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Nonlinear realization of heavy fermions and heavy-top-quark efFects in bosonic vertices
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We show that in the standard model, when the mass of the top quark becomes very large, compared to
other mass scales and external momenta, constraints develop in the field system. The top-quark Geld be-
comes nonlinearly realized. SU(2)U(1) remains a symmetry at the S-matrix level. A general formula-
tion for the one-light-particle-irreducible Green s functional I ]Lpga and the effective Lagrangian I.,ff is
presented in the setting of the external Geld technique and derivative expansion. The bosonic part of
r, apl and L,, is explicitly constructed. It encompasses all the top-quark effects for all low-energy boson-
ic processes. (Vertices with external fermions as well will be reported shortly. ) Examples are given to
show that our approach easily reproduces known results. Wess-Zumino terms due to the top quark are
also given.

I. INTRODUCTION

Two of the present authors (H.S. and Y.-P.Y.) wrote a
brief article [1] outlining a field-theoretical method by
which one can succinctly collect all the virtual top-quark
effects in all the low-energy processes in the form of an
effective Lagrangian. In that Letter, results of the purely
bosonic vertices were displayed in an ungauged model
with one quark doublet. Since then, the lower limit [2] of
the top-quark mass has been repeatedly raised, whence
this previously exploratory program has gained even
more phenomenological significance.

We have in the mean time put in the gauge fields of the
standard electroweak model [3] and completed a major
portion of this program. Here is then the first of a series
of articles in which we shall detail our endeavor and elu-
cidate the conciseness and efficiency of this procedure.
Processes with external bosons only will be considered
here. Results with external fermions as well will be re-
ported soon. As a reassuring check of our formalism, we
find full agreement with the known calculations, to which
they have been compared so far.

As practitioners in radiative corrections will appreci-
ate, one is not a priori guaranteed large effects in hunting
for processes which may seem particularly sensitive to
certain parameters, such as a large top-quark mass. It
apparently takes insight, guesswork, fortitude, and even a
little luck. If possible, it would help if one could devise a
program to perform a single comprehensive calculation,
but which would incorporate all the virtual top-quark
efFects for all the low-energy processes. After this was
carried through, one could then scan the results and iso-
late the processes which are most interesting.

That such a method exists can be inferred from the

which is the condition for a nonlinear realization.
A top quark carries a Yukawa coupling

H(tL, bL ) t~, (1.2)

with the bottom quark and the complex scalar field. L
and R refer to left and right handed, respectively. The
top-quark mass is =IIv /&2 and hence a heavy top quark
carriers a large coupling constant H. Here, while we can-
not use the argument of boundedness of the potential
from above as before, the fact remains that the potential
energy will be unbounded when H becomes very large,

nonlinear o. model, where it has been shown that all the
large Higgs-boson-mass e8'ects can be isolated [4]. It will
become clear that a parallel development in methodology
to locate the top-quark effects is at hand. The initial
point for this is to argue that in the heavy top-quark lim-
it, the top-quark field is nonlinearly realized.

Heuristically, it may help to recall the physical mecha-
nism for the nonlinear realization in the scalar sector:
the self-coupling of the Higgs physical field o. and the un-
physical pseudo Goldstone field P in the standard model
gives a potential term =A,(o +P ) /8, which in turn
leads to the mass squared of the Higgs field MH =A, U .
Here u = (o ) is the vacuum expectation value. Because
U is fixed by the weak scale to be =250 GeV, a heavy
Higgs boson corresponds to a large positive A, . In the
mathematical limit that A, tends to be extremely large, the
potential is locked in step to become unphysically large.
Unless a constraint is developed, excitation becomes im-
possible. We have (Ref. [4])

o. +P =v or tT=+v
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and instability will be induced unless constraints develop.
Indeed, the equations of motion for the top-quark field
mandate that such constraints result (Ref. [1]):

(t~b~)= =0 or tt = bL—P /P (1.3)

t~ =0. (1.4)

Note that these are SU(2)-invariant conditions, which en-
tail a nonlinear realization [5] again.

One can easily show that the tree equations of motion,
together with the nonlinear constraints of Eqs. (1.3) and
(1.4) generate all the non-negligible contributions to the
tree graphs. The constraints correspond to replacing the
heavy-quark propagator 1/(m, +p ) by 1/m, , where p is
the propagating momentum.

A more concise way to express this is to impose the
constraints on the classical Lagrangian. Because of its
origin, this tree efFective Lagrangian contains graphs
which can be separated into two halves by cutting an
internal top-quark line. It is therefore one-particle irre-
ducible only with respect to light line (1LPI).

We can pursue this approach much further to include
loop efFects. A convenient quantity for generalization is
the generating functional I,Lp& for one-light-particle-
irreducible Green's functions I llpi which in principle
can be constructed to any loop order, but we shall con-
cretely do it to one-loop order in this article. To corn-
mence this construction, one elementary but crucial ob-
servation is that, if we choose to perform our calculation
in the symmetric phase, the underlying symmetry is there
for all values of H. Of course, we will be interested in the
case when H is large. %'e can shift the scalar field to give
the Higgs field its vacuum expectation value afterwards.
Because we shall use a large Yukawa coupling propor-
tional to the top-quark mass as an expansion parameter,
it is natural to Perform a derivative exPansion on I lips.
We shall show that (1) at a given loop order, the parts of
I,Lpi which have top-quark efFects cannot have more
than a certain maximum number of external light-quark
lines and covariant derivatives, (2) out of them, one can
construct only a finite number of local vertices, which are
SU(2)U(1) invariant, together with an entity which is
on-shell invariant, and (3) the coefficients for these local
vertices can be and will be determined.

One may at this point raise the issue that strictly
speaking I lLpi So Collstlucted is good only for mt, ~z,
m, ))p, „because graphs with purely light particles are
also included in the derivative expansion. This is true;
but if one's focus is only the m, dependence, I &zp& will
provide that correctly. Nonetheless, we come away with
a sense of discomfort if we stop here, because ideally we
would like to obtain an efFective Lagrangian which is val-
id for m, )&p„, and light masses, such that all the physi-
cal analytical requirements are respected. We have in
mind, for example, that light-particle thresholds will ap-
pear as cuts in amplitudes when we reach the proper ki-
nematic regions.

This in fact can be accomplished if one now extracts,
for example, L,'ff"" from I',„p',". Basically, what needs to
be done is to subtract out all the one-loop efFects generat-
ed by L',ff' to the same maximum order in external
momentum derivatives as in I lLpI. If we now use

L,ff=L",ff'+L,'ff '~ to perform a calculation for a low-

energy process with m, ))p,„„we shaH discover that the
correct analyticity is there. Furthermore, the heavy top-
quark efFects will be explicitly displayed in L,'ff"' . The
divergence due to internal integrations in constructing
one-loop graphs from L",ff' will be canceled by the
counter terms which are automatically generated in
L 1 looP

eff

There is another technical point which we wish to
touch upon brieAy before elaboration later. As we shall
repeatedly emphasize, the construction of I ]Lpga and L,ff
is feasible only because SU(2)U(1) remains a symmetry.
To respect this, the gauge conditions we shall use are
chosen to be SU(2)U(l) covariant in the background
gauge formulation [6,7]. In fact, because of great number
of terms, we find it most convenient to use the back-
ground field technique throughout, coupled with the
derivative expansion. This will be seen to reduce greatly
the number of explicit processes we need to evaluate in or-
der to determine all the coefficients of the monomials
which make up I lI pi and L,ff.

From the discussion above, we repeat that the efFective
theory we are deriving here far exceeds traditional usage.
Usually, when one applies an efFective Lagrangian, the
understanding is either to stop after the tree level, as in
soft-pion physics, or to use experimental input to fix new
counterterms, as in chiral perturbation theory at one
loop. For us, because there is an underlying full theory,
the efFective Lagrangian can be constructed systematical-
ly to any loop order. The number of input parameters
remains the same as in the full theory. Some of the ad-
vantages of this approach over direct calculation from
the full theory are that (a) the calculation becomes
simpler, and (b) the heavy-particle dependence is explicit-
ly displayed before any labor is committed This is. ac-
complished without any cost to renormalizability,
analyticity, and unitarity.

The plan of the paper is as foHows. In the next section,
we shall introduce our notation. Solutions to the classical
equations of motion wiI1 be expanded in powers of 1/H.
We shall see that the constraints follow immediately.
The SU(2)U(1) transformation properties of the solu-
tions will be examined; particularly, we shall show that
the 1/H term of the solution t~ (t ~"), which will appear
later on in loop corrections, is an on-shell singlet in
SU(2).

In Sec. III, we shall introduce background fields to
prepare for loop calculations. We shall write down a set
of gauge conditions, which will preserve the SU(2)U(l)
symmetry. We shalli. perform a loop analysis. Because
the background fields we are going to use are the zeroth-
order approximation to the classical equations, but not
the exact solutions, there will be terms which are linear in
quantum fluctuations. From this, we shall see that the
term t z' mentioned earher will accompany these linear
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fluctuations. It will appear in processes where there are
external fermions. We will draw an important conclusion
that only the S-matrix elements will be invariant under
SU(2) U(1) transformations. The one-light-particle-
irreducible generating functional I,i p, will be introduced
here.

In Sec. IV, we do a power counting on one-particle-
irreducible graphs with at least a top-quark internal line.
We shall do a derivative expansion with respect to exter-
nal momenta and establish a formula, to show how many
external derivatives we need to keep for a given external
line configuration and a given loop order before the resid-
ual terms become negligible. Combining with results of
the last section, we know the possible structural depen-
dence of I llpi on the background fields. We would like
to draw attention to the fact that our I lr pi contains also
contributions from pure light diagrams, up to the same
maximum order in external derivatives we are keeping to
locate heavy-top-quark effects. Thus, our results are uni-
formally valid only in the region p,„,((m, and mb. Al-
though by itself this already constitutes a new result,
relevant for a hypothetical fourth nondegenerate quark
doublet, it is definitely at variance with our present objec-
tice as an effective Lagrangian. Fortunately, this
shortcoming will be quickly remedied by the construction
of I.,ff.

We shall develop further calculation techniques for
one-loop bosonic vertices in Sec. V. We shall introduce
Green's functions for fermions in the presence of external
scalars. As will become clear, because we shall need only
a small number of charged scalars to determine the bo-
sonic parts of I ll pI, the external scalars in the fermionic
Green's functions will be taken neutral. This simplifies
the group algebra.

Using all the tools developed, we shall explicitly con-
struct the bosonic parts of I lip& at one loop in Sec. VI.
The results agree with those published by Steger, Flores,
and Yao (Ref. [1]) some time go and extend to include
gauge bosons.

In Sec. VII, we shall subtract from I lupi all the terms
up to fourth order in external mornenta, which are gen-
erated in one-loop order by I.",ff'. lf we now use I.,ff to
calculate, the results are exact for m, »p, „,. Further-
more, all the analyticity requirements are met.

As is well known, each fermion in a gauge theory gives
rise to Wess-Zumino [8] terms. If uncompensated by oth-
er members of a multiplet, they mill give rise to anomalies
and spoil the renormalizability [9] of the theory. We
shall discuss these Wess-Zumino terms due to the top
quark in Sec. VIII, just to make the bosonic analysis com-
plete.

Section IX is reserved to deal with three examples.
The p parameter [10] and H~2y [11]will be used to il-
lustrate that our method easily reproduces known results.
As another example, the 8'+ ~/++/' (P =P'
+U/&2) will demonstrate that our efFective Lagrangian
reproduces the correct analytic amplitude. Further phys-
ical applications will be reported elsewhere, to limit the
size of this article.

