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Electroweak, strong, and horizontal interactions are unified in a simple group with an anomaly-free
representation which does not include mirror fermions or exotic quarks. +1 charged, and neutral exotic
leptons are needed in the model, but they acquire heavy masses as a consequence of the survival hy-
pothesis, and also mix with the known leptons producing seesaw and universal seesaw mechanisms in a
natural way. Masses for fermions in the third family arise at the tree level via a BCS (Aavor-democracy)
mass matrix. Masses for other known quarks and leptons can be generated by radiative corrections.

I. INTRODUCTION

One of the major theoretical puzzles in particle physics
nowadays is the so-called fIavor problem which is the col-
lection of at least three related problems. The first one is
the fermion mass hierarchy problem which has several
aspects; namely the smallness of the neutrino masses
compared with the other known fermions; the three or-
ders of magnitude between the known charged leptons;
the five (or more) orders of magnitude between the elec-
tron, the lightest charged fermion, and the yet to be
discovered t quark; the large isospin splitting in the t-b
system; etc. The second is the family problem, which is
the lack of information about the total number of families
in nature. The third problem is the lack of explanation
for the small values of the mixing angles of the elementa-
ry fermions (where the Cabibbo-Kobayashi-Maskawa an-
gles are only one sector of them).

The standard model (SM) defined by the
SU(3), SU(2)L Cs U(1)r local gauge group for strong and
electroweak interactions does not provide information
about these problems. So, any explanation for them
should imply physics beyond the SM.

It has been established in the context of the SM that
the constraints from high-precision charged- and
neutral-current experiments are enough to directly estab-
lish the canonical (left-handed doublet, right-handed
singlet) assignments for the three families of fermions t'1],
implying in particular the existence of the top quark and
of v, . There is also experimental evidence that a fourth
light neutrino is ruled out [2] which probably means that

there are only three generations of quarks and leptons
(three families). These two experimental facts constitute
our basic scenario, together with the widely accepted hy-
pothesis that known quarks have fractional electric
charges 2/3 (up sector) and —1/3 (down sector); and that
SU(3), IslU(1)&, where U(1)& stands for the quantum elec-
trodynamics Abelian factor, is an exact symmetry in na-
ture.

There are many ideas in the literature based upon the
former constraints which try to solve the flavor problem
regarding new physics. For example, compositeness may
be an explanation, or perhaps one should look for residu-
al effects (radiative corrections) of theories such as ex-
tended technicolor, grand unified theories (GUT's), su-

persymmetry, etc.
In what follows we present in detail the analysis we

have done on a new model proposed recently [3] based
upon the ideas of the grand unification of flavors and
forces; we especially focus on the particular version of the
model which points toward the solution of the fIavor
problem. Even though our model may find its deepest
roots in the three-family extension of the Pati-Salam
model [4,5] (which was one inspiration of the present
work), it has substantial differences with its ancestor and
it exceeds it in several aspects. The most outstanding
difference between the two models is the fact that, con-
trary to the Pati-Salam-type models, the model presented
here does not need mirror fermions in order to be renor-
malizable. We elaborate more on these differences in the
following section and in Appendix A.

The rest of the paper is as follows. In Sec. II we
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present the model (the local gauge group and its fermion-
ic content) and calculate the Weinberg angle at the GUT
scale. In Sec. III we break the original symmetry down
to SU(3),SU(1)&. In Sec. IV we present our analysis for
the fermion masses in the context of the model. Our con-
clusions are presented in Sec. V. Several appendixes at
the end of the paper deal with technical details implicit in
the main text.

II. THE MODEL

A. The gauge group

and

X3=diag(1, —1,0,0, 0,0),

its =diag( 1, 1, —2, 0, 0,0) /V3,
A, ,5=diag(1, 1, 1, —3,0, 0)/&6,
A,~4=diag(1, 1, 1, 1, —4,0)/&10,

A35=diag(1, 1, 1, 1, 1, —5)/&15,

(A.p); =5;5p. .

where SU(4), is a vectorlike four color gauge group [the
same one which appears as a subgroup in GUT SO(10)]
and SU(2)' is a subgroup which appears in an intermedi-
ate step. Tz, the diagonal generator of SU(2)', comple-
ments the role of (8 I. ) &SU(4),—algebra, in order to
define a new baryon —lepton number in SU(6), :

Y(ii L) =(8 I- )+2Tz— (2)

L) in the fundamental representation of SU(6), is
then given by a 6 X 6 diagonal matrix with entries
diag(1/3, 1/3, 1/3, —1, 1, —1).

We may write the 35 gauge fields of SU(6), in the fol-
lowing way:

1
ApG~+ —,'A323+ —,'Asks+ —,'A, , ~A, 5

aAP

24 24 p 35 3S

D' G' G' X
G2 D2 G2

G G D X

Xi Xq X3 D

Yi Y2 Y3 P )+

Zi Z2 Z3 P

Yi Zi

Y2 Z2

Y3 Z3

1

D' P+
2

(3)

where A,;, i =3,5, 8, 15,24, 35 are the diagonal generators
of SU(6),

We use G =SU(6)I SU(6),s SU(6)~ X Z3 as the gauge
group which unifies nongravitational interactions with
families [3], where II indicates a direct product, X a sem-
idirect one, and Z3 —= (1,P, P ) is the three-element cyclic
group acting upon [SU(6)] such that if ( A, B,C) is a rep-
resentation of [SU(6)] with A a representation of the first
factor, B of the second and C of the third,
P( A, B,C)=(B,C, A ) and then Z (3A, BC)
=( A, B,C)+(8,C, A )+(C, A, B ) is a singlet under Z3.
G is then simple, and it is characterized by one single
gauge coupling constant g.

SU(6), is the color group which consists of three ha-
dronic and three leptonic colors. SU(6), is broken down
to SU(3), U(1)„,where U(1) y is defined below,

through the chain

SU(6), ~SU(4), SSU(2)'~SU( 3 ), U(1)y

The diagonal entries in Eq. (3) are

D =G +By /&30+By /&20+By /&12

for i =1,2, 3,

D = —38y /&30 38y /—&20+By. /&12,

D =38y /i/30 28y /&—20 28y-/—&12,

D6= —38y /&30+By /&5 By-/&—&,

where B& is the gauge boson associated with the hy-
(B —I.)

percharge Y(~ L), and B~. and B~- are two gauge bosons
associated with U(l) factors in SU(6), but not in

SU(3),SU(1)y . In the right-hand side of Eq. (3) we

have renamed most of the gauge fields. G' for i,j=1,2, 3
are the SU(3), gauge bosons, X, , Y, and Z, are lepto-
quarks gauge bosons with electrical charges —2/3, 1/3,
and —2/3, respectively; P, , a =1,2 an—d P are (complex)
dilepton gauge bosons with electrical charges as indicat-
ed. The role of these gauge fields will become obvious
when we display the fermion content in the next subsec-
tion. The generators A, of SU(6) are normalized to
trA, A&=2. The SU(3), gauge coupling constant is g3 =g.

