 9a,
23
48

5 a
18 o.,

193
72

533 Mc
144 M~

e ln

Thus e dependence occurs only for sin 0~. For
1n(MU/Mii ) the e dependence occurring in the numera-
tor of Eq. (18) cancels out. As will be shown in Sec. IV,
these equations yield interesting solutions with
Mc —10 —10 GeV leading to new observable predictions
at low energies.

IV. NEW PREDICTIONS, AND THEIR TESTS
BY I.OW-ENERGY EXPERIMENTS

In this section we obtain numerical solutions for the
two SO(10) models, Eqs. (1) and (2), using analytic formu-
las for 1n(MU/Mii, ), sin 8ii, , and aG developed for each
case in Sec. III. We discuss some implications of the new
GUT predictions for low-energy experiments and the
big-bang cosmology of the universe.

A. New predictions with G»4p intermediate symmetry

Using a, =0.11, 0.''=127. 54, and M~=81 GeV we

computed possible combinations of (Mc, MU) as a func-
tion of e that satisfy Eqs. (22) and (24) with the constraint
MU +10' GeV and sin |9+,——0.22—0.24. Some of our
best solutions are presented in Table I. We find that
sin 8~ decreases below (increases beyond) 0.22 (0.24)

when Mc ) 10' GeV ( (10' GeV). The value of sin 8~
is not a6'ected by e as shown in Table I and evident from
Eq. (24). For a fixed value of Mc in the range 10' —10'
GeV, the unification mass is controlled by the parameter
e. Solutions already obtained by SW [3] corresponding to
the enhancement of ~ by a factor 10—100 over the con-
ventional SO(10) predictions occur for e =0.01—0.02.
They are consistent with lower values of the
compactification scale —10' GeV as noted in Ref. [3].
With such GUT predictions proton decay in the
p ~e+m mode might be observable in the near future by
low-energy experiments with improved accuracy [13].

The new class of solutions that we note in this case are
the ones w ith larger values of the unification mass,
MU —10' —10' GeV, and the compactification scale in
the range 10' —10' GeV. As reported in Table I with
fixed M& —-4X 10' GeV, allowed values of MU cover the
range ( 1.5 X 10' —2 X 10' ) GeV for e =0.04—0. 10. Using
the relation il=2+10maGeMG/Mz we find ii =0.2-0. 5

for MG =10' —10' GeV. In particular the solutions cor-
responding to a very stable proton with MU—- 10' —10'
GeV are consistent with larger compactification scale
M, =10"-10"Gev.

As noted by Kibble, Lazaridis, and Shafi [9] several
years ago, the domain-wall problem could have been
severe if the intermediate scale Mz were less than 10'
GeV. But, with the renormalization group permitting
Mz -—10' GeV, the problem does not exist in the present
model. The Majorana neutrino masses are governed by
the seesaw formula for the three generations [14,15]:

TABLE I. Solutions of renormalization-group equations in SO(10) with left-right-symmetric G»4p
intermediate gauge group [Eq. (1)], in the presence of the five-dimensional operator.

Mc
(GeV) sin Ow (GeV)

MG

(Gev)

4x10"

1014

0.230

0.221

0.01
0.02

0.04

0.06

0.08

0.10
0.01

0.04

0.06

0.08

0.10

1.4X 10'

3.2 X 10'

1.5 X 10'

7.8x10"

4.1x10"

2.2x 10"
1.1 X 10'

2.3 X 10'

1.1 X 10'

5.8x10"

3 x10"

1.6x10"

41.4
41.6
41.9

42.2

42.6

42.9
41.5
41.6
42.0

42.3

42.7

43.1

1017

10"
10"
1018

1017

10'
1018

1019

1019

1017

1017

10"
1018

1017

10'
1018

1019

1.6x10"
1019

1.21

1.10
0.44

4.47

0.13

1.32

0.33
3.38

0.79
1.65

1.50

0.61

0.17

1.78

0.45

4.55

0.17
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r =1,2, 3,

m =(2X10 —2X10 ) eV,
P

I, =(0. 1—1) eV .

(29a)

But using the charged-lepton masses m, =m„
m2=m„, m3 =m„ the model has the prediction

m„=(2X10 ' —2X10 ")eV,

m, =(10 —10 ) eV,
P

m =(3X10 —3X10 ) eV .