Some brief concluding remarks are made in Sec. X, ba-
sically to recapitulate the essential elements of our work.

II. TREE-LEVEL CONSIDERATION
OF CONSTRAINTS

~ lin ~ fermions +~Higgs gauge fields

+I-vukawa+I-gf

with

(2.2)

1
L~„~;,„,= —t b)t . V"D„

1 L

—bR —y"DqbR,
1

1

1
tR . X DptR

(2.3)

(2.4)

Gapv —& g It' pv
~gauge fields 4 ~ pv 4 pv (2.5)

Lv„„,„,= —H(t b )t.
~

tR

+h (t b )t ot b~+H. c. , (26)

where

L
(2.7)

L

I

D„t = 8„—i Y, B„ tp 2 tg p R

D b = 8„—i—--Y B„b~ g
IJ 2 g P

(2.8)

a

D„P= 8„—ig A „' i Y&B„—P IJ 2 P
(2.9)

ga g ga g ga+~&abcgbgc
JMV p V V p p v

F =B„B —BQ„.
(2.10)

We want to derive some constraints on our field system
when the top quark receives a heavy mass because of
strong coupling, i.e., when m, =HU/v'2 ))m, p,„„where
m is any other mass scale in the system and p,„, denotes
external momenta. (At the tree level, all internal momen-
ta are of course expressible as external momenta, but the
theory of our effective Lagrangian is formulated to apply
to cases with loops as well, )

Let us introduce source terms into the Lagrangian

L =L»„+(rtttb„+rit. bt. +PJ&+H. c. )+J„'A'"+K„B".

(2.1)

Because we do not a11ow the production of top quarks
due to our external momentum requirement, we need not
introduce source functions for them. We shall neglect
mixing of the top-bottom quark family with other low-
mass families. Its restoration is trivial. Also, we need
not write down the lepton members, because they do not
enter into our present discussion. Then,
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1——y" DP HP —tR +h $+bR =0,

The hypercharges are YL =
—,', Y, =—', , Yb = ——', , and

Y&= —1. We will specify the gauge-fixing term in the
next section. Suffice it to say here that it will be
SU(2)U(1) invariant. As is well known, to generate all
the three diagrams, we need only the classical solutions
for the Lagrangian of Eq. (2.1). Of particular interest to
us is the propagation of the top quark, which obeys the
equations

In places where (P )
' and (P )

' appear, they are
defined as expansions around their vacuum expectation
value (P ) =(P ) =v/3/2. We can rewrite the first part
of Eq. (2.13) as

t'~)
(yOt y+ ) (2.15)bI

=0,

P ~P +—5a3$ + (—i5a, +5az)P

which is a manifestedly SU(2)-invariant constraint: under
SU(2) rotation,

y"D—„tR H(P—
tL +P+bL )=0 .1

(2.11)
+ (i—5a, —5a2)P ——5a3$ (2.16)

where the up (down) arrow means that the upper (lower)
component of the term should be taken. For fixed b and
P, one can expand the solutions is inverse powers of H:

bL ~bL + (i—5a, —5a~)tL' ' ——5a3bL,

it can be easily checked that, as written in Eq. (2.13),

~ =t, )+II- t()+, ~ =~()+H- t()+L L L ~ R R R + 5a3tl, + ( i 5a] +5ap)bl. i2 2
(2.17)

t,'"= (y+ /y—'t)b„ t,'"=0, (2.13)

(2.12)

Substituting these into Eqs. (2.11) and equating powers of
H, we obtain

which affirms that (tL( ', bL I) form an isodoublet. We shall
discuss the transformation property of tz" shortly.

Now we insert the constraints of Eq. (2.13) into the La-
grangian. This will be called the nonlinear Lagrangian
L, „&. In the following, we shall write interchangeably

g(&) —0L t (i)— +p
1

l P

t(0)
L

+hy+bR

(2.14)

—t (0)—t — (y + /y t)b (2.18)

in which all quantities with tildes are classical solutions
for I.

~
to zeroth order in H:

L„,= (t b )L
—y"D — —bR y~D—„bR ——(D "P) (D„P) (f P) P—(f—f)—

I, bL l

——'G 'I"'G „', ,'F"'F„,—[h (bL, $——tlp )bR+H. c. ]—

+(riRbR+rit bt +J~qT+H c )+J„'A '.".+K„B". (2.19)

This Lagrangian gives us all the vertices for light particles P, b, A, and B. The terms proportional to t come from di-
agrams in which the top propagator I/(p +m, ) shrinks to a point 1/m, . We will call the collection of (a) diagrams
which cannot be separated into two parts by cutting a light internal line, and (b) those which can be separated by cut-
ting a top internal line, one-light-particle-irreducible diagrams. With the sources turned off, J d x L„, is in fact the
tree-level generating functional for the connected one-light-particle-irreducible Green's functions I ', L'pi.

Except for the source terms, L„t is SU(2)13IU(1) invariant. It is also noted that the corrections to L„~ at the tree level
will be 0 (H '). Hence, to detect effects H "ln H with m, n )0, we need to perform loop calculations. A similar situa-
tion exists in the strongly coupled Higgs system (Ref. [4]), where the kinetic terms produce extra interaction because of
a nonlinear constraint, but explicit strong-coupling dependence shows up only after loop corrections.

Let us return to the second part of Eq. (2.14), when all fields are replaced by the classical solutions. Under Eq. (2.16),
we have

t '„"+—(i5a, +5a,)— 1 — 1

(p) i02& & D
b

r

1 1+ —y" Dpy0 i bl
+h &", +&'&

$0 y0

~(]) 1=t R + (i5a, +5—a2)
1

2 (2.20)
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In the last step, use has been made of the equation of
motion for tL. Now, in evaluating S-matrix elements, we
need to put the participating particles on shell and turn
off the external sources afterwards. This procedure will
obliterate the second term of Eq. (2.20). That is to say,
t 'R' is an isoscalar with respect to the S matrix. This
leads to the statement that, after quantum loop correc-
tions, the S matrix is an isosinglet, but the Green s func-
tional can have terms with noninvariant transformation
behavior.

[N.B. The discussion is primarily conducted in the
symmetrical phase of SU(2)U(1). However, because we
will be performing calculations with the background field
method, the results can be readily used in the broken
phase as well. In the latter case, we can impose the con-
ditions [12]

( Q W —"+ i vP—+—
)

~
physical states ) =0,

2

2+ i2, )1/2
v P3 ~

physical states ) =0,

B„A "~physical states ) =0,

are, respectively, the charged-vector bosons, the neutral
weak-vector boson, and the photon. Also,
0'*=(4'i+ &0'z)l&2. ]

III. GENERAL DISCUSSION OF ONE-LOOP
CORRECTIONS

In this section, we want to investigate the structure of
the Green's functional under nonlinear SU(2)s U(l) trans-
formations. Also, we want to give a discussion of the
construction of an effective Lagrangian with loop correc-
tions upon taking the heavy-top-quark-mass limit.

First, let us introduce gauge-fixing terms. We shall use
the background field method, so that SU(2)U(1) gauge
invariance is manifest. The gauge conditions are (Ref.
[7]), respectively,

O'=D' ( A )( A "—A ")+i P~'(P—P) i—(P——P)r'P—,2

with

Dab( A ) g gab g&abcA c
p p p

at the S-matrix level, after the generating functional of
the next section has been constructed. Here

and
I=d„(B" B")—i P(—P P)+—i (P pter)P . (3.—1)

W —"=(A ~)+i A ~) l&2,

Z„=(g A „g'B„)I+g +—g'

A„=(g'A „+gB„)l+g +g'

Note that we have equated the background fields with the
approximate tree classical solutions of the last section. It
can be shown that this is a consistent procedure, at least
to the one-loop level.

The generating functional is

exp(iW[JK, J&, rt, A, B,P)]= Jdb db dt dt dA„dB„dgdgb[A, B,Q, Q;A, B,Q, Q]exp i Jdx I. (3.2)

where 6 is a Faddeev-Popov determinant. L is given by
Eqs. (2.1)—(2.6) and

L ~= ——'G' G' ——'GB GB .gf B B (3.3)

tL =Tg+tL,
4'=~'+0

tR TR

p A p + 2 p

B„=Bg+B„, (3.4)

with 8, T, N, Aq, and Bq as quantum Auctua-

Because the approximate tree classical solutions have
well-defined SU(2)U(1) transformation properties and
are convenient for expansion in H ', we make a change
of integration variables by shifting

bL. —BL, +bL, bR —BR+bR

tions. Through this, the connected Green's functional
becomes

W= W[A, B,P, t, b]
= W[J,K,Jp, g] . (3.5)

This follows because the tilde quantities are functions of
sources via the field equations.

We can determine the loop-corrected classical fields
and perform a Legendre transformation to obtain the
connected one-light-particle-irreducible (1LPI) generat-
ing functional I,LP7 which contains all graphs that can-
not be separated into two halves by cutting one single 2,
B, P, or b line. This is in fact what we will construct, but
we are skipping a detailed account of the formal aspects
of this procedure. (At the tree level, I,ip, is just I-„~
without the sources. ) For a while longer, however, we
keep working with 8'.

After substitution of Eq. (3.4), we have
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L =Ln)+ B~ + yl

ab,
()L);„

+BL +gL
Bbl

BL);„

BtR
+Ti BL);„

+H. c. +terms in higher powers of quantum fluctuations . (3.6)

The symbol ~ means that the evaluation is at p= p, tL z =tz z, bL z =bL z, 3 „' = 2 „', and B„=B . Here, we must
be careful to take into account the expansions of the linear theory, but evaluate around solutions of the equations of
motion of L„~. For 2 „and B„,there is no di6'erence in the equations for the linear or the nonlinear theory. They both
vanish, which also explains why there are no linear fluctuation terms in 3„''i and B i in Eq. (3.6). For the linear theory,
we have

BL);„
+i)R = y„D—"bii —h(p bl —p rL, )+rl~,

l

1
t

+nI. = ——.X„D" =
l

hp b—ii + i)1. ,

BLi;„ BL„-„
+hP +b~,

atR

+J t =D D&Po g(g—oPof+P-+'P——
)P

0
&zoo Qb b~+ Jot

+J~ =D D"p+ A(p p +—p+p )p —p p+ hb~FI +J~— (3.7)

and similar equations for the conjugate fields. Use has been made of the constraints of Eq. (2.13). On the other hand,
the equations of motion for the nonlinear Lagrangian are

aL„,
+a~ = 7'"D„b—z —.b(P '4 —P—&i)+n~ =o

l

~Lnl +
ab, ab,

BL„i
+nl. = ——.X"

Bbl

-oy- 1 — 1
b~ —— Pii —o ~ p +hp+b~ +ilL =0,

BL ) Btl BLn& ~Ln+ —(j +J t=D D"P A(P P +P+—P )P p, P hb b- —
apo ap = aa„p ~ ~ P

t~
' ——y„D"

bL

—hP+b~ '+J~ =0,

BL„& BtL BL„& BL„~"'+ ' "' —a„"' +J, =D„D~p+ x(p'p "+p+p )p' —I'p' bb, ~, — —
ap- ap- z=,, "aa„p-

1= . 1——y DP —hP+b~ '+J~ =0. (3.8)

Combining Eq. (3.6) and Eq. (3.7), we have, for Eq. (3.5),

L =L„)+L',
where

(3.9)
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When this is substituted into Eq. (3.2), we find that loop corrections are contained behind the functional integration

exp(iW)=exp i f dx L„, f dB dB dT dT d A„dB„d&b d4 b, exp i f dxL' (3.11)

L'=[(Bt P +Tt P )t 'z" +(4 tt +4& b t )t 'z'+H. c. ]+terms in higher powers of quantum fluctuations . (3.10)

where b, is the relevant Faddeev-Popov determinant. We already know that (P,P ) and (t, b )t transform as isodoub-
lets. We can demand that the integration variables (4,4 ) and (T,B)t transform likewise. In this way, we can easily
show that all the terms which are higher in powers of quantum Quctuations are isospin invariant. The only quantity
which is not invariant is t z'" in Eq. (3.10), which is an on-shell singlet. Hence, quantum loop corrections to W will be
made up of SU(2)lNU(1) gauge-invariant quantities of (p, p ), (t, b )t, Dz, G„'„and F&„and powers of t ~l"

%'e now turn to a discussion of the meaning of an effective Lagrangian in the present context. Naively, this may
mean that the top-quark fields have been integrated out, which is formally written as

lim f db db it dt dA„dB„d(t dpi[A, B,Q, Q; A, B,p, p]exp i f dxL
mt »m, Pext

= f db db dA„dB„dgdgb[A, B,Q, Q; A, B,Q, Q]exp i f dxL, s (3.12)

I loop ~ Cloopgloop
1LPI ~ i i (3.13)

where 8',"p are local operators of the light fields A ', B„,
P, and b. They are SU(2)U(1) invariant up to tz' '. C;
are coefficient functions which encompass all the
m,"ln m, (m, n ~0) effects.