Notice that our color group SU(6), is vectorlike, con-
trary to the three-family extension of the Pati-Salam
model [5] where the color group is the chiral one,
SU(6),L (8I SU(6),i, . Even though SU(6), (:SU(6),l
SU(6), z, this difference has important consequences as
we will see in what follows.

SU(6)I SU(6)zU(1)y is postulated to be, at the

G scale, the gauge group which unifies electroweak and
horizontal interactions for three families of quarks and
leptons. This group is the left-right-symmetric extension
of the SU(6)l U(1)„family unification group [6].

The horizontal interactions arise from a chiral gauge
group G~L(36Hz which, at an intermediate step we take
to be either SU(3)HI (3ISU(3)Hz or SU(2)HL (33 SU(2)Hz. In
the first case the families are in the fundamental represen-
tation of GHL, (3 GH~ and the embedding of
SU(2)l SU(3)HL SU(2)i, (N SU(3)Hz into SU(6)L e SU(6)i,
is a special maximal [7] one. In the second case the fami-
lies are in the adjoint representation of GHL GH+ and
the embedding of SU(2)I SU(2)~L SU(2)z SU(2)Hii
into SU(6)I SU(6)i, is a special, not maximal one. In
both cases the interactions mediated by the gauge fields

WL and Wi', associated with the generators of SU(2)I and
SU(2)z are universal, i.e., family independent.
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The 35 SU(6)t iz) generators may be written in an
SU(2)t i„)SU(3)itz~tt~) basis, which shows explicitly the
universality of SU(2)L ) ii ).

o, e I, /&3, I,g 1,, /&2, o, eh, , /&2,
where o, , i = 1,2, 3 are the Pauli matrices,
j=1,2, . . . , 8, are the SU(3) matrices in the Gell-Mann
basis, and I2 and I3 are the 2 X2 and 3 X 3 unit matrices,
respectively. g2L and g2&, the gauge coupling constants
for SU(2)L and SU(2)~, respectively, are given by
g2L =g2ii =g/&3 (see Appendix B).

From Eq. (4) we read immediately the SU(2)L~+) and
SU(3)HLiHii) diagonal generators, elements of SU(6)L iii),

'

they are

Tz =diag(1, —1, 1, —1, 1, —1)/2&3,

T3 =diag(1, 1, —1, —1,0,0)/2V'2,

Ts =diag(1, 1, 1, 1, —2, —2)/2&6 .

The special maximal embedding of SU(2)It CSU(3)H is
achieved by using as generators of SU(2)H the set
(A, , +16)/2, (Az+A~)/2, and (k3+&3A8/2). We could
also use the rotated set (A,2, A, 5, A,7), or any other appropri-
ate set of generators. The diagonal generators for
SU(2}L (~) arid SU(2)HL (~g) are Tz as above aild
TzH =ding(1, 1,0, 0, —1, —1)/2V'2.

A few branching rules for SU(6) —+ SU(2)C3 SU(3)H

Q TZL + Tzii + z ~(.B L) ~— (5)

which is seen to acquire components from the three SU(6)
factors in G.

B. The fermionic content

The ordinary (known) fermions in our model are in-
cluded in

f(108)=Z3$(6, 1,6)L =Q(6, 1,6)L +Q(1,6, 6)t +Q(6, 6, 1)L

with the particle content

~SU(2)I3 SU(2)H irreducible representations (irreps) are

(6)~(2,3)~(2,3),
(15) (1,6)e(3,3) (1, 1)e(1,5)e(3,3),
(21)~(3,6)e(1,3) (3, 1)e(3,5)e(1,3),
(35)—+(3, 1)e(1,8)e(3,8)

(3, 1)e(1,3)e(1,5)e(3,3)e(3,5),
where (n, m ) refers to (SU(2)L z, SU(3)Itl H~ } irreps for
the first descendent step, and to (SU(2)L ~,SU(2)HI H~ )
for the second one.

The electric charge operator in the context of this
model is

g(6, 6, 1)L =

—1/3
q1, r

2/3
q1, r
—1/3

q2, r

2/3
2, r

—1/3
q3, r

2/3
q3, r

—1/3
q1y

2/3
q1y
—1/3

q2y
2/3
2,y

—1/3
q3 y

2/3
3,y

—1/3
ql, b

2/3
q1, b
—1/3

q2, b

2/3
q2, b

—1/3
q3, b

2/3
q3, b

EO L+ To
1 1 1

E2 L2 T2

EO L+ To
2 2 2

E3 L3 T3

E3 L3 T30 + 0

(6)

where the rows (columns} represent color (fiavor) degrees of freedom,

r, 1/3

y, 1/3
q1

b, 1/3

+
1

r, —2/3

y, —2/3
q1

b, —2/3
q1

yO

r, 1/3

y, 1/3

b, 1/3

E+

s',
T+

r, —2/3
q2

y, —2/3

b, —2/3

pO

L2

X2

r, 1/3

y, 1/3

b, 1/3

Q+

S03

T3+

r, —2/3;
q3

y, —2/3

b, —2/3

L3

where now the rows (columns) represent fiavor (color) de-
grees of freedom. Q(6, 1,6)t represents 36 exotic Weyl
leptons, 9 with positive electric charges, 9 with negative
(the charge conjugated to the positive ones) and 18 are
neutrals. As a matter of convention we have put in
P(1,6, 6)1 the fields charge conjugated for the electrical
charged fields in i)'j(6, 6, 1)L but not for the neutral ones

due to the possible existence of Majorana fields. To be
precise, the charge-conjugated fields should be identified
only at the end, when the mass matrices get diagonalized.

As can be seen, @(108)does not contain exotic quarks.
The known leptons (v„e,v„,)M, v„r ) and the known
quarks (u, d, c,s, t, b) are linear combinations of the lep-
tons and quarks in P(6, 6, 1)L+g(1,6,6)L, but cannot be



UNIFICATION OF FORCES AND FLAVORS FOR THREE FAMILIES 2169

C. The Weinberg angle

Since 6 is simple, the Weinberg angle can be calculat-
ed. For a simple group the Weinberg angle at the
unification scale M is given by [10]

sin 8ii (M) =tr(Tzl )/tr(Q ), (8)

where the traces can be computed using any representa-
tion (irreducible or not) of the simple group. In this way
the Weinberg angle is well defined and is a unique value
for the entire group, independent of a particular repre-
sentation.