(29b)

where m =m, m =m and m =m . Two
1 e 2 p 3

difFerent choices for m; exist in the literature. While an
up-quark mass of the ith generation has been used by
Gell-Mann, Ramond, and Slansky [14], others have used
the corresponding charged-lepton mass [15]. Using
Mc ——10' —10' GeV, the allowed range from Table I, and
m

&

=m„= 5 MeV, m2 =mc = 1.5 GeV, and
m3 =m, =100 GeV, the model predicts

I =(2X10 ' —2X10 ) eV,

Although these masses are too small for laboratory detec-
tion, they might be compatible with the values needed to
understand the solar-neutrino puzzle [16].

B. New predictions with G»4 intermediate symmetry

In the absence of the five-dimensional operator and
Xz~, e=0, and with all superheavy masses the same as
MU, the renormalizable SO(10) model with a single G2z4
intermediate symmetry predicted sin 0~=0.22, and
0.24, for the combinations (Mc, MU)=(0. 5X10', 10' )

GeV, and ( 10,6 X 10' ) GeV, respectively, at the one-
loop level [8].

Using the same parameters as in Eq. (1) we computed
values of (MC, MU) as a function of e which are solutions
of Eqs. (25) and (27) imposing the constraint M~ ~ 10'
GeV, and sin 0~=0.22—0.24. Some of our solutions
with higher (lower) values of Mc are presented in Table
II (Table III). In both tables the constancy of MU and
aG with respect to variation in e as evident from Eqs.
(25) and (26), are exhibited. But, for a fixed Mc, the
value of sin 0~ is controlled by the parameter e. This is
a situation drastically different from Eq. (1) where the
unification mass, rather than sin 0~, is controlled by e.
Thus, the solutions in Eqs. (1) and (2) are expected to be

TABLE II. Same as Table I, but for Eq. (2), and higher intermediate scales (Mc ).

c
(GeV)

Mv
(GeV) S1n Og

MG

(GeV)

1p12 3.2x1O" 0.01

0.02

0.226

0.223

44.9

44.9

1018

1018

0.54

5.43
1.08

10.87

1011 7.9 x10" 0.01

0.02

0.234

0.230

0.223

46.2

46.2

46.2

1017

1018

10
1018

1017

1018

0.21

2.15

0.43

4.31

6.46

1p10 1.9 x10" 0.02

0.04

O.06

0.238

0.230

0.223

47.6

47.6

47.6

1017

1018

1O"
1018

1017

1018

0.17

0.34

3.41

0.51

5.12

1O' 4.9 X 10' 0.04

0.06

0.08

0.238

0.230

0.222

48.9

48.9

48.9

1017

1018

1017

10"
1017

1018

0.13

1.35

0.20
2.03
0.27

2.71
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very much different for larger values of e. The values of
g parameter have been calculated using the formula (13)
with different values of MG and e in each case.

It is clear from Table II that for Mz ——10"—10' GeV
the model predicts observable proton decay by
high-precision —low-energy experiments [13] as they
correspond to MU =(3.0—8) X 10' GeV with
r~=(10 "+——10 —

) yr for p~e+m. mode. They are
solutions similar to the SW type in Eq. (1) with the lower
values of the compactification scale MG-—10' GeV. In
this case the neutrino masses are two orders of magnitude
larger than the values given in Eq. (29). For example,
with Mz -—10" GeV and up-quark masses for m, , Eq.
(28) gives m„=2X10 eV, but m =2 eV, and

m =100 eV, which are detectable by laboratory experi-
r

ments. When charged-lepton masses are used for m;, al-
though the predicted neutrino masses are too small, they
could still be compatible with values needed to under-
stand the solar-neutrino puzzle. The other class of solu-
tions in the model corresponding to M&—- 10 —10' GeV
and MU-—2X10' —10' GeV predict much larger proton
lifetime r =(10 +——10 ' —

) yr and neutrino masses 4—5
orders larger compared to Eq. (29). Using the quark
masses for m; we obtain m = (2 X 10 —2 X 10 ) eV,

m, =(20 eV—2 keV), and m, =(0. 1—10) keV; but the
P

model predicts m = (2 X 10 —2 X 10 ) eV,

m =(2X10 —2X10 ) eV,

m =(10—100) eV,
P

m, =(3—30) keV

(30)

when charged lepton masses are used for m;; but
m =0.02—0.2 eV, m =200 keV —2 MeV, and

e P
m =(10—100) MeV when the up-quark masses are used

for m, . Thus the seesaw formula, with m,. as the quark
masses, forbids M&-—10 GeV as the predicted m and

P

m, violate the existing laboratory limits (m 250 keV,
T P

m =(10 —10 ') eV, and m =(0.3—30) eV, when the
P

charged lepton masses are used for m, Thus the v„and
v masses are within the detectable range and the solu-
tions in this class are consistent with the compactification
scale MG ——10' —10' GeV.