Because we conduct derivative expansions also for
graphs with purely light lines (for example, I', i pip) strict-
ly speaking the result is generally valid only for
m„mb ~z &&p,„„although from it one can pick out
those terms with explicit H dependence and isolate the
dominant top-quark effects. The situation can be im-

proved. If we subtract out one-loop contributions due to
L",ff' in the same powers in external momenta, as implied

by Eq. (3.12), we obtain L,'s P. As we shall see, the am-

There are two comments we want to make concerning
this approach: (1) The large mass limit can be taken
behind any integral sign, only if the ultraviolet behavior
is sufficiently convergent to permit it. This is obviously
not the case for a renormalizable theory. The grouping
of terms to produce effective vertices and to give a mean-
ing to the limiting procedure is the essence of the theory
of effective Lagrangians and has been developed else-
where for other theories. We do not intend to repeat this
program here in its entirety. We will just use the implied
technology in constructing the one-loop effective La-
grangian. (2) As we have repeated a few times, we must
maintain SU(2)U(1) invariance to make this otherwise
rather formidable calculation possible. We shall obtain
L,ff to one-loop order in two steps. First, we shall con-
duct a derivative expansion for I ~i'i'g„ to a certain max-
imum power, to be determined by graphs with internal
top-quark lines. This will be explained in more detail in
the next section. Then we impose the symmetry require-
ment on I ';g„which has the consequence that even

graphs with loops made up purely of light particles are
also included and developed to the same powers in exter-
nal momenta.

In operator language, we will obtain

plitudes constructed through L,ff will have kinematic va-

lidity for m, &p,„,. Furthermore, it will respect all the
analyticity requirements of the light-particle sector.
They are renormalizable, in the sense that the only renor-
malization parameters are the conventional wave func-
tions, couplings, and masses. At the one-loop level, for
instance, the extra divergences coming from loops in-
duced by L",ff" will be canceled out by those from L'ff"",
which are automatically generated by over-subtractions
to go from I 1LpI to L,ff. Clearly, this is the most corn-

pact way to look for physically interesting processes
which are sensitive to the heavy-top-quark mass effects.

IV. POWER COUNTING

Given a graph with at least one heavy-top-quark inter-
nal line, we want to carry out an expansion in inverse
powers of m, . The accompanying external parameters in
the expansion are the light fields and their covariant
derivatives. We want to know up to what powers in D„,
F„,G „'„P,b we should include before contributions of
graphs with heavy-top-quark internal lines become negli-
gible in I i'gi. As discussed before, we must also include

graphs with only light b internal lines to the same deriva-
tive order to maintain SU(2)SU(1) invariance. We will

see, however, that in actuality it works like this: we shall
calculate processes which involve graphs with at least one
heavy-top-quark line. Because of symmetry, they already
provide enough information to determine I';„'g,. This
means that if graphs with only light b-quark internal lines
can exist in a process, they are automatically included to
the required order in the momentum expansion.

Our present discussion will be carried out for a
general-loop order, although we should remark that the
actual extraction of L,ff can only be an iterative pro-
cedure. A formula, which gives us the maximum number
of derivatives a local operator may have for a given loop
order will be derived. After this is determined, in the
next few sections we can combine it with the invariance
requirement to write down all the possible local operators



2146 GUEY-LIN LIN, HERBERT STEGER, AND YORK-PENG YAO

for I,„p, at the one-loop order.
Consider a fermion loop. The derivative expansion will

produce integrals such as

(k +m ) '(k +m )
' (4.1)

H'I = F B4—3n /2 —n

X ao+a1 + ' ' '+aN
'N

(4.2)

This series terminates at

4—
—,'n —n + V=N .F B (4.3)

The neglected terms in Eq. (4.2) are suppressed by at least
O(1/m, ).

Let iF and iB be the number of internal fermion and
scalar boson lines, respectively, and let L be the loop or-
der. We have

and

3iF +2iB +
2 nF+ nB =4V,

2(2iii+ nil ) =2iF+nF,

iF+iB =L —1+V . (4.4)

These three equations are used to eliminate iF and iB,
which yield

2(L —I)+n~+nti = V . (4.5)

We combine it with Eq. (4.3) to give the result we are
after, namely

I

In order that I, be the scale of expansion in the problem,
we must require that m+2 —

n& +0. In other words, we
must assume that there is no power infrared divergence
with respect to mb. It turns out that in constructing
I ]Lpy there are graphs in which this condition is not
satisfied, an example being the W„+ P P vertex. Howev-
er, after we deduce L,'ff"', out of which we can construct
physical processes, this potential complication does not
led to any effect.

A graph can potentially have the strongest power be-
havior in H if all its vertices carry H. Let us call the
number of vertices in this graph V. Let nF denote the
number of external fermions (b) and n~ the number of
external scalar bosons (p). (The number of external
gauge bosons will eventually be decided by gauge-
covariant derivatives. ) The integral under consideration
will be written as H I, where we have explicitly factored
out the power of H from vertices. The mass dimension of
I is 4—

—,'nF —nB. If we use p to denote a generic external
momentum, the expansion takes the form

' V

N =2(L +1)——,'nz . (4.6)

Note that the number of external scalar boson lines does
not appear in this formula. What it means is that we can
have an arbitrary number of them. It is quite under-
standable how this has to be so: the relevant
SU(2)@U(1)-invariant scale we have is the scalar product

P P, which can occur in inverse powers or as an argument
in the logarithm function. Each of these will give us an
arbitrary number of scalar bosons when expanded around
the vacuum expectation value v. In view of this, it is
advisable that calculations be performed with the exter-
nal field technique.

V. PROPAGATORS IN EXTERNAL FIELDS AND
THE DERIVATIVE EXPANSION

For the rest of this article, we will be determining to
one-loop order local vertices with external bosons only.
Therefore, the necessary internal propagators are all fer-
mionic.

We have explained that because there will be an arbi-
trary number of scalar bosons for each of the local ver-
tices, a convenient tool to facilitate calculations in this
situation is the external field technique, coupled with the
derivative expansion [13]. Two remarks are now in or-
der. First, the derivatives will naturally turn out to be
covariant derivatives after all graphs are summed. On
the other hand, if we use covariant derivatives
throughout the whole calculation, then their proper or-
dering in a string should be closely monitored. We shall
bypass this by using ordinary derivatives in the propaga-
tors, complemented by evaluating explicitly the noncom-
muting parts to the necessary orders, which will give rise
to F„and G„' 's. This is justified, because after all we
are performing a derivative expansion. Second, as we
shall see, we need processes with at most two pairs of
external charged scalar fields together with an arbitrary
number of neutral scalars to determine all the coeKcients
C, (to the extent that they can be uniquely determined;
see later. ) It will be sufficient for this purpose to have
propagators in the presence only of external neutral sca-
lar fields. The calculation will be done in the symmetric
phase, which can be immediately carried over to the bro-
ken phase for applications.

Because the quarks will occur in the propagators only,
they are quantum fluctuation fields, while the bosons will
occur only externally and are thus external classical
fields. There should then be no confusion if we just drop
all ornamental symbols introduced before to differentiate
between them.

The equations of motion lead to the following set of
equations for the Green's functions ( T [t„(x)tz(y)] ) and
( T [t&(x)&&(y)]):

[ —8 +H P (x)P t(x)](T[tt (x)t~(y)]) =HP (x) . 5(x —y)L+ yd„—HP (x) (T[t~(x)t~(—y)]),
l l

and
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[
—a„'+H'y'(x)y"(x)]( T [t, (x)t, (y)]) = ——ya„—.S(x —y), + —.) a„Hy'"(x) ( T[t,(x)t, (y)] ) .

l l l
(S.2)

To solve these equations, we write formally (u:—&)I) P )

& T[t, (x)T„(y)])=fd'z(x, , z Hdt'(z) tt(z —y—)z+ ye)H&t'—(z) &T [tz(z)tz(yl]&—a'+a'& l l
(5.3)

& T [it(xly„(yl]) = fd'z(x 1
z ——.y8, —.5(z —y)L + yH—Q "(z) ( T [tt (z)t~(y)])1 1 1

—8+Hu (5.4)

In the case of pure bosonic vertices, from Eq. (4.5), one has to iterate up to four derivatives on the right-hand sides of
Eqs. (5.3) and (5.4). Note that because u has coordinate dependence, we also have to carry out a derivative expansion
for it. In particular, the inverse operator 1/ 8+H—u is written as

1 d4 1 d4 1I 1px ~ Z—82+H u (2n. ) 8+H—u (2m) p +H u [x i(—B/Bp)]

which will be used with, e.g.,

ip (x —z)8 (5.S)

4 4

&T[tz(x)tz(y)]& —&xlt, tzly=&= f &yzelt t lyz&=zf, t ztz xi )e'"* t'
(2~)' (2n. )' ~p

(5.6)

Here, the derivative within the argument acts on every p-dependent quantity to the left. We can write two equivalent
equations for these Green's functions:

( T [tt&(x)ttt (y)] ) = Jd z —.y8, —.5(x —z)L —( T[tt&(x)tL (z)] ) yBHQ (z)— ~2+~2„& (5.7)

and

&T[tz(x)tz(y)]& fd z Ht[t =(z)yt(x —z)z+—&T[tz(x)tz(z)]& T()H$ (z) z —. t t yl .
l —3+Hu (5.8)

For these equations, it will be more appropriate to write, e.g.,
e

4

&T[tz(x)t„(y)]) fee'e'* "=tet„y+i l,(2~)' ~p

with

(
d'P ip (x —z) 1

8+H u — (2m) p +H u[z+i(B/Bp)]

e
~ P tp(x —z)

(2m) p +H u (z)1, , 2 . a . a 1
X $ —g [8„' &)„* H u(z)]i i&)p„&p„p'+H'u (z)

(5.9)

(5.10)

In the last line, we have made a series expansion. Of course, here we just have to keep up to four derivatives in z. One
can check the consistency of the resulting expressions after left or right differentiations by using commutation relations
of the following kind:

p2+H u [x+i(&)/&)p)]
1 1—yBH u x+i

p2+H2 [ + '(&l/&)p)] ] &)p p +H u [x +i (8/Bp)]

and
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IIyo, p+Hu 2+H2 i yI y ~ 2+II2 2+H2 y ~ i y~ 2+II2~( a"II ') — ( a H~') —. (5.1 1)

where we omitted the argument x +i (a lap) in u and $ of the second equation.
To illustrate, we give the result for ( T(tR tz ) ), where all momentum derivatives are to act to the right and the argu-

ment in u, p, and p is understood to be x +i (a/ap):

d~
( T [tR(y)t~(x)] ) = J ~

e'p' ' ——yp . H—p—ot —yaHyo
(27r) i p+Hu i p+Hu p +H u

——.yI —yaay1 1 1 py

i p+Hu i
1 1

~ p

p +H u

1

p2+H2u

l p +Hu l p+Hu i
1

p+Hu
1

p +H u
x . y aHQ—

l

——yp, , —.yaH4
1 1 1 pf

p'+H'u
1

p+Hu. yaHQ—
p2+H2u i

x —'yaHy"
l

1 1 1

p+Hu p +Hu (5.12)

This, in conjunction with Eq. (5.10), will generate a large
number of terms. We use scHooNscHtp [14] to carry out
this chore, and some others.