When we calculate the traces for g(108) we get the

pinpointed from the beginning, because above the
unification scale all fermions (known and exotic) look
alike, except for their electric charges.

For further reference let us write the quantum numbers
for g(6, 6, 1)L and f(1,6, 6)1 with respect to the SM
group. For g(6, 6, 1)L they are 3(3,2, 1/3)$3(1,2, —1)
e3(1,2, 1)e3(1,2, —1), while for g(1,6, 6)L
they are 3(3, 1, —4/3)e 3(3, 1,2/3)e 6(1, 1,2)9(1, 1,0)
e 3( 1, 1 —2), where the numbers between
brackets label the (SU(3)„SU(2)L,U(1)r) irreps. As can
be seen, the exotic leptons in f(6, 6, 1)1 +P(1,6, 6)z,
which are left over after the ordinary ones are defined as
certain linear combinations of E's and T's, can be ar-
ranged as vectorlike representations of SU(2)LISU(1)r.
Also, for completeness, the SU(2)l SU(2)zISU(1)r
content of the exotic leptons in g(6, 1,6)I is 9(2,2,0).

Notice that the representation g(108) is free of
anomalies. As a matter of fact the sector itj(6, 1,6)L
demanded by the Z3 symmetry cancels the anomalies
arising from the fermions in hatt(6, 6, I )z + lt ( 1,6, 6 )I
without the introduction of mirror fermions. This way of
canceling the anomalies makes a conspicuous difference
between our model and the three-family extension of the
Pati-Salam one [4,5]. Not only the new sector P(6, 1,6)
avoids the introduction of mirror fermions, but it mixes
in a natural way with the ordinary leptons, producing
seesaw mechanisms [8,9]. That is, the heavy particles
needed for generating the seesaw mechanism [8] and the
universal seesaw mechanism [9] are present as a conse-
quence of the symmetries of the model. Furthermore, as
we will see later, the mixing of the several leptons in
g(108) is also natural. (By natural we mean that the mix-
ings are produced by the minimal Higgs sector required
to break the symmetries present in G.)

value sin 6)ii (M)=9/23. This value that represents the
Weinberg angle for 6 can be double checked by calculat-
ing the traces for P( 18 ) =Z3 g( 1, 1,6 ) (an unphysical sec-
tor) or either for g(105)=Z3$(1, 1,35), the gauge-boson
sector. In Appendix B we rederive this value in a
different way.

If the gauge group is not simple, then the Weinberg an-
gle cannot be calculated at all. If we start with a sem-
isimple group, product of equal factors, and make it sim-

ple by the introduction of one appropriate discrete sym-
metry, then the Weinberg angle should be calculated us-
ing any representation of the simple group and it is
wrong to calculate it with a particular representation of
the semisimple group which is not completely reducible
to irreps of the simple one. For example, in our case, the
traces calculated with P(6, 6, 1)r +g(1,6, 6)L give the
value 9/28 which is not related to the Weinberg angle for
G. As we show in Appendix A, this last value is related
to the three-family extension of the Pati-Salam model.

At this point we may emphasize this difference between
our model and the three-family extension of the Pati-
Salam model. In the last one sin Hid, (M)=9/28 at the
GUT scale [5], a value slightly smaller than in the present
model. This difference will obviously manifest itself in
the comparison of the phenomenology of these two mod-
els (e.g. , the proton lifetime).

III. THE STAGES OF SYMMETRY BREAKING

Our next step is to break the symmetry and give
masses to the particles in this model. We assume that
this is done by the introduction of appropriate elementa-
ry Higgs scalars, which trigger the spontaneous breaking
of the symmetry.

Our goal is to break the symmetry G down to
SU(3), SU(1)&. Our analysis suggests the symmetry-
breaking chain

G —+ Gsp(—:SP(6)L gl SU(4)c SU(2)' SP(6)~ )

M'

SU(3 ),SSU(2)1. SU(2)g SU(1)

M~

~SU(3), I8I SU(2)L U(1)r
ML

~SU(3),U(1)g,
where SP(6) stands for the simplectic group of dimension
6. Other intermediate steps such as

Gsp ~SP(6)L @SU(3),13U(1)r SP(6)~

~SU(3)~HC81 SU(2)L SU(3), SU(1)r SU(3)H~ CI SU(2)~

~SU(2)~~oySU(2)1 @SU(3),8IU(1)i, g SU(2)H~8 SU(2)~
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+$2(1, [a,p], [ A, B ])

+A(la, b] [a P], 1) (10)

with VEV's in the directions [a,b]=[1,2]=[3,6]= —[4,5], [A,B] similar to [a,b] and [a,P] =[4,5].
Now (p~) breaks Gsp down to SU(2)~

SU(3), U(1)r giSU(2)~. Therefore the net effect

of ( P, ) + ( Pz ) is to break G down to the left-right-
symmetric extension of the SM.

As mentioned before the Higgs bosons and VEV's de-
scribed above constitute the most economical and sim-

can also be included, suggesting the existence of a cas-
cade decay of G.

The hierarchy M ~ M' ~ Mz ))MI —10 GeV's, com-
bined with the renormalization-group equations for this
multistage descendant [four or more stages compared
with two for SU(5) or three for SO(10)] is enough to cope
with experimental results such as proton stability, the
value for sin Hid, (ML ), suppression of fiavor-changing
neutral currents, etc. Precise values for M, M', Mz, and
sin Oii, (ML) are hard to pin down due to the multistage
descendant and the fairly extensive particle spectrum
around the GUT scale. In order to assure consistency
with low-energy phenomenology we should assume
M~ 10 TeV's.

Even though there are many possible ways to break G
down to SU(3), gIU(1)&, we will base our approach in two
assumptions. (i) We use only Higgs bosons which devel-
op vacuum expectation values (VEV's) and also couple,
via Yukawa-type terms, to i/(108), the fermionic repre-
sentation in the model. In this way we break the symme-
try and give masses to the particles at the same time. (ii)
Once condition (i) is satisfied, we look for the most
economical and simplest possible combination of Higgs
scalars and VEV's. These two assumptions produce what
we call the minimal version of the model.