The most interesting solutions in the chain in Eq. (2)
are presented in Table III where sin 0~ =0.22—0.24 per-
mit Mc as low as 10 —10 GeV needed for observable sig-
natures of quark-lepton unification by low-energy experi-
ments through n nose—illations [17) with r =10 —10
s, and rare kaon decay, EL —+pe with branching ratio
7 X ( 10 —10 '

) [l8]. With M& -—( 10 —10 ) CxeV the
predicted neutrino masses are in the range

TABLE III. Same as Table II, but for lower intermediate scales.

Mc
(Gev)

MU

(Gev) sin'Ow

MG

(Gevj

1O' 1.2x10" 0.06

0.08

0.10

0.237

0.229

0.221

50.3

50.3

50.3

1018

1O"

1019

1018

1O"

0.80

8.04
1.07

10.72

1.34
13.41

10 3X10' 0.08

0.10

0.12

0.236

0.228

0.220

51.6

51.6

51.6

1018

1019

1P18

10l9

1018

1O"

0.42

4.25

0.53

5.32

0.63

6.38

1O' 7.6x10" 0.10

0.12

0.235

0.226

53.0

53.0

1018

1019

1018

1019

0.21

2.11

0.25

2.53

10 1.9x 1018 0.12

0.14

0.233

0.224

54.4

54.4

2x 10
1019

2x10"
10"

0.20
1.0
0.23
1.17
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m & 35 MeV). This implies that Mc ) 10 GeV,

B(KL ~pe) 57X10 ' and r „~10 s. But the seesaw

formula with m; as the charged-lepton masses allows

M&-—10 —10 GeV since the v masses do not violate the
existing laboratory limits. The unification mass for
Mc = 10 (10 ) GeV is high, MU = 10' (10' ) GeV predict-
ing a very stable proton with lifetime r =10" (10 ) yr in
the p~e+m mode. Such high unification masses are
consistent with the five-dimensional operator scaled by
high compactification masses MG —10' —10' GeV. Note
that the simplest Kaluza-Klein model leading to the
four-dimensional spacetime as a result of
compactification of the extra dimension on a circle yields
MG =Mp] /277= 1.6 X 10' GeV. Most of our solutions
with observable low-energy signatures of quark lepton
unification are compatible with g-1 and such a high
compactification scale. Since the left-right discrete sym-
metry (P) is broken at the GUT scale along with SO(10)-
gauge symmetry, the model does not in principle possess
the domain-wall problem [8].

Some of our solutions are consistent with Majorana
neutrino masses of the order 10 keV for v„or v . It is in-
teresting to note that the end-point P spectrum in
Simpson-type experiments [19]has indicated the presence
of a heavy neutrino (v, ) with a mass =17 keV although
conclusive evidence is still awaited. In such a case the
physical electron-type neutrino predominantly consists of
the mass eigenstate of a light neutrino with a small
admixture of the heavy-mass eigenstate with
sin 0=0.8%(6=mixing angle). The existing limit on the
neutrinoless double-P decay then forbids the heavy neu-
trino to be of Majorana type [20]. A Dirac type v, =v, is
consistent with the available data and solution to the
solar-neutrino puzzle [16]. The present GUT scenario is
not fully consistent with these observations on the heavy
neutrino.

In a number of predictions for the neutrino masses in
Eq. (2) the cosmological bound g;m 565 eV seems to

l

be violated. This happens, for example, for Mz ——10 —10
GeV for rn and m using up-quark masses for m, in

P
Eq. (28). One procedure to evade the cosmological bound
is to make the heavier neutrinos unstable with respect to
Majoron emission and decay into the lightest neutrino
(v, ) (Ref. [19]). The Majoron is generated by breaking
spontaneously an additional global U(l)& (l =lepton num-
ber) symmetry which must be introduced along with
SO(10) to start with and broken at a scale M ))Mii, .