In an analogous way, we can construct (T(tRrl )),
( T (tL t~ ) ), ( T ( tL rl ) ), and similar Green s functions for
the b propagators, either with the derivatives acting on
the right or on the left. With these ingredients, we are
now in a position to calculate the diagrams necessary to
determine the coefticient multiplying the invariants of
I iLpr

VI. ONE-LOOP 1LPI GENERATING FUNCTIONAL

In this section, we shall determine the one loop I ]Lpga

with techniques developed in previous sections. By
power-counting arguments in Sec. IV, one-loop effective
bosonic vertices are described by SU(2)U(1)-invariant
operators carrying zero, two, or four derivatives. The
complete set of operators is listed as follows.

A23lo(Dpo) H4'(Dpe)) i(04»),

A24lk(D, N) ll:(D"4A']i(A» .

C. Four-derivative terms

To compactify, we introduce the following notation
(A,4, a.4) (A, i, ~i&

), where each I, or ~ stands for a set of Lorentz3' 3 27 2

indices. Each pair (A, ,~; ) operates on a bilinear PP in the
(& ) y (~ )

following fashion: (D ' P) (D ' P). Note that the or-
dering of Lorentz indices in each A, and ~ must be strictly
observed. After all the covariant differentiations have
been applied, we scale the resulting expression with ap-

(A,4, v4) (ki, it.
i )

propriate powers of PP so that each ~&

'

iI~&
'

i has mass

dimension four. For example

I„";o =((D'D "0') DA']:(Dpd) 0V(44')' .

Then, the possible terms are

C I"'" C I" C (I"' +H. c. )1 2 0 pv & 3 pv, p

C, (I„"0'+H. c. ), C6(Ipo'„+ H. c.),

A. Potential terms

A„(yy)'ln ~~
p

B. Two-derivative terms

A „(D„y)'(DPy)ln
p

A2, (D„P) (DPQ),

A 22 I:(Dp4')'0'] I (D"0'6'] i(04'»

(6.1)

(6.2)

C9(I"„' +H. c.), C„I"'„", C,2I„'"

C,3I"'p, C,4(„OI;po +H. c. ), C„(0 I "0 +H. c.),
(6.3)

C]6(0 „Io"„' +H.c.), C20(„OI„O+H.c. ),
C21(0 pIp'0), C23(v oI„'o+H.c. ), C24(o v „'o )

C25(v

+Op�)yC27(vgpo+H.

C. ), C2S(vip 0+H. C. )

(O, vip, o
) C (O, pvp, o

)
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D. Terms with field strengths

Ga GaPv B Ga Ga((b)41 4'4'
1 pv & 2 pv 2p

B3F„F"", B4F„„F"'ln
p

B5(PG„P)F" /(PP), B6(PG„P)(PG"'P)/(PP)

B7[(D„p) (D f) Hc—]F" /(pp),

B,[(D„P) (D P) —H. c. ](PG""P)/(PP)',

B9(D„Q) G" (D,p)/(pp),

Bio {[4(D.0)][(D„4)0]—H c.IF"'/(A')'

I [4'G„.(D'4)][4(D"0)] H. c. I
/—(PP)',

(PG P) [ [(D"P)tg][P(D'P)] —H. c. J /((I)P)' .

(6.4)

Here G„=G„',(r'/2). One need not use the charge-
conjugated Higgs doublet; because of charge conserva-

tion it has to appear in pairs. The identity
e'Jek'=5'"5J' —5'51" will convert them back into terms
made with the ordinary Higgs doublet.

We now describe the processes we have chosen to
determine these coefFicients. We shall omit the color fac-
tor X,=3 associated with a ferrnion loop for all the
coefficients to be determined.

with

A + =Ii +I2+I3+I4, (6.5)

l. Agg to Agq

To compute A» to A24 for the potential and vertices
with two derivatives, it is enough to compute (ty P self-
energy with arbitrary numbers of neutral scalars emitted
by fermion propagators. The coupling constants g and g'
can be switched off, so that gauge fields do not play any
role in this part of the calculation. The results will be
compared with the same amplitude given by direct
differentiation on relevant operators, where each invari-
ant in general will contribute to several different terms.
A» to A 24 will then be extracted.

First of all, the P+P self-energy is written as

I, = i H T—rf d x f d y&T[bL(x)bl(y)])p (y)&T[tz(y)tz(x)])p+(x),

I2= i h Tr—f d x f d y & T[bz(x)b~(y)])(t) (y)& T[tL(y)tL(x)])(t)+(x),

I3=i Hh Tr f d x f d y& T[bl (x)b~(y)])P (y)& T[tL(y)t~(x)])P+(x),

(6.6)

(6.7)

(6.8)

I~=i Hh Trf d x f d y&T[bz(x)bL(y)])P ( )y&T[tz(y)tz(X)])(()( )x. (6.9)

We use I& as an example to illustrate how the derivative expansion is applied to each individual integral. Following
the notation introduced in Sec. V, we recast I& into

I, = i H Trf—d x f d y&xlb b ly &&yldti (6.10)

A compact formula well suited for iteration can be derived by inserting a complete set of four-momentum eigenstates

I p ) into Eq. (6.10) and performing a few integrations by parts. Explicitly, we have

I, = i'H'T—r f"xfd'y f d'p, d'p, d'p3d'p~&xlpi &&pilbgbglp2&&p~ly &&ylp3&&p314 t.~.P+Ip4&&p4lx &

1P i X

i EI Tr f d x f d y f—d p, d prd4prd p4 brbr i )b(p3
—pr)

-V2y V 3y

(2m)' (2~)' ~p3
b(pr p4)(rx(R

a +
Bp4

/P X
e 4

l
i)p4 (2m )

—i H Tl fd xfdyfd pid p3d prb
4

Bp &

Xp i 5(p3 —p4) tR t
P3

—irH3Tr f d4x fd y f drp3d4prdrp4(br br x —i
~s'

&

e
ip (x —y)

(2n. )

— . )

~

e
ip (x —y)

(2m )

Ep3y
e

(2m )

e 4lP X

P+(x)
(2m. )

Ep3y
e

(2m. )
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X p i — 5(p, —p,), tttF~ x+i p (x) .
ap4 (2m) ap4

x —yi —ip, (x —y)

f d Xf d )f d b|db3(br bi X
ap i (2m-)4 (2m )4

T

= —iHTr~ 2 2

(6.12)

where

b

XP x+i t~tz x+i P (x)
Bp3 Bp3

4
+—

(bI Tr—fd x f ~ bibi x —( d x+i ((z(z x+( lb+(x), (6(()
(2~) ap ap ap

where use has been made of relations F [i (a/ap) ]e '~'= e '~"F [x + i (a/ap) ], and e'~"F [—i (a/ap) ]
=F[x i(—a/ap)]e' . Equation (6.11), as it is written, in a basic equation in this calculation. Later on, a similar
technique will be applied to four-point functions which are needed to determine the coeKcients of four-derivative terms.

A derivative expansion of the last section is then applied to each term in Eq. (6.11). The trace over y matrices and
the momentum average are performed. In order to regulate the loop integration, we use dimensional continuation [15].
Since all external momenta enter only via x derivatives, the integrands all have the form
[1/p +H u (x)] '[1/p +It u (x)] '(p ) '. Thus, we eff'ectively shrink an n-point function into a set of local vertices.
The numerical results can only be rational functions of H and h and/or logarithms ln(H ) and ln(h ), multiplied by
binomial coefticients and fractional numbers. For the example, we find

C4 ~+~— d X Ld~+~—

L d
= . 2(H +h ) ——+ye+in(m) —(H +i2 )+2H ln(H )+2h ln(h ) (p p )(p+p )

1 4 4 1

16

1 1 II+2(H +h )(P tP )(P+P )ln + H+ —h —+h ln
p2 6 6

+(H +h )(a„P+)(a~/ )ln + (H +h )ln(H )+(H +h )

(a p' )(a"p )p+p /(p t(b )

X ——+y +»(~)1 (a„y+)(a~y-)

+—(H'+h )[(a P P )(a"P+P )/(P P )+H c ]3 p

H+ (H+h )
—h ln—

6 h
[(y+a„y- )(a~y"y') /(P"P')+ H. c. ]

1 (H2+ g 2) [ ( a yotdt)0)( aP$0 tpo)p+p
—

/( $0t(t')0 )2+H ] (6.13)

As mentioned previously, the same process can be generated by differentiating relevant operators, which leads to

0$ 0
L~+~-= 2 (2~ii+&i2)(4" 4")(4'+0 )+2~F2(4" 0')(4+4' )»y+y 16 2 11 12

p

+( ~„~„)(a„y")(a~y'—)y+y /(y"y')+ ~ „(a„-y+)(a~y )ln ", + ~ „-(a„y+)(a~y- )
p

+2~„(a„y"yO)(a~y+y )/(yOty')+»„(y-"a, yO)(y+a~y )/(yo"yO)-
+A [(a„p tp )(/+ad'p )/(p p )+H. c. ]—& (a„p "p )(a"p "p )p+p /(p p )

(yOta yo)(yOtab(yO)y+y
—/(yOtyo)2 (6.14)
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By matching Eq. (6.13) and Eq. (6.14), we obtain [Tr(I)=n, @=2—n /2]

(H +h ) ——+y +in(m) —1 +H4ln(H )+h ln(h )
1 4 4 1

11 2 E

A = (H+h),1

16m

A = (H+h ),1
20

(H'+h') ——+@~+in(~) +(H'+h')ln(H')1 2 2 1

(6.15)

A~~= 3~3= [—,'(H +h )],1

A = (H+—h ) —h ln
1 5

24
H
Q

2

2. Cg to C30

The determination of the four-derivative terms is much more involved, because there are overall 21 difFerent invari-
ants. Again, by the same strategy, we temporarily switch off the coupling constants g and g to avoid complications due
to gauge fields. The appropriate process sufficient to determine coefficients C, to C3O is the scattering of P and P
with the emission of arbitrary numbers of neutral scalars by fermion propagators.