Now we outline the stages of the symmetry breaking.
First we use (Pi ) =M, where

p, =$,(675)=Z3$, (15, 1, 15)

=P,([a,b ], 1, [ A, B ])

+P, (1,[a,P], [ A, B ])

+P,([a, b], [ a, P], I ) .

a, b, c, . . . ; A, B,C, . . . ; aP, y. . . refer to SU(6)I, SU(6)~,
and SU(6), tensor indices respectively, and [.. ] stands for
antisymmetric permutation of the indices inside the
brackets. The VEV's in Pi are in the directions
[a,b ]= [1,6]= —[2,5]=+[3,4], [ A, B] similar to [a, b ]
and [a,P] = [5,6].

(P, ) breaks G down to Gsp, suggesting
SP(6)I gISP(6)~gIU(1)~ii I ~

as the group which unifies
horizontal and electroweak interactions [11] at the scale
M'

~

Next let ($2) =M', where

t)) 2
=pq( 675 ) =Z3 p2( 15, 1, 15 )

=Pz([a, b], 1, [A,B])

plest way to break G down to the left-right-symmetric ex-
tension of the SM. Taking a detour we can see, for exam-
ple, that the intermediate step SU(2)I H g SU(2)1
gISU(3), gIU(1)r g SU(2)HzSU(2)z can be reached

by the introduction of new scalars Pz instead of P2, where
(Ref. [6]) Pz =Pz( 3 15 ) =Z3 $2( 105, 1, 1 ).

Moreover, using only P, +$2 there are several, more
complicated ways to reach the left-right extension of the
SM. Taking, for example, [a,/3]=[4, 5]=[5,6] in both
steps above achieves the same breaking, but gives
different masses (and mixing) to the gauge bosons associ-
ated with the broken generators. That we can orient the
vacuum in a particular direction in order to break G in
the simplest way possible is due to the freedom we have
arising from the horizontal symmetry available.

The next step is to break SU(2)zg U(1)r down to
(B —L)

U(1)r at an energy scale M~ (see Appendix C). Follow-
ing our assumptions (i) and (ii) we do it by using

p3
=$3(675 ) =Z3(b3( 15, 1, 15 )

=P,([a,b], 1, [A,B])

+$3(1,[a,p], [ A, B ])

+$3([a,b], [a,P], 1),

where we take the VEV's in the most general direction
available, without breaking SU(3), SU(2)i gI U(1) r, as
demanded by low-energy phenomenology. That is, we
take

(P (3[a, b], 1, [ AB]))=(P (3[a, b], [ a, P], 1))=0

((f (1,[a,/3], [A,B]))=M

for [a,/3] = [4,6] and [ A, B ]= [2,4]= [2,6]= [4,6].
As we will see in the following section, the Higgs boson

and VEV's introduced so far produce masses for all the
exotic fermions in the model. That is, when the breaking
of G down to SU(3),SU(2)I giU(1)r is done, the follow-
ing particles remain massless: the six quarks, three Dirac
charged leptons and three Weyl neutral leptons. Those
states are identified as the ordinary fermions.

The final stage of the breaking SU(3), SU(2)L
gi U(1)r —+SU(3), U(1)&, is achieved by using scalars be-
longing to /&=$4(108)=Z3$4(1, 6, 6). As we will see in
detail in the following section there are 36 different direc-
tions for the VEV s in (P~), and in principle, we should
take all of them as independent parameters due to the
fact that we do not have the freedom to align the vacuum
at the last step of the breaking.

As it is clear from the branching rules at the end of
Sec. II A, P~ contains only SU(2)L doublets and singlets,
and it plays the equivalent role of the ordinary Higgs
doublet in the standard model.

Finally, let us mention that the Z3 symmetry is broken
by the VEV's of the Higgs scalars at the first step of the
symmetry breaking.
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IV. MASSES FOR FERMIONS

A. Masses for exotics

The Higgs bosons P&+/~+$3 allow for the following
G-invariant Yukawa coupling terms:

Z3$(6, 1,6)Q(6, 1,6) g h;p;(15, 1, 15), (12)

where naturalness demands that h;, i =1,2, 3 be of the
same order and not very small to avoid fine-tuning. Let
us analyze the mass terms in Eq. (12) generated by the
VEV's introduced in Sec. III (see also Appendix D).

A close look to the mass matrices produced by
( P& ) + ( Pz ) in Eq. (12) reveals the following.

(i) All the exotic (charged and neutrals) leptons in

P(6, 1,6)L get superheavy masses of order M.
(ii) There is no mixing between the leptons in

g(6, 1,6)L and the leptons in g(6, 6, 1)L +g(1,6, 6)L.
(iii) The 9X9 mass matrix for the charged leptons in

g(6, 6, 1)L+P(1,6, 6)L has rank six. That is, three linear
combinations of the charged leptons in (6) and (7) remain
massless. We identify them as the known charged lep-
tons.

(iv) The 18 X 18 mass matrix for the neutral leptons in
g(6, 6, 1)L+g(1,6, 6)L has rank twelve. That is, six mass-
less Weyl states related to three Dirac neutrinos remain
massless.

(v) The six quarks remain massless.
(vi) All the masses generated by ( P &

) + ( P2 ) are
AI~ =0 Dirac-type masses, where I~ stands for the weak
isospin related to SU(2)L .

These facts are just the remarkable way how the sur-
vival hypothesis [12] works in the context of this specific
model. So the masslessness of ordinary fermions is relat-
ed to the fact that the left-right-symmetric extension of
the SM is a chiral model which is not broken by
&y, &+&y, &.

The massless leptons produced by (P, )+ ($2) in the
notation of Eqs. (6) and (7) are the following.

(a) Massless charged leptons. ( VE, + V'T3 ) Iv;
( VE3 —V'T2)/u; ( VEz+ V'T& )/u; where V=Mh „
V'=M'h2, and u=+(V +V' ). Notice that their left-
handed components belong to f(6, 6, 1)L, so they are
members of SU(2)L doublets, meanwhile their right-
handed components belong to f(1,6, 6)L, so they are
SU(2)L singlets, members of SU(2)~ doublets. Because of
this the three states above define a basis for the physical
states (e,p, r). The six massive charged states orthogonal
to the massless ones above have masses equal to v. A de-
tailed discussion of this paragraph is presented in Appen-
dix D.

(b) Massless neutral leptons. ( VE
&
+ V'T3 ) lu;

(VE3 —V'T2)/u; (VE2+ V'T, )/u; (VF, + V'N3)lu;
(VF3 —V'N2)lv; and (VF2+ V'N& )/v. Where again the
first three are members of SU(2)L doublets and they
define a basis for (v„v„,v, )L, meanwhile the last three
are SU(2)L singlets, members of SU(2)~ doublets, so they
define a basis for ( v', , v„', v', )L . Again, the twelve massive
Weyl states all have masses equal to v and pair to form

Dirac masses.
Turning to the mass terms produced by (P3), the alge-

bra shows that they generate only Majorana masses for
the neutral states in g(1, 6, 6)L (where v,'L, v& L, v', L are).
That is, ( P3 ) produces Majorana masses of order Mz for
the three right-handed neutrinos. So, the 18X18 mass
matrix produced by (P&)+($2)+(P3) has rank fifteen,
where we identify the eigenvectors of the three zero ei-
gen values as a basis for the physical Weyl states
(v„v„,v, )L.