V. SUMMARY, DISCUSSION, AND CONCLUSION

Higher-dimensional operators in specific forms, involv-
ing gauge and Higgs fields might appear as nonrenormal-
izable terms in the GUT Lagrangian in four dimensions
as a result of compactification of extra dimensions in
higher-dimensional theories [1—3,12], or as effects of
quantum gravity [4]. It has been shown that [1—6] such
terms can be absorbed in the renormalizable-gauge-
fields-kinetic energy of the residual gauge group when the
grand unifying symmetry is broken spontaneously by the
VEV of the Higgs field occurring in the higher-

dimensional operator(s). In such cases the gauge cou-
pling constants at the GUT scale are usually modified re-
sulting in the modifications of MU and sin 0~. We have
demonstrated in this paper that although the gauge cou-
plings are modified, in certain cases, either MU, or sin 0~
might remain una6'ected by the introduction of the
higher-dimensional operator.

Shafi and Wetterich [3] examined the impact of a five-
dimensional operator on SO(10) and obtained a factor of
10—100 enhancement in the proton lifetime over the con-
ventional predictions with the left-right-symmetric Pati-
Salam group surviving as the intermediate symmetry
down to Mc =10' GeV [Eq. (1)]. Such predictions with
observable proton decay in the p —+e+~ mode, but no
other low-energy signatures of the GUT are consistent
only if the compactification scale MG -—10' GeV, nearly
two orders lower than MP, =10' GeV. Examining for-
mulas obtained as solutions of RGE's in this case we
found that sin 0~ is independent of e, the parameter in

We find that, in addition to the GUT predictions
of the SW [3] type, the model predicts a very stable pro-
ton corresponding to large values of grand unification
mass consistent with higher compactification scales,
MG ——10' —10' GeV. The model does not possess the
domain-wall problem in practice with such high values of
Mz ——10' —10' GeV. Although the predicted values of
the neutrino masses are small, they still might be compa-
tible with the values needed to understand the solar-
neutrino puzzle [16].

As the primary objective of this paper we examined the
impact of the five-dimensional operator in SO(10) with
single G224 intermediate symmetry when parity is broken
at the GUT scale such that the model does not have the
domain-wall problem [9] [Eq. (2)]. The five-dimensional
operator is expected to be present as a nonrenormalizable
term in the Lagrangian after compactification of extra di-
mensions in the higher-dimensional model of Wetterich
[12]. In this case purely renormalizable interactions
(without the five-dimensional operator) predict
10"~ M& ~ 5 X 10' GeV and 6 X 10' + MU 10' GeV
at the one-loop level such that, except for proton decay,
no other interesting GUT signatures are possible at low
energies. Including the appropriate five-dimensional
operator in X~R we found that the resulting equations
for In(MU/Mii, ) and aG are independent of e, although
sin 61~ does depend upon it. As the primary distinguish-
ing feature in the structural form of the equations in the
two cases we note that, for a fixed M&, the values of
In(MU/Mii, ) sin Oii, are controlled by the parameter e in

Eq. (1) [Eq. (2)). In Eq. (2) the solutions of
renormalization-group equations are classified into three
categories: (a) solutions of SW type with Me =10"—10'
GeV and MG—- 10' GeV, predicting observable ~ and
neutrino masses 1—3 orders larger than Eq. (1), (b)
MC=10' —10' GeV, ~ at least 5 orders larger than the
experimental lower limit, and neutrino masses 4—5 orders
larger than Eq. (1), (c) MC =10' —10 GeV with a very
stable proton but experimentally observable n-n oscilla-
tion, rare kaon decays, and Majorana neutrino masses
consistent with higher values of the comp

actific

atio
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scales, MG ——10' —10' GeV. Some of our solutions are
consistent with 17-keV Majorana neutrino masses for v„
or v . But the heavy neutrino signal indicated in
Simpson-type experiment [19] might be a Dirac type v,
which in turn might be visualized as a combination of
two degenerate Majorana neutrinos [20]. In any case a
definite conclusive evidence on massive neutrino spec-
trum is yet to be confirmed by experiments. The cosmo-
logical bound can be evaded in appropriate cases by mak-
ing the heavy neutrinos unstable with respect to the de-

cay into the lighter neutrinos by the emission of a Majo-
ron [21]. The Majoron can be generated by invoking an
additional global symmetry U(1)L or U(1)z I, where
B(L) is the baryon (lepton) number, and breaking it
spontaneously at a scale M »M~.

Finally we conclude that the impact of the five-
dimensional operator causes drastic but very attractive
modifications of SO(10) predictions with single Pati-
Salam intermediate symmetry when parity and SU(2)~
breakings are decoupled [8].

'On leave of absence from School of Agricultural Sciences
and Rural Development, North-Eastern Hill University,
Medziphema 797106, India.
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