Recall that we are to include the neutral scalar fields in the fermion propagators. Therefore, one easy way to gen-
erate the scattering amplitude A + + is through the interaction Lagrangian

L;„,= H(bt. p —tti+ttip+bL )+h(tL, Q+bz+b~p tt ) .

Obviously, only the fourth-order term in the expansion series is relevant. It reads
~ 4

4f f d~x d4y d"z d~wT[L;„, (x)L;„,(y)L;„,(z)L;„,(w)] .

This gives

10

1

where I, to I,0 come out as a result of performing wick contractions. Explicitly,

I, = Hh Tr f d x d—y d z d~w(T[bt (y)bt (x)])P (x)(T[tz(x)tL(z)])P+(z)(T[bii(z)b~(w)])

XP (w)( T [tL(w)t~(y)] )P+(y),

Iz= Hh Trf d x—d yd zd w(T[bz(y)bL(x)])P (x)(T[t~(x)t~(z)])P+(z)(T[br(z)bit(w)])

(6.16)

(6.17)

(6.18)

(6.19)

XP (w)( T [tL (w)tL (y)] )P+(y),

I3=H h Tr f d x d y d z d w(T[ b(i') b(L)x]P}(x)(T[ttt(x)tz(z)])P+(z)(T[bL(z)bL(w)])

XP (w)(T[t~(w)tL(y)])P+(y),

I4=H h Tr f d x d y d z d w(T[bL(y)bL(x)])$ (x)(T[t„( )t x(z)ii])P+(z)(T[bt(z)bz(w)])

X P ( w) ( T [tL, (w)t'ai (y) ] )P+(y),

IS=Hh Tr f d x d y d z d w(T[b~(y)bL(x)])P ( )(xT[t ( ii) x(tzL)])P+(z)(T[b (zi)b (wi)])

(w)( T [tL, (w)tL(y)] )P+(y),

I6= ,'H Tr f d x d—y—d zd w(T[b~(y)b~(x)])$ ( )x(T[t ( ii) x(tzii)])P+( )(z[Tb (zL) b( )w])

XP (w)( T[tz( )tow(y)])P+(y),

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)
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I7 = —
—,'H h Tr f d x d y d z d w ( T [bz (y)bL (x)] )p (x)( T [tIt (x)tL (z)] )bp)+(z)( T [bz (z)bL (w)] )

XP (w)( T [t~(w)tL (y)])P+(y),

Is= ,'H——h Tr f d x d y d z d w(T[bL(y)bz(x)])P (x)(T[tL(x)tz(z)])P+(z)(T[bL(z)bz(w)])

XP (w)( T(tL (w)t~ (y) ] )P+(y),

I9= —
—,'h Tr f d x d d z d w(T[bz(y)bz(x)])dtb (x)(T[tL(x)tl (z)])p+(z)(T[bz(z)bz(w)])

X P (w)( T [tL (w)tL (y) ] )P+(y),

I O=Hh Tr f d x d y d zd w(T[b„(y)bz( x)]) )Ib) (x)(T[tl(x)tz(z)])dty+(z)(T[bL(z)b~(w)])

(w)( T [tL, (w)t&(y)] )P+(y) .

Following the procedure used before, we write I„for example, as

(6.2S)

(6.26)

(6.27)

(6.28)

d4
I, = Hrb Tr —jdryi brbrb rrrrr y —i )6+ y+i brbrb rrrrr y+i )b+(x) . )629)

With similar formulae for other integrals, the amplitude 3 + + can be computed efficiently with the help of
SCHOONSCHIP (Ref. [14]). The same amplitude, which we denote as A '

+ +, is also obtained by differentiating the

four-derivative vertices listed at the beginning of this section. By requiring

I

p+p
—

p+p
—

y+y
—

y+p
—

y

we obtain 52 equations to solve for the coefficients:

(6.30)

1 1C1=
16m

1
C =

16m

1 1C3= 1

30

C5= 1

16~
5 1

18 16~2
4 1

C =- 7
90

16m

17 1 H
30 3 h2

C = —,C1 2 1

16 2 9
2

23C

1 1
C

1 1

16m
L

1 1
C 15

(6.31)

C2s = 1

16m

10 2 H'
9 3 h2

1
C

1
C28

1

16~
1

3

C 1
29

7 1 H
18 3 h

1
C3o =

16m

1 1 H————ln
9 3

and

1
2C12+ C24 =

16m.

1
2C13 +C21

16m

8
15

1

9
(6.32)

that C,213 2124 always appear in these combinations in
any physical process; they cannot be resolved any further.
These results agree completely with those in our earlier
publication.

3. Bz to Bz3

1 17
C12+C13=

45
1 H——ln

h

Evidently, Eqs. (6.32) are not enough to uniquely deter-
mine the four coefficients there. In fact, it can be shown

With a major part of I 1Lpi determined, we now turn
our attention to terms with explicit dependence on field
strengths. Even though we have taken much advantage
of the derivative expansion and external field technique
before, we shall also rely on conventional methods of cal-
culation in some cases here.
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2 ——+ln(vr)+yE ——+»(II )
1 1

E
E

To determine B1 to B6, it is sufficient to compute
B„B, A 3 „A3, and 8'„+W, self-energies and the
B A 3 mixing. Here we have defined

p 3, v
W„—=(1/&2)( A „'+iA „). For this part, our calculation
is entirely based on Feynman rules derived from the tree-
level linear Lagrangian where the spontaneous symmetry
breaking has already taken place. Feynman integrals
arising from internal fermion loops are expanded in in-
verse powers of m, . Since we are only interested in the
heavy-top-quark limit, terms proportional to positive
powers of 1/m, are set to zero. Comparing this calcula-
tion with the method of operator differentiation, we have

I

L;„„= ( YL, tL y tL + Y,RTR y tR )B"mt

t

+ (YI bl y„bL+ Yl,~b~y„b~)B" .
2

(6.35)

Only first-order terms in the S-matrix expansion can con-
tribute to the tadpole diagram. They are

S = f d x I YL T [tI (x)y„tl (x)B"(x)]

+ Y,„T[t~(x)y„t~(x)B"(x)]
+ Yi T [bL (x )y„bt (x)B"(x) ]

+ Y~~ T [b~ (x)y„b„(x)B"(x)] I

+ ~ ~ ~ (6.36)
g 1

16m.

g' ll 1——+ln(m)+y~ + 11

The application of Wick contractions converts the S ma-
trix into

~ I

f d x Tr( Yt y„(xltl tt B"lx )

+ ln(H )+»(h )
216 216

g'2 11

I

(6.33)

+ ~ 0 ~

+ Y„y„(«~B"lx &

+ YI y„(xlbl bl B"lx )

+ Yb~y„(xlb~b~B "lx ) )

(6.37)

I
1 H2

ln
18

1 H——ln

The first term in the parentheses, for example, is now
transformed into

I
4 d4p

To come up with the rest of the B s, we compute
B„S'+8' and A3 „8+8 triangle diagrams by the
conventional method and obtain

Bp

(6.38)

49 1 H
180 18

B +B —B lg
9 11 12 (6.34)

With similar expressions for the other terms in Eq. (6.37),
the B„tadpole can be easily calculated. Here only terms
with three derivatives are kept to compare with the re-
sults given by difFerentiation of Eq. (6.4). The calculation
of the A3 „ tadpole is exactly parallel to this. Furnished
with the results of these two calculations, we acquire two
more relations:

ig 1 2 H2
2B8 —B9= ln

16' 5 3 h' 16m

1 H

(6.39)

To provide further information on the unknown
coefficients as well as more consistency checks on existing
results, we once again resort to the technique of deriva-
tive expansions operating on the configuration space. In
particular, we compute B„and A3 „ tadpoles with the
emission of arbitrary numbers of neutral scalars by fer-
mion propagators. For the computation of the B„ tad-
pole, let us begin with an interaction Lagrangian which
reads

2(Bs+BI,+B,3)+B9= ig' 34
45

plus others, which further check some coefficients already
obtained. Finally, we compute the W„P mixing, again
with arbitrary numbers of neutral scalars emitted by
internal fermion propagators. Here we adopt the conven-
tion that all electric charges Qow into the two-point func-
tion. This calculation is similar to computing the P+P
self-energy. Instead of repeating the details, we simply
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list all the new relations:

B +B9 11
5

6

2B8 —B11+2B13= 2
lg

16m

7
90

(6.40)

The L~,'j"' '"'~'" at the tree level, which we shall denote as

L,'~', is just the nonlinear Lagrangian. To facilitate the
discussion of one-loop corrections, let us write
I It'p', = f d x QIt'PP. The one-loop contributions from
L ff will be denoted by Q „d"P. Then, as implied by Eq.
(7.1) L' '" =L'—'" "s"''""' is given by

16m.

1

6
L1 loop g1 loop ~1 loop

eff 1LPI ind (7.2)

Solving Eqs. (6.34), (6.39), and (6.40), we arrive at

16'
49 1 H
180 18 h 2

lg

16m

31
60

1——ln
3

H
h

16m

5

6

16m'

1 H
18

ln (6.41)

B„= (0),
16~

B lg
12

16m

5 1——+—ln
9 3

H
A

VII. ONE-LOOP EFFECTIVE LAGRANGIAN

In Sec. VI, we completed the construction of I 1Lpy to
one-loop order for bosonic vertices in the standard mod-
el. One may recall that the approach there was to per-
form a derivative expansion with respect to both bottom-
and top-quark internal lines, irrespective of the composi-
tions of the graphs. Generally, the validity of this
effective functional is only in a region where the external
momenta are less than both of the top- and the bottom-
quark masses. In view of this, additional work is needed
to construct an effective Lagrangian, capable of describ-
ing any low-energy light-particle process with external
momenta less than m, . One can formally infer the pro-
cedure to arrive at such an effective Lagrangian
L",j"' '""'"from the operator equation:

xp L full theory T . L light theory

(7.1)

This completes our determination of the one-loop bo-
sonic effective vertices. Before we leave this section, let
us remark that the divergences 1/e in 311, 321, B„and
B3 can be removed by coupling renormalization of A, and
wave-function renormalizations of P, A „', and B„.

We shall illustrate in the following that L,'ff"p, given by
Eq. (7.2) along with L ff', gives correctly all the light-
particle processes with external momenta less than m, .
Parenthetically, L",I"''"'"" can be constructed to any
loop order with the procedure given above.

As we have pointed out at the beginning, Q]tpt (ol
I', tp, ) is obtained by performing derivative expansions
with respect to both bottom- and top-quark propagators,
which implies that Q1LPI is valid only when all the exter-
nal momenta are less than both the bottom- and the top-
quark masses. In the case that some of the external mo-
menta are actually greater than mb, Q1LP1 strictly speak-
ing cannot be used. The simplest example is its failure to
describe a process involving diagrams with only bottom-
quark internal lines. Another example is to consider a di-
agram which has at least one top-quark internal line and
several bottom-quark lines, where the external momenta
are large enough to reach the threshold of bottom-quark
pair productions. This is the case for the process
W„+ —&P+P' . There we expect to encounter terms
behaving as ln[p +x(1—x)mb], where x is a Feynman
parameter and p is a generic external momentum. These
terms are nonlocal and cannot be described properly by
Q1LP1 ~ In fact, under our approach for constructing the
0 ]Lpy such nonlocal logarithmic corrections are made lo-
cal in Q,L» at the price of assuming p,„t «mb, which
permits a further expansion. If this were the best we
could do, the kinematic validity of our result would have
been highly restrictive. Fortunately, Zimmermann's
oversubtraction identity ensures that, if we just follow
Eq. (7.2), these threshold logarithms, which are required
by analyticity, can be reproduced. At the one-loop level,
the leftover piece Le'z" will no longer contain any term
which originates from nonlocal logarithmic functions.
These nonlocal logarithmic corrections will now come
out directly from exact calculations of the relevant one-
loop diagrams based on Feynman rules given by L",f'f'. In
summary, one will see that L",f'f' and L,'ff'" constitute an
effective Lagrangian, which respects unitarity and
analyticity in the extraction of the heavy-top-quark
effects for any low-energy process.