(y, (6, 1,6)) =

K)) 0 K)3 0 Ki~ 0

0 Kqq 0 K24 0 K26

K3$ 0 K33 0 K35 0

0 K4$ 0 K44 0 K46

K5) 0 K53 0 K55 0

0 K62 0 K64 0 K66

(13)

0 0 0 0 K)5 0

0 0 0 K~4 0 Kq6

0 0 0 0 K 35 0(~''")= 0 0 0 K' 0 K'
44 46

0 0 0 0 Kq5 0

000 K,'4 0 K,',

(14)

(y, (1,6, 6) ) =

0

0 K4'~ 0

K q') 0 K q'3

0 K62 0

0 0 0
0 0 0
0 0 0

K44 0

0 K 5'5

K,'4 0

K46

K 66

where we have 36 independent parameters, in principle
all of them different. Any information about those pa-
rameters should come from the Higgs potential ~

We realize that to minimize the most general Higgs po-
tential including P, , i =1,2, 3,4 is an horrendous task.
What we have done is to study the Higgs potential for
each step of the symmetry breaking in isolation. We
presented in Sec. III our results for the first three steps.
We present here the results obtained for the last step of
the breaking. Corrections to the results presented in this
section are expected to be of order (ML /Mz ) and small-
er [13].

The most general P4 potential, Z3 symmetric, with the
discrete symmetry P4~ —

P4 is

B. The VEV's of P4

As mentioned in Sec. III the final step of the breaking
is achieved by using scalars /&=$4(108)=Z3$~(1, 6, 6)
=$4(1,6, 6)+$4(6, 6, 1)+$4(6,1,6). By arranging P4 as
three 6 X 6 matrices, their VEV's are in the directions
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V($4) =Z3 [a /4(6, 1,6)$4(6, 1,6)+bp4(6, 1,6)$4(6, 1,6)$4(6, 1,6)$4(6, 1,6)

+cg4(6, 1,6)$4(6, 1,6)P~(6, 1,6)$4(6, 1,6)+d$4(6, 1,6)P„(6,1,6)$4(6, 6, 1)P~(6,6, 1)], (16)

and

K531= IK)5 I

= K35

= K46 I

= IK62 I

= IK6~ I

= IK66 I

—=
I K, I,

(2) ($4(6, 6, 1) )%0 only if

where a, b, c, and d are real arbitrary parameters. When
we substitute the 36 parameters of (P4) in V($4) and
differentiate it with respect to each one of them we get,
for an extreme, 36 simultaneous equations. Our analysis
showed that (1) ( P~(6, 1,6) ) WO only if

II B, this term produces mixing of the exotic fermions in
g(6, 1,6)I with the ordinary fermions, contributing to the
seesaw [8] and universal seesaw mechanisms [9] for neu-
tral and charged leptons. These terms are thus responsi-
ble for lowering the known lepton masses compared with
the quark masses.

(2) [y(6, 6, 1)y(1,6, 6)](y,(6, 1,6) ).
In the vacuum direction where EU and Ez are

different from zero, this term produces four 3 X 3 mass
matrices for ordinary fermions: one for the up quarks,
one for the down quarks, one for the known charged lep-
tons and one for known neutral leptons. Each one of
those matrices is of the form

1 1 1

IKp4 I

= K26 I

= IKgg I

= IKg6 I

= IK64 I

= IK66 I

—= IKE I,
MD=C 1 1 1

1 1 1

(19)

and (3) ($4(1,6, 6) )%0 only if

where ED,EU, EE,E+,E»,E35 E55 E5$ E53 and E5'5
are functions of a, b, c, and d and they depend upon the
particular direction chosen for the minimum of V($4).
For example, in the direction of the minimum where all
the 36 parameters are different from zero we have that

IK I

= K
I
=&2/3IK

I
=&2/3IK

I

= 1K„I/3
= IK„I/3= —,'& —2&/(2&+c+2d ),

where

(17)

alld

IK, )l V K(5+K3g+K5g

IK„I=+K,",'+K,",'+K,",' .

C. Masses for known fermions

+ [g(6, 1,6)L g(6, 6, 1)1 ]$4(1,6, 6)

+ [g(1,6, 6)L g(6, 1,6)L ]$4(6,6, 1),
which leads to the following mass terms for fermions.

(1) [g(6, 1,6) g(6, 6, 1) ](P (1,6, 6))

(18)

+[/(1, 6, 6) g(6, 1,6) ](P (6,6, 1)) .

In the vacuum direction where EE and E& are
difFerent from zero, and as mentioned at the end of Sec.

With P& the Yukawa-type term can be written

Z3[p(6, 6, 1)1p(1, 6, 6)L ]p~(6, 1,6)

= [g(6, 6, 1)1Q(1, 6, 6)L ]$4(6, 1,6)

where C is a constant proportional to EU for the up
quark and neutrino sectors and to ED for the down quark
and charged lepton sectors. These matrices are BCS-
(Aavor-democracy-)type mass matrices [14], which are
rank one, with the only eigenvalue different from zero as-
sociated with the eigenvector (1,1,1)/&3. We identify
those states as the particles in the third family. In this
way we have a conspicuous realization of the horizontal
survival hypothesis [15] built in a natural way in the con-
text of this model. As we know, BCS (flavor-democracy)
mass matrices for elementary fermions are a very sound
starting point for solving the flavor problem [16]. Notice
that using difFerent Yukawa couplings h, , i =1,2, 3,4 for
each Higgs sector P; does not change the form of matrix
(19), which depends only upon h 4.

It seems to us that the vacuum direction where all the
36 parameters E;, E,', and E,". are different from zero is
not the direction chosen by nature. It is more likely that
nature has chosen the vacuum direction where ED=0
and the other 27 parameters are different from zero (with
the appropriate constraints). If this is the case, then we
have the following scenario (which we call the modify
horizontal survival hypothesis).

(1) At the tree level only the t quark and v, get masses
via BCS-(flavor-democracy-) type mass matrices.

(2) The ~ lepton gets its mass at the tree level via a
universal seesaw mechanism [9].

(3) The smallness mass of the v, neutrino is explained
by the double seesaw mechanism produced by ( P3+ P~) .