It is our task now to construct Q „d" with which one
can determine L,'ff"'p. As we have mentioned before,
Q„d" is induced by L",f'f'=L„l. We again exploit the
SU(2) XU(1) symmetry which remains valid for the non-
linear model. Following the same procedure as in the
previous section, we first write down all possible gauge-
invariant operators carrying zero, two, or four deriva-
tives. They are listed as follows.



NONLINEAR REALIZATION OF HEAVY FERMIONS AND. . . 2155

A. Potential terms d J"'" d (J" ' +H. c. ) d J" '
1 2 O, pv ' ~ 3 pv, O

ds(J"~0"+H. c. ), d 6 ( J10'„'"+H. c.),
11(00) a12(44)»

p

B. Two-derivative terms

(7.3) d9(J"'„' +H.c. ), d„J „", d, 2J„'",
d13J d14(p 11J 0 +H, c, ) d1s(11' p +H, c, )

(7.6)
d16(p &Jp

' +H. c. ) d20(& OJ&'p +H. C. )

a20(D„Q)t(D "$)ln
p

a2, (D„Q) (D"p),

a22[(D„4') 4][(D"0') 0]/(00»

d21(0,1,J„",o»

d2s(, OJo,'„")

d29(p, v p, o )~

d23(, 11J„'11+H.c. ), d24(0 g„'0),
d27(„'OJ"„'0+H.c. ), d28(,'OJ„"'0+H.c.),
d 30('.', OJ0,'„')

D. Terms with field strengths

a' [(D„0)'0)[(D"0A]»
p

a23 [0(D„4))[4'(D"0)) /(04»

a 23 [p(D„p ) ][p(D "p ) ]ln

a24[4(D„N)][(D"0 ) 0)/(04'»

a z4 [4(D„N)1[(D"4) 4]ln
p

C. Four-derivative terms

(7.4)

b G' G'"' b G' G'" ln1 pv & 2 pv 2p

p

bs(QG„Q)F"'/(PP), b6(QG„Q)(QG" P)/(PP)

bs(QG„Q)ln 2
F" /(pp),

p

b 6(PG„,P)(PG"'P)ln
p

b7[(D„Q)"(D p) —H. c. ]F" /(pp),

In addition to the invariants in Sec. VI, for example,

I"„0'=[(D"DP) D,P][(D„P)$]/(PP)

we introduce

e2, (O„II,O),

25(,o 0,

e29(0,v~, O )

and

e23(, OI~ 0+H. c. ), e24(p g„'p)

e27( 'OI„"'0+H.c. ), e2s( 'OI"„'0+H.c. ),
30( 0 op)

J"„;o =[(D"D 0) D.4][(D„4') 0)»
p

In general, the invariants denoted by J's carry an addi-
tional factor ln(gglp ) to the corresponding I's. They
are introduced, because we expect to encounter new
divergences, as the nonlinear Lagrangian L„1 is "non-
renormalizable. " Now the possible four-derivative terms
are

e I""'" e (I""' +H. c. ) e I" '
1 2 0 pv ' ' & 3 p~O

es(I„"'0'+H.c. ), e6(Ig'„' +H.c.),
e9(I"„„' +H. c. ), e11I '„", e12I '",
e13I"'", e,4(„OI, 0 +H. c. ), e,s(0 „I "0 +H. c. )

(7.5)
e,6(O„IO"' +H. c. ), e20(„OI„'0+H.c.),

b7[(D„P) (D P) —H. c. ]F"'ln
p

b, [(D„P)t(D.P) —H. c. )(QG1' P)/(PP)',

bs[(Dpy) (D„y)—H. c ](yG"'4)»
p

b9(D„Q)tG"'(D,P)/(PP),

b9(D„Q)tG" (D,p)ln (pp),
p

b o[[4(D.4)][(D„4)'4]—H c jF" /(04')'

b10 j [p(D p)][(D„Q)tp]—H. c. )F""ln

[[0G"'(DA»)][(D„4)0)—H j/(4'4)'

b'» [[QG1"(D,p)][(D„p) p] —H. c. jln
p

b, 2[[QGI' (D p))[p(D„p)]—H. c. j/(pp)

—H. c. jln 2p
(pp)' .

b', 2 j [pG" (D,p)][/(D„p)] —H. c. jln
p

b, (PG1' P)[[(D„P)tg][P(D,P)]—H. c. j/(PP)

b13(yG" y) [[(Dpe) 01[0(D.4'))

(7.7)

(pp)',
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To determine the above coefficients, it is sufficient to
compute the same set of processes as in the last section.
The only difference is the interaction Lagrangian on
which our calculations are based. For determining the
coe%cients in the potential, two-derivative and four-
derivative terms, one can again set the coupling constants
g and g' to zero. The interaction Lagrangian between
fermions and scalar bosons reads

above integrals and comparing the result with that given
by differentiating the relevant operators in Eqs. (7.3) and
(7.4},we end up with

1 4
—1

a&&
= h +yE+1n(m) —h +h ln(h )

V-a„O+
yptyp

i0~ 0 I L —.yPa"bL

—h bb —h~ ~ b b
~p

L R ~pt R L

1. aii to a

(7.8)

1
a20 = (0)

16m

1
a2, = (0),

16~

1 1
a = —h 2

167/2

1
a&2 = (0),

16~

(7.14)

As we have shown in the last section, these coefficients
can be completely determined by computing the P
self-energy with arbitrary numbers of neutral scalars
emitted by fermion propagators. The P+P self-energy
according to the interaction Lagrangian in Eq. (7.8) can
be written as

21 1
a23 = —h

6

1
a23 = (0),

jk 6~

=I +Ib+I, +Id,
with

I, = —Tr f d x y„( T [bI (x )bI (x ) ] )

(7.9) a = h ——+y +in(m) +—h +h ln(h )
1 2 1 2 2 2

24 16 2 E 6

1a2~= (h ) .
16~

P+(x)P (x)d"P' (x) P (x)d"P+(x)

P t(x)P (x)P (x) P (x)P (x)

(7.10)

Ib =Tr f d x ( T[8bL(x)bL(x)] )
P t(x)P (x)

(7.11)

I, =ih Tr f d x(T[bR(x)bL(x)]) 0, (7.12}
+(x) (x)

2. ez to d30

As in the last section, the amplitude for P+P scatter-
ing is used to determine the coefFicients of this sector.
For convenience, we define

O.O-a V V-a O+

yptypy01' F01'yp

Performing Wick contraction on the given interaction
Lagrangian, we have the scattering amplitude written as

Id=ih Tr f d x(T[bL(x)bR(x)]) 0&
. (7.13)

(x)

Applying the derivative expansion technique on the with

10

1

(7.15)

I, = Trf d x d y(T[bL(x)bL(y)])y„S"(y)(T[bL(y)bL(x)])y+ (x),1

2

I2=Tr f d x d y(T[bL(x)bL(y)])
&

(y)(T[8bL(y)bL(x)])y„S"(x),

I3=ih Tr f d x d y( T[bI (x)bL(y)] ) (y)( T[bR(y)bL(x)] )y S"(x),
+

I~=ih Trf d x d y(T[bL(x)bR(y)])
&

(y)(T[bL(y)bL(x)])y„S"(x),

(7.16)

(7.17)

(7.18)

(7.19)

I5= ——'Tr f d x d y(T[fbL(x)bL(y)]) t (y)(T[/bL(y)bL(x)]) t (x), (7.20)
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I6= i—h Tr fd x d y(T[bz(x)bl (y)])
& o (y)( T[8bL, (y)bl (x)]) o (x),

I7 = ih—Tr f d x d y( T [bi(x)bL(y) ])
& o (y)( T [fbi (y)b~(x)] ) o&

(x),

h + +
Is= Tr fd x d y( T[bz(x)bL(y)]) (y)(T[bz(y)bl (x)]) o (x),

(7.21)

(7.22)

(7.23)

I9=h Trf d x d y(T[bz(x)bl(y)]) o& (y)(T[bL(y)bl(x)]) o (x), (7.24)

I o= Tr f d x d y(T[bI(x)bz(y)]) o& (y)(T[bi(y)bz(x)]) o&
(x) (7.25)

We remark that (T[8bl(y)bl(x)]), which appears in
Eqs. (7.17), (7.20), and (7.21), should be taken as

(T[Pbl (y)bl (x)])=y„B~(T[bI(y)b~(x)]) . (7.26)

Similarly, (T[8bl (y)bz(x)]) in Eqs. (7.11) and (7.22) is

to be substituted for by y„B"(T[bL(y)bz(x)]). This is

due to the fact that we have performed Wick contrac-
tions based on the interaction Lagrangian in Eq. (7.8),
where there are derivative couplings, rather than the in-

teraction Hamiltonian. One can show that contributions
due to the extra "seagull" terms in the interaction Hamil-
tonian will be compensated completely by this treatment.
Computing four-derivative terms of each integral and
comparing them with those obtained by operator
di6'erentiation, we acquire

d, = (0), d~= (0), d3= (0),1 1 1

d~= ~(0), d6= (0), d9= (0),1 1 1

16m. 16' 1677

1

16m

1 1 1d(4= ~ (0), d)5= (0),
16m' 16~'

1 1 1dl6=
~ (0), d~o —

~ (0), d~3 —
~ (0),

16m 16m 16m

(7.28)

d
1

16
4f 30

1 1

1 2 1 1
d~~ =

~
—,d~7 =

~ (0), d~s —
~ (0),

16~ 3 16m. 16m

e1= 1
(0), ez=

16m

1 2 1

16m 15 16m

1

60

1 19
2e12+ 24 2

1e= (0), e=
16

1
(0), e9= 1 1

10

1
2e,3+e~, =

~ (0),
16m

1
e11

16~
————ln(h ) ————+yE+in(m. )

1 1 2 1 1

5 3 3 e

1 3 1
e,z+e»= z

+ ln(h —)

1 1
e14 2 18 15

1

16m

2
9

+———+yE+1n(m. )
1 1

3 E

1
2d, ~+d~4= ~ (0),

16~

(7.29)

1
e25 =

16m

1
27

1 1
, e = (0), e

(7.27)

1

24
1 1

L

1 2 2 2 1+—ln(h )+— ——+ye+in(n)
18 3 3 E'

1
2d „+d~,= ~ (0),

16m.

d +d 1 1
12 13 16 2 3

Once again, we see that e12, 13,21,24 a d ~12 13 21 24 cannot
be further resolved.

3. bq to bq3

1 1 1 2 1 1———ln(h )————+ye+in(m)
3 3 3 e

—+ —ln(h )+— ——+y~+»(~)1 1 1 2 1 1

16w2 6 3 3

With the conventional method, we compute the B„B,
A 3 p A 3, and 8'„+8' self-energies and the B„A3 mix-
ing. It is easy to see that the neutral-boson diagrams
would receive contributions only from internal b-quark
loops in the nonlinear theory. Furthermore, the 8'„8
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self-energy receives no contributions from internal fer-
mion loops. Knowing these two-point functions, we are
ready to determine coeKcients b, to b6. They are

lg

16~
17

180
1

18
——+ ln(m. ) +y~

1

b, = g, (o),
16m

2

b, = g, (o),
16~

16m2 216
——+In(m. )+yE

1

ln(h )
18

bs= +———+In(m. )+y~ + —ln(h )
lg 3 1 1 1

10 3 e 3

'g (o),
16m

5 5

432 216
16m

101 1

180 18
+ — ——+in(m)+y~

b gg
16m.

216

1

36
1

18
ln(h )

——+In(m )+yE
1

(7.30)
+—ln(h )

18

b„= ",(o),
16m

(7.33)

gg
16m

1

18

r

b
ig 1 1 1——+In(m )+y~ ——ln(h )

1

36 3 3

2

16~

2

16m

1 1 2 1+—ln(h )+—
12 6 6

1

6

——+ln(m)+y~1

To determine the rest of the coefFicients, we observe that
both the 8„8'+8' and A3 „8'+8' triangle diagrams
vanish in the nonlinear model. Then, with the external
field technique, we compute B„and A3 „tadpoles as well
as W„+ P mixing with the emission of arbitrary numbers
of neutral scalars by fermion propagators. One can easily
see that both tadpole diagrams are contributed to only by
internal b-quark loops. For W+P mixing, one starts
with the interaction Lagrangian

lg

16m

1

18

'g, (o),
16~

lg 1

16m

'g, (o),
16m

(7.34)

g — O'+"P
I-;„,= — .—bI. y„bL ov' 2

The 5-matrix element is hence given by

(7.31)

16m

1

3

S =i —Tr f d xy„( T[bL(x)bL (x)] ) (x) .

(7.32)

Now that we have completed the construction of
Q „d",the one-loop efFective Lagrangian I.,'ff" is simply
given by Eq. (7.2). For convenience, we write 1.,'P '" as

This expression can be transformed in the same way as
that shown in Eq. (6.38). In summary, we obtain

I, ' ' ~= —V+K' ~+I ~ +I.eff eff eff eff

where

(7.35)

V = H — ——+yz+ln~ + 1 —ln
1 4 1 II PP

16m. p
(7.36)
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I (2)
eff

1 2 2 1
(H +h ) ——+@@+in~+in H

16~'
~

p
.(Dpg) (DPP)

+ 'H'-I [(D 4) 0]l:(D"4) 0]+l4(Dpk)][0(DPI)) l /(A)

+ —h ——+y~+ln~ +—H —h ln2 1 2
E' 6 p

I:4(Dp4'))t(DPI) 0)/(H') (7.37)

I ' '= —IP 'P — IP ' — IP ' — IP ' ——IP1 1 1 1 o 5 4
eff 16 2 6 10 opv 60 pvo 18 po 9 op

8 Ipv, o+
45 "p

11 + 11~2 I 'p+1 F Ivp
60 6 vip 2 12 p~v

1 7 1
13 vv 18pO vO 30p vO 30p Ov 9pO pO 2 210p pO 18v,O-p, O 2 240v pOp, p vp, O vp, O vp, O+ Tv, v+ F Iv, v+ 7v, p+ F 7v, p

1

3 I

1 1~2+ 7 v, p 1 V, Oyp, O 1 O, vip, O

3 lp v, O O, p 24 v, O'p, O 2 v, 0 p, O

' +—'i~ —13,g', +
6e' 6 36 ' "' 6e'

1~2 O, pvp, , O + gv, p

+ 2f12~p, + 2f13J, + 2f210p~pO+ 2f240v p0 3,0 Op+ 60v pO 6,0 Op+H'c (7.38)

Igf 21 1
eff 16 2 g 24

1 1 HPP
72 24 p2

1 1 11 HQP

17 17 171 H PP

(PGp„g )I'P'/(PP)

F„F"

1 7
126' 72

1 HPPln (PGp P)(PGP P)/(PP)

1

18m'

8 1 HPQ
45 18

"
p2

1 13 1 H PQ+ig, + ——ln, + 1 [(Dpg) (D P) ](PGP P) /(PP)'

+ (D P)tGP (D,P)/(PP)+ig', + 1 HPP
18

"
p2

(4(D.P) ll(D„N)'0lF'" /(44 )'

+
6

I:4G"'(D,0)He(D„P))/(44)'

1+lg
3E

7 11 H PP
12+ 3'" p2

(PGP P)[(Dpg) P]IP(D,P))/(PP)'+H. c. (7.39)

There are some remarks concerned with the one-loop
effective Lagrangian I.,'ff"P given above. First of all,
1/e':= 1/e yz incr in —expre—ssions of I.',z' an I.sff.

Second, the operation of Hermitian conjugation in Eqs.
(7.38) and (7.39) is understood to be performed even for
those operators which are self-conjugate, e.g., I" " . In
other words, it should be done with respect to every term
in Eqs. (7.38) and (7.39). Finally, because of reasons
given before, coefficients F,213 2124 as well as f,213 2124

2F12 +F24 9O

2F13 +F21 9

1 2 1F +F = + ——lnH12 13

(7.40)

cannot be further resolved. There are insufficient rela-
tions among them:



2160 GUEY-LIN KIN, HERBERT STEGER, AND YORK-PENG YAO

(7.41)

Armed with L ff' and L,'ff", we are ready to extract
heavy-top-quark effects for any low-energy process with

p,„,«m, to one-loop order. The strategy works in the
following way: if one is only interested in tree-level re-
sults, L',ff should provide the answers, with corrections
of order O(H '). For one-loop corrections, one should
add up contributions resulting directly from L,'ff"" and
those coming from one-loop diagrams based on applying
Feynman rules to L",ff'. Note the appearance of extra
I/e's in some of the coefficients in L,'f'f" . They will

disappear when these two one-loop contributions are add-
ed up. The effective theory in our approach is self-
regulating; there are no new renormalization constants.
In Sec. IX, we shall provide a few examples to demon-
strate this procedure.

Wess-Zumino terms due to the removal of both quarks in
a doublet, which we shall denote by I z

' '". Follow-
ing the discussion in the last section, the same subtrac-
tion procedure should be applied to it to extract I ~'z' .
In other words, the Wess-Zumino terms would contain
two parts, of which one is induced by forming one loop
with L",ff', whereas the other is a portion of L,'ff" . In
practice, this subtraction is not necessary because the
Wess-Zumino terms stay the same regardless of the rela-
tive magnitude of external momenta and masses of inter-
nal particles. We may as well for expediency assume that
both the top- and the bottom-quark masses are much
larger than external momenta and construct the Wess-
Zumino terms via derivative expansions.

I ~z ' '" here is just a special case of the Wess-
Zumino terms arising from general chiral theories. To
utilize some known results, it is convenient to rewrite the
standard-model lagrangian in an artificially more sym-
metric way [22]. For the standard model with top and
bottom quarks, we write the Lagrangian of the fermion
sector as

VIII. WESS-ZUMINO TERMS

There is yet another residual signature of a heavy top
quark after we remove it from the low-energy sector. It
gives rise to Wess-Zumino terms (Ref. [8]). In this sec-
tion, we shall determine this part of the effective La-
grangian, which consists of terms involving an e" sym-
bol. Note that we have restricted ourselves to only one
quark doublet in our model Lagrangian to simplify our
analysis. Consequently, the theory is perturbatively CP
invariant. As one can show that any operator involving
an e" ~ symbol cannot be both CP and gauge invariant,
the operators we shall obtain will be gauge noninvariant.
They will be a part of the Wess-Zumino Lagrangian in-
duced by chiral anomalies [16]. In a bigger context, be-
cause the whole standard model is anomaly-free, the
Wess-Zumino terms due to internal quark loops will be
canceled by those given by lepton loops.

Wess-Zumino terms needed to cancel the axial
anomalies in a general chiral theory have been derived in
various di6'erent approaches [17]. Here we shall focus on
perturbative anomalies [18]. Let us note that there have
been some discussions in the literature on the Wess-
Zumino terms induced by removing both fermions in a
doublet [19,20]. As pointed out by D'Hoker and Farhi,
they can be obtained directly by functional integration
over fermion fields, to which masses are given through
Yukawa couplings. Thus, it is not necessary to consider
the determination of the anomalies and the computation
of the Wess-Zumino terms as separate problems. In this
spirit, we shall obtain the Wess-Zumino terms with the
techniques of external fields and derivative expansions
[21]. Since these terms contain the e" ~ tensor, it is
sufhcient to compute all the one-loop diagrams with, at
most, four external gauge fields. This is consistent with
our power-counting rule of Sec. IV, because each gauge
field is equivalent to a derivative in mass dimension.
Note also that our calculational procedure will take care
of the scalar fields automatically.

Now, let us suppose that we have already obtained the

1
termion 4 h p 4 'A 3 p4g +

l l

where

A=
b (8.2)

D„Q =(8„iA „—)$, D„g =(8„—iA )g

with

(8.3)
where I is just the unit matrix in weak isospin space. As
one can easily verify, Lf„;,„ is invariant under the trans-
formations

l COL

(8.4)

CO —67g —0,R R
(8.5)

to reAect the fact there are only four independent ones
for the SU(2)U(l) gauge symmetry.

Now, with a color factor X, understood, I ~z ' '" is
given by (Ref. [17])

d xe" 8'wz
48 2 pvcxp

where

(8.6)

and the corresponding transformations of scalar fields,
which will be written down later. In Eq. (8.4),
cur =cur (r'/2)+cor (I/2) and similarly co+ =co+(r'/2)
+cor (I/2). Among the eight group parameters, we now
set
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Tr[i@L(yL@LgL+ 1@LgL(yLg L @L(yLg g Rq) —1g L C L( gLa gL+a g Lg L )

A L+i@LA LA LA L+i+LA L4A R4 'A L+ig A R4 'AL4A R
p v a p p v a p p v a p p v a p

+i+ '-a„~.'~.'e~,'+e '-~„'~.'~.'e~,' —(~, ~„e' c',e ~-')]
+ —,

' Tr(@ 'A„C&A 4& '3 4A p ), (8.7)

where

y+ yo
(8.8)

from general chiral theories, we have

&v( )ev( ) d x eP PZX E pvap (8.13)

which transforms according to with

4~e 4e (8.9) —2( (j { Up +PCL() ( Up (8.14)
Furthermore, we have defined

e'=a ce-' c'=8 c -'e .p p (8.10)

—r, —.) (a„—ic„)i,+u

l
(8.11)

where C„=—(g/2) 3 + (g'l2) YI B; C„=(g'l2)
X Y,RB„. It is easy to see that L,„ is invariant under
two independent U(l) symmetries:

—i A& (x)
tL —+e tL, tR —+e tR,
c„' c„'—a„~,(x), c,' c„"—a„~,(x) .

(8.12)

Let us specify the Wess-Zumino terms caused by the top
quark in this model as I ~z' '". Applying the result

I

We should mention that the nonperturbative SU(2)
anomaly is not included in Eq. (8.7).