(4) All the other fermions get their masses as radiative
corrections [17].

V. CONCLUSIONS

We have presented here a model based upon a simple
gauge group which unifies fIavors and nongravitational
forces. This model has several notorious advantages with
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respect to other family GUT's such as SO(18),Es: name-
ly, it contains exactly three families of quarks and lep-
tons; it does not include unwanted mirror fermions, etc.
The exotic leptons introduced in order to have an
anomaly-free model are vectorlike representations with
respect to the SM, so, according to the survival hy-
pothesis [12] they are very massive; they also mix natu-
rally with the known leptons producing seesaw and
universal seesaw mechanisms, two features used frequent-
ly in the literature in order to explain the hierarchical
spectrum of masses of the known elementary fermions.

To show that this model is a realistic one there is still
much tedious work to be done, such as a more careful
analysis of the Higgs potential, the calculation of the ra-
diative masses for the tree-level massless fermions, the
calculation of the different mass scales via
renormalization-group equations, the calculation of the
mixing angles, the calculation of the strength of the dou-
ble seesaw mechanism for v, etc. Our feeling is that
those calculations deserve a try and that most of them are
simpler than similar calculations in other family GUT
models, due to the fact that our model is more economi-
cal than their competitors as far as the number of fer-
mions and gauge bosons are concerned.

As we have discussed in the main text, our model in-
cludes in a natural way features such as the survival hy-
pothesis, the seesaw and universal seesaw mechanisms,
and the horizontal survival hypothesis (or alternatively
the modified horizontal survival hypothesis).

It is also obvious in our model that the gauge bosons
are either quark even or quark odd; therefore, they have
well-defined values of baryon number (B) and lepton
number (L). Thus, proton decay is absent at the tree lev-
el in the gauge sector due to the absence of gauge bosons
lighter than the proton. So, our model may fit a lower
GUT scale (M «10' GeV's) than most of the popular
GUT models. This fact may have important conse-
quences for the upcoming Superconducting Super Collid-
er.

Even if our model is not fully realistic, there are still
many alternatives of it worth being explored and that
may contain realistic physics. We note a few examples.

(i) It could happen that the vacuum in this model is
aligned in the direction where all the 36 parameters in
(P~) are different from zero. Then the BCS (fiavor-
democracy) mass matrices generates the horizontal sur-
vival hypothesis for the third family with masses of the
order of a few GeV's for the fermions. Then the largest
mass for the t quark must find an explanation outside the
context of GUT's of Aavors and forces.

(ii) It could happen that the final stage of the symmetry
breaking is achieved by Higgs scalars which do not cou-
ple to fermions via Yukawa-type terms [the simplest of
them being $5=Z3$5(6, 6, 1)]. In this approach the pro-
ton is completely stable because its decay is also absent in
the Higgs sector. Then masses for the known fermions
should be generated as radiative corrections. Again the
largest mass for the t quark must find an explanation out-
side the model.

(iii) Last but not least, it may happen that the final step
of the symmetry breaking is not accomplished by Higgs

(a)

FIG. 1. One-loop diagrams contributing to the mass matrices
of ordinary fermions.

scalars but it is dynamically in its origin. If such is the
case then masses for ordinary fermions are generated by
the radiative corrections of the extended technicolor
forces due to the vacuum condensates (in this model con-
densates with the exotic leptons are available).

To conclude let us say a few words about the radiative
corrections produced by the gauge bosons.

The one-loop diagrams contributing to the radiative
quark and lepton masses of known particles are depicted
in Figs. 1(a) and 1(b). In those diagrams the wavy line
refers to a heavy gauge boson, the internal double line to
an exotic superheavy lepton, the symbol stands for a
mixing of the gauge bosons or exotic leptons, the symbol
X stands for a mass insertion, and the external lines are
related to ordinary quarks and leptons.

The mixing between the superheavy particles makes
both diagrams finite and one gets the following contribu-
tion to the ordinary fermion masses:

fim =P [M, /(M, —M3 )ln(M, /M3 )

—M ~ /(M2 —M 3 )ln(M2/M3 )],
where the meaning of the masses M„Mz, and M3 is as
depicted in the diagrams 1(a) and 1(b), P is a propor-
tionality constant of the order of M3 for diagram 1(a)
times the mixing present in (3) and of the order of
QM&M2 for diagram 1(b) times the mixing. Such a mix-

ing is always a function of K~ and Kz.
The mass matrices generated by the first-order radia-

tive corrections for a particular sector are of the BCS
(fiavor-democracy) type. In this way, radiative masses
are generated in a cascade way [18].
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APPENDIX A

In this short appendix we show how the three-family
extension of the Pati-Salam model [5] rests heavily on the
existence of mirror fermions, and calculate in a simple
way the Weinberg angle for such a model. Our aim is to
point out the differences between the Pati-Salam-type
models and our model and to point to the origin of those
differences.

The gauge group for the three-family extension of the
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Pati-Salam model is

G'=SU(6)LSSU(6)BI3SU(6)CLSSU(6)cB XZ4 .

The known fermions are then included in

Q'(72)=Q'I(6, 1,6, 1)+$3(1,6, 1,6) .

As far as the particle content of It/'(72) is concerned it
is equivalent to the particle content of
Itj(6, 6, 1)+g(1,6, 6) in Eqs. (6) and (7). It is clear that
I)r (72) is not anomaly-free; neither is it an irrep of G' (it
is not Z4 symmetric). The corresponding irrep of G is

g'(144) =Z4$'(6, 1,6, 1)

=1t'I(6, 1,6, I)+q,'(1,6, 1,6)+$3'(6, 1,6, 1)

+It|4'(1,6, 1,6) .

Trivially P'(144) is free of anomalies. Also $3+$4 are
nothing else but the mirror fermions of g', + Pz.

Now to calculate the Weinberg angle for 6' we should
calculate the traces for lt~(144) and plug them into Eq.
(8). But as far as the calculation of the Weinberg angle is
concerned, it is simpler to use g'(72) instead of It/'(144),
due to the fact that the contribution of the mirror fer-
1111011s f3+ Itr4 to Eq. (8) amounts only to a factor of 2 in
the numerator and another factor of 2 in the denominator
which therefore cancel out. When we apply Eq. (8) to
p1+gz [or equivalently to It/(6, 6, 1)+g(1,6, 6)] we get
sin 811,(M)=9/28 as was obtained in a different way in
Ref. [5].

APPENDIX 8
In this appendix we derive g2L and g2& in terms of g.