In the following, we shall present our method in com-
puting the Wess-Zumino terms. For simplicity, we shall
illustrate this with a simplified Abelian theory which
amounts to discarding all the charged-boson fields and
the bottom-quark field in the standard-model Lagrangian.
The I.agrangian for this simplified theory is hence given
by

L„= t~ y"( a—„—ic„—)tl1

Similar to the non-Abelian theory, we have defined

U„=a„qry ', and U„=a„y 'y, where y=P I+/ tP .
Under the U(1)1 U(1)~ symmetry, y transforms accord-
ing to

x) —iA~(x)y~e ye (8.15)

Now we shall demonstrate that Eqs. (8.13) and (8.14)
can be reproduced by the derivative expansion technique.
To compute all possible terms with the antisymmetric
tensor ep p, it is necessary to consider all the one-loop
diagrams with two or three external gauge fields, together
with scalars. We can rule out diagrams with only one
gauge field and diagrams with four external gauge fields
due to the antisymmetric property of ep p. By explicit
calculations, we also find that diagrams with three gauge
fields do not give rise to ep p terms. Therefore, we need
only to compute C C and C C self energies andp v

C„Cv mixing, which we proceed to do momentarily.
First of all, the relevant interaction Lagrangian reads

I.;„,= tL y pC„tL + tL ypC„tL . (8.16)

Performing Wick contractions, we obtain three different
amplitudes denoted as ILL, IRR, and ILR, respectively.
Explicitly, they are given by

x +l y"C
Bp

x+l yPCR x
Bp

x +i y"C„x
Bp

ILL 2 Tr d x 4 tLtL x —i y C x+i tLt4 dp — . ~ v L

(2~)' ap ap

Jd x I tzt~ x i y'C —x+i tztz
d p

(2~)' aa ap

d p — ~ v L
ILR —Tr d x 4 tRtL x —i y C x+i tLt

(2~)' as' ap

(8.17)

(8.18)

(8.19)

To obtain the %'ess-Zumino action, we can just look into
all the two-derivative terms with the ep p tensor in Eqs.
(8.17), (8.18), and (8.19). This calculation has been done
and the result does agree with that presented in Eq.

I

(8.14).
To apply this method to obtain I wz

' "', one needs
to compute all the one-loop diagrams up to four external
gauge fields. The previous argument which rules out dia-
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grams with one or four external gauge fields no longer
holds because the generators of internal symmetry are
not commutable. Although we have not actually per-
formed this calculation explicitly to verify that Eq. (8.7)
indeed follows by our method, our success in obtaining
I ~z' '" seems compelling.

IX. EXAMPLES

In the last two sections we have completely determined
the pure bosonic parts of L",f"''""'" for the standard
model in the heavy-top-quark limit. In this section we
shall give three examples to illustrate different applica-
tions of this effective Lagrangian.

First of all, a heavy fermion is known to have prom-
inent effects on one-loop corrections to the p parameter
[23]. As will become clear later, these corrections are
closely related to the self energies of the charged and the
neutral vector bosons evaluated at zero external momen-
tum. Although the effective Lagrangian L",I"' '""'"
should be used to compute both self energies, I,LP, (or
Qii pi ) should also give the correct answer since the exter-
nal momenta in this case are always less than both m,
and kalb.

The second example has to do with H ~y y (Ref. [11]),
which takes place through internal fermion loops. Since
all the external states are neutral, the internal fermions
could either be entirely top or bottom quarks. It is clear
that L",~" will reproduce the result of the diagram with
internal bottom quarks whereas L,'f'f"" will generate the
result given by the diagram with internal top quarks. We
shall demonstrate, in particular, that L,'ff"~ indeed gives
rise to a correct answer for H~yy through internal top
quar ks.

Finally, we shall turn our attention to the virtual pro-
cess W„+ —&P+P' which has been mentioned in Sec. VII.
This is an example where the entire effective Lagrangian
including L ff' and L,'ff" is needed for obtaining the am-
plitude of the process in question.

M~
2M 2c z

(9.3)

where c stands for cosa, which leads to p„„=1.At the
one-loop level, the L,z and L,ff are modified, respective-
ly as [24]

LNc
efF

2 Tzz(0)
16c M (2m)iM.

T~z(k')
X ey 4s —1 —4sc

(2m. ) ik k2 p

(9.4)

g' Tww(o)
L fr

= 1+ [V y (I+iy~)p, ]8M& (2~)4&M &

L

X[ey (1+iy5)v, ] .

Here Tzz(k ), T~z(k ), and Tww(k ) are defined as

X„„(k)=T (k ) g„,— k

k„k
+Lw+w-'"' "2

k
(9.5)

where X,X, and Xz [multiplied by I/(2') i ]
are vacuum polarizations of Z and 8' bosons and the
one-loop mixing between the photon and Z boson, re-
spectively. According to Eq. (8.4), the p parameter be-
comes

A. The p parameter

The p parameter is defined as the ratio of strengths of
the neutral-current process to the charged one. Opera-
tionally, one compares the strength of v„e scattering to
muon decay. At the tree level, the effective four-fermion
interaction for the v„e scattering is

(1/c Mz)[1+[Tzz(0)/(2') iMz]]
1/Mw [ 1+ [Tww(0)/(2n ) iMw]]

= 1+hp,

where

(9.6)

2

L,z = [V~y (1+iy~)v ][ey (4s —1 —iy~)e] .

(9.1)

c Tzz(0)
hp=

(2') iMw

Tww(o)

(2') iMw
(9.7)

For muon decay, the effective Lagrangian reads
2

, [v„y'(I+iy5)i ][ey.(1+iy5)v, ] .
8M~

(9.2)

The parameter p is defined as the ratio of twice the
overall coefficient of the effective neutral interaction to
that of the charged one. At the tree level, this is

is the one-loop correction to the p parameter. It is our
intent to obtain Ap through our effective Lagrangian in
what follows. For the reason given before, &]Lpga deter-
mined in Sec. VI is sufficient for our purpose here.

As for Tzz(0), it receives contributions from operators
with coefficients A 2o ~ 2i ~ 22 ~ 23 and ~ 24. In
configuration space, we obtain the expression
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2 Ot 0~„& z z y'&y'I
20 4 2 p 2

From Eqs. (9.7), (9.10), and (9.12), we arrive at

2

+A Z Z"P21 4 2 p

2 m

m b

(9.13)

2

+( —~„—~„+~„) g, z„z~y"y'
4c

(9.8)

Since our aim is just to compute the vector-boson self-
energy, we set P P =U /2, where U is the vacuum expec-0$ 0 2

tation value responsible for symmetry breaking in the
electroweak theory. The masses of the top and the bot-
tom quarks are then given by

Hv hu
mt — —, mb— (9.9)

Tzz(0) g~
(m, +m&2)ln

(2~)'i 32vr'c'

m
mb ln

m b

Substituting the values of the relevant 3 coefficients, we
have, in momentum space,

a result which agrees with that in the literature (Ref. [23])
for the limit m, )&mb.

B. H-+yy

To extract effects of the top quark in this process, we
simply look into the effective Lagrangian I.eff'"~. It is not
difficult to see that only the first four terms in Eqs. (7.39)
contribute to H —+yy. The physical Higgs boson o. arises
from the function In(PP/p ). The two photons in the
final state are given by field strength tenors F„. In
configuration space, we summarize the result with an
effective Higgs-photon coupling

2e FemFem, pv

108m u

+(m, +m& )
——+yE g(e, )'

~FCmF Cm, p V

48~2m
(9.14)

+In(vr)+—1

2
(9.10)

For Tz,~(0), only two operators contribute. In
configuration space, one has

where eQ, is the electric charge of the top quark. A color
factor of 3 should be multiplied. This result agrees with
that given by others (Ref. [11]).

c. w+ y+y'Ot
2 0$ 0' w+w y&y 1-

20 2 p 2p
2

+~ g w+w-~y"y'
21 2 p

2

(m, +m&)ln
32772

+(m, +ml, )
——+yz+ln(vr)

Following the same procedure, we have

Tww(0) m]

(2m. )"i p

(9.11)

(9.12)

This process is equivalent to a W P P' vertex (with

P =P' +U/&2) with the relevant particles represented0 ~0
p

by their corresponding fields. Since this is a process
which has not been calculated before, we shall present re-
sults given by direct calculations and by the effective La-
grangian method and show that they do agree.

For direct calculations, all the relevant Feynman rules
are derived from the tree-level linear Lagrangian in the
symmetry-broken phase. As shown in Fig. 1, there are
two Feynman diagrams which contribute to this particu-
lar process. We expand each Feynman integral in inverse
powers of m, and discard terms proportional to positive
powers of 1/m, . The results are

y (P)0 (Pl)

(Pl) (Pl)

WA (K)

1(a)

y (P2) w (K)

1(b)

y (P2) W&, (K)

2(a)

(P2) w (K)

2(b)

(P2)

FIG. l. One-loop diagrams contributing to the decay

W~ ~P+P t in the full theory.
FIG. 2. One-loop diagrams contributing to the decay

W„+ ~P+P t in the nonlinear efFective theory.
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Fig. 1(a): 2 2

u
[(—,'P) P2+ —,'Pq K+—'P) K)P)„+(—,', P) P2+ —,', P2.K+ —,'P) K)P2„

+(—,'H v —
—,'h u )p,„+,'H —u P2„], (9.15)

Fig. 1(b):
—&2im'

3 h 2v 2P +—'h 2v 2p dx g 2x ln
1

V
2 4 1p 2 2p

H2V 2

h u +2P x(l —x)
2

V Plp (9.16)

where P&, P2, and K are the incoming momenta of P', P, and 8'„+, respectively. To reproduce these results via the
effective Lagrangian, we first consider the portion which is induced by L ff'. In L",f'f', 8 „+ interacts according to

L;„,= — .—bL y"bIO'2 (9.17)

One should notice that this interaction term is written in the symmetric phase. In the symmetry-broken phase, one has
to perform a shift on the scalar field P ~P' + v /&2. In this way, L;„,becomes

Lint = —bl. y"bl. (9.18)

From Eq. (9.18) and other parts of L",s', one can easily see that there are two diagrams to be evaluated. The first dia-
gram, as shown in Fig. 2(a), actually vanishes because it contains a fermionic tadpole. For Fig. 2(b), one has

Fig. 2(b): &2i m'—g h '
2 2

1 1 2
Q2 1 $2V2——+y +1n~+ —u P + I dx ln +P x(1—x) v PE 2 '" 2 0 2 1p. (9.19)

In addition to L",f'f', L,'ff"' also contributes to this process. The contribution by L',ff' is found to be

(2). &2im—'g h'
2 2

——+y +in+ VP +—H VP1 2 1 22
E 1p 4 1p

H~v~/2
ln

2 p
v P,„+ (H +h—)v P2„1p

(9.20)

There are also operators in L',~ and Lqff contributing to
this process. These operators are I" '", II0 „',Io'"„,Io'"„,
Io „,and I„'"," in L',s' and [PG„,(D P) ][/(D„Q)]I(PP)
in L,ff. Altogether, they give

Other applications of the effective Lagrangian are un-
der study and will be reported elsewhere.

X. CQNCLUDING REMARKS

g [( ,'P, P, + ,'P, .K+-,'P, K)P,-„
u

(9.21)

From Eqs. (9.19), (9.20), and (9.21), it is not difficult to see
that L',z' and L,'ff"~ indeed reproduce the result given by
Eqs. (9.15) and (9.16) via direct calculation. The only re-
lation needed for this comparison is

1 h u

J dx ln +P x(1—x)
0 2

1 2v2=2 xdxln +Px 1 —x
0 2

(9.22)

which can be easily proven by a change of variable
x =

—,'(u+1) on each integral above. Both calculations
give the same correct unitarity cut.

We have shown that when the top-quark mass becomes
very heavy, constraints