Also the photon field 3" is calculated as a function of
Wg', Wg', and B(' the gauge boson associated with

(B —L)
the hypercharge F(z L). A.s a by-product of this calcula-
tion the Weinberg angle shows up, and BP', the gauge
boson of the Glashow-Weinberg-Salam (GWS) model
[19],emerges immediately.

The covariant derivative for this model is given by

(D, )b,'p,'B =5b5p5Bd„

+lg5p5BA( APL AL)b+ig5b5BA(AP A, )p

+ ig5p5b ( A„.AB )B,
where A„, A„, A„are the gauge bosons, and AI, A„and
AB are the generators associated with SU(6)I,SU(6)„and
SU(6)B, respectively [in particular A„.A, is the 6X 6 ma-
trix presented in Eq. (3)].

For the analysis that concern us here it is enough to
consider only the following seven gauge fields, out of the
108 contained in 6: 8'„+L, 8' L, O'„L, 8'„+~,
W„B,W„B,and Bp

The conventions and normalization conditions stated
in the main text imply that we may write

W;/&(6) W,+/&(3)
~L p W- /3/(3) —W,'/3/(6)

O' .Az can be written in a similar way with the replace-
ment L ~R. Finally, from Eq. (3) we read

81' .A, =BP diag(1, 1, 1, —3, 3, —3)/3/(60) .
(B—L) (B —L)

The interaction Lagrangian of the fermions in g(108) with the gauge bosons is given by

Z31t/(6, 6, 1)D„y"g(6,6, 1)=g[lt(6, 6, 1)(BIr A, )y„1(t(6,6, 1)

—I)/(6, 6, 1) (W„A )y1'g(6, 6, 1)+P(1,6, 6)(W„.A )y"g (1,6, 6)

—g(1,6, 6) (Br .A, )y„f(1,6, 6)+g(6, 1,6)(W„A )y"g(6, 1,6)

—g(6, 1,6) (W„A )y"Q(6, 1,6)+ . ], (B4)

where the minus signs inside the brackets are due to the fact that, in those terms, the covariant derivative acts upon the
complex-conjugate fundamental irrep (instead of the fundamental one).

Using (when necessary) the identity gLy"(L = —/By"yB, we extract from the former Lagrangian the following
terms.

(1) The interaction Lagrangian which contains WI is

3 3

L L — W
— y y ~ 1/3y P. 2/3—

i =1 a=1

3

+ g (E,Ly"E,L+T,Ly"T,L+L,Ly"L,L) +H c + ' —= —WI. ~L +H c

where a is the color index (three hadronic and three leptonic colors), and i is a liavor index. Since G includes
SU(2)I U(1)r, the GWS gauge group, then L + =g2L WL JL+ /&2+H. c., where g3L is the gauge coupling constant for21.

SU(2)L. Then we read immediately g3L =g /V'3 as stated in the main text.
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The left-right symmetry of the model implies, in the same way, gzR =g/3/3.
(2) The Lagrangian which contains the coupling of WL R and Bi to the neutral fermions is

(B —L)

8'I „Lrv'=g X —' «', s. l'"L', L Ea, L)'"E',s.
—T'. L,l'"T~L,)

12

(S L—y"S L
F" L—y"F L X—Ly"N L )

+~',Lr"~'.,L F', r.
—l'"F', L &', r.

—y"&'.
, L ) + (B6)

According to Eq. (5) the photon field A" must be written as A"=(3., W~'"+a3WRO'"+a3B~'" . Since it is obvious

that L~, does not contain A", then we must have that a, =az=3a3/3/5, with ~a, ~

=3/3/23 in order to have the ap-
propriate normalization. Then the photon field is, up to a phase factor,

A"= — W' '"+ W '"+ Br'"
3/23 3 (B —L)

Since A"=sin0ii, WL'"+cos6ii, 83'" we immediately read that sin Oii, =9/23 as calculated in a different way in the
main text. Also we have that

Bi'"=- —WR'"+ 8 '"
3/ 14 3 (B L)— (B8)

is the gauge boson associated with the hypercharge of the G%"8 model.

APPENDIX C

In this appendix we carry out explicitly the algebra involved in the breaking of SU(2)R(3U(1)r down to U(l)r
Y&g

arising from &(t)3&. What we pretend here is to give an example of the kind of algebra implicit in Sec. III. As a bonus
we obtain again Bg' in a different way. Contrary to the rest of the paper where most of the tensor indices and the
traces are implicit, we display here all of them.

We are interested in calculating tr(D" &(i)3 & ) (D„&$3 & ), where D" is the covariant derivative defined in (Bl) and (t)3 is
defined in Eq. (11). Notice that & (]))3 & has four tensor indices, i.e. : & $3 &[„'~~ . Then,

7

r (D p
& p & )

t
( D & p & ) g

2[ & p &
[B A ]( g c

)
i

& p &
[B A ]( +c

)r + ( +R
)
B

& p &
[D A ] + ( +R )

A
& p &

[B D ] ]

+I(+C)5&4'3& AB +(+C)5&(3& AB &03&[AF(+R)B &43& FB(+R)A]
where A„'= A„.A, and A„= A AR and summation over all the indices is understood. There are three different types
of terms T, in (Cl): namely,

T =g'[ —
&y &' "'(4 )' —&y &""](X)'][(A') &y &

"~] +(4")P&y &""]3 [y o, ] p P 3 Ip, yj p a e 6 3 )g g) c 6 3

=12g MR [tr(M, 4~gA.„M, )+tr(M, A~cM) &„' )],
where we summed over A, B such that [ A, B ]= —[8,A ] = [2,4] = [2,6]= [4,6], and M, is the matrix

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 I

0 0 0 0 0 0
0 0 0 —1 0 0

T, =g'[(~„')'&y, &, ", +(~„')"&y, &; ][—&y, &, „'„(~",), —&y, &„",],(~", )', ]

=4g MR [tr(M2 A~R A„M2 )+tr(M3 N~R M3 L„' ) ],
where we summed over a, 13 such that [a,/3] = [4,6]= —[6,4], and M3 is the matrix

(C2)

(C3)

(C4)
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0

0
M2=

0 0
0 0
0 0

—1 0
0 0

—1 0

0 0 0
1 0 1

0 0 0
0 0 1

0 0 0
—1 0 0

(C5)

T =g'[(y )('"(Z')r+(y ) '")(Z') ][(y ) ' (Z")'(y )""(~')']+H.c.
7

= —4g~[( AC. A, )4+( A„A, )6]tr(M2 Q~~M2)+H. c.

By
+4 '" +4 ' " tr(M, Z&M, )+H.c. ,v'60 &40 &24

(C6)

where again we have summed over
[a,P] = [4,6]= —[6,4], the antisymmetry of Mz was
used and the diagonal elements in Eq. (3) have been writ-
ten down explicitly.

The next step is to evaluate the traces in T„T2, and
T3 ~ The general result is not very illuminating; so let us
work in the approximation M ~M'))Mz( ))ML), and
concentrate only on the terms which include Wg' —,Wz'",
and Bir . Using (82) with the replacement L —+R,

(B—L)
and (B3), we write

MT= —8 W' +W+W + B'—
{S—I, )i=1

5
—W~ B),0 0

(B —L)

Neglecting mixing with extra (heavy) gauge bosons, we
may write the following mass matrix for the neutral
fields, in the basis ( W~, Br ):

(B—L)

From Eqs. (C7) and (C8) it is also simple to calculate

cos Ogr
2

cos26 p

Mz~ 28
2

(C10)

T) =4g Mg [tr(M) A.", X M) )+tr(M) A.",M) g. ' )],
(Cl 1)

T2 =4g M~ [tr(M, &~ 4.„M, )+ tr(M, %~M) &„' )],
(C12)

B&(B—L) ~
T3 =g 24 — +4 —'" +4 —'" tr(M) &~~M) )&60 &40 &24

as it should be [20], since the mass terms produced by
( (t 3 ) are of the b,Iz = 1 type.

Finally let us say that the conclusions in this appendix
are independent of the way we orient the vacuum at this
particular stage of the symmetry breaking. For ex-
ample, if we orient ( P3 ) such that

(P (3[a, b], 1, [A,B]))=(P 3([a, b], [a,P], 1))=0, and
( P3( 1, [4,6 ], [4,6] ) ) =Mz, our results read

+H. c. (C13)
8M~ gM =— 1

—3/&5

—3/&5
9/5 (C8)

which has eigenvalues 0 and —56&2M+g /5. The eigen-
vector associated with the eigenvalue zero is

Bo,P 3 W~'"+ Br"
3 (B —L)

(C9)

which is nothing else but the gauge boson associated with
the hypercharge of the GWS model (not broken by ( P3) )

obtained in a different way than in Appendix B.

And after evaluating the traces we get
g;=)T =(g;=)T;)/3; and M' =M'/3, without chang-
ing the results (C9) and (C10).

APPENDIX D

In this appendix we show how the known leptons ap-
pear as linear combinations of the leptons in

P(6, 6, 1)L+g(1,6, 6)L and how the exotic leptons in the
same representation gain masses in the way predicted by
the survival hypothesis.

According to Eq. (12) we want to calculate

MF=Q(6, 6, 1)LCQ(6, 6, 1)1 [h) ($)(15,15, 1))+h2(pq(15, 15, 1)) ]

+g(1,6, 6)1 Cp(1, 6, 6)1 [h, (p, (1,15, 15))+h~(p~(1, 15, 15) ) ]
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under the assumptions (P, ) =M, (Pz) =M', and h
&
-hz -1. In (Dl) C = —C is the charge-conjugation operator.

When we calculate the traces implicit in (D 1) for the directions of the VEV s described in Eqs. (9) and (10) we get

M'"=Mh, (L+ CTz L
L+—CT, L

L—,+' CT3L+Tz+' CLz L
—T3+' CL, L

—T,+I CL31 )

+M'hz(Lz I, CE3 L+L,+I CE, I +L3+L CEz L+E, I. CL, I +Ez+L CL3 I +E3 I. CLz 1. )+H. c. (D2)

The 18 X 18 mass matrix for the charged fermions in the basis (E&,Ez,E3,L &,Lz, L3,T~, Tz, T3,
E,+,Ez+, E3+,L,+,L z+, L3+, T &+, Tz+, T3+ ) is of the form

Mch
09 X 9 M9x9

T
M9X9 09X9

(D3)

where 09X9 is the zero 9 X 9 matrix, and M9)(9 is the matrix

M9x9 =

0 0 0 V' 0 0 0
0 0 0 0 0 V' 0
0 0 0 0 V' 0 0
V' 0 0 0 0 0 0
0 0 V' 0 0 0 0
0 V' 0 0 0 0 —V

0 0 0 0 0 —V 0
0 0 0 0 V 0 0
0 0 0 —V 0 0 0

0 0
0 0
0 0
0 —V

V 0
0 0
0 0
0 0
0 0

(D4)

with V=Mh, and V' =M'hz. We have to diagonalize (M'"), but since (D4) is by assumption a real matrix, we can di-
agonalize the 9X9 matrix (M9~9) instead of the 18X18matrix (M'") . The algebra shows the following.

(1) (M9)(9) is a rank six matrix, so it has three eigenvalues equal to zero.
(2) The only eigenvalue different from zero is ( V + V ' ) which is six times degenerate.
(3) The three eigenvectors associated with the zero eigenvalues are ( VE, + V'T3 ) Iv, ( VE3 —V' Tz )Iv, and

(VEz+ V'T&)/v; with v ='t/V + V' . As stated in the main text these states define a basis for the physical states
(e,p, r).

(4) The six eigenvectors associated with the nonzero eigenvalue are ( V'E&+vL
&

—VT3 )/&2v;
( V'Ez+vL3 —VT& )/&2v;( V'E3+vLz+ VTz)/&2v. Since these states are degenerate they are not necessarily the phys-
ical states. The physical states are appropriate linear combinations of them. In accord with the survival hypothesis we
take as the physical states: L „Lz,L3, ( V'E, —VT3)/v, ( V'Ez —VT, )/v and ( V'E3+ VTz)lv Now u. sing the previous
arguments we reorganize MF' in the following way:

T

+ T 1,1. 3,L + V 3,I. +V 2, L + V 2, L V 1,LMF"=v L& z C ' ' +L21. C ' +L3I. C

( V'E+ —VT+ )
T

( V'E+ + VT+ )
T

( V'E+ —VT+ )
T

+ ' ' CL + ' ' CL + ' ' CL +H. c.1,L 2, L 3,L (D5)

Notice in (D5) that the first three mass terms include only spinors in lit(6, 6, 1)L and the last three terms include only
spinors in P(1,6, 6)L . But all the terms are XI~=0 Dirac mass terms as they should be, since SU(2)z is not broken by

(P& ) + (Pz). As mentioned in the main text this is how the survival hypothesis enters in the context of this specific
model.

For the neutral states we choose the basis (E, ,Ez, E3,S, , Sz,S3, T, , Tz, T3,F, ,Fz,F3,L, ,Lz, L3,N, ,Nz, N3). In
this basis the mass matrices for the neutral fermions are identical to (D3) and (D4) and similar conclusions follow.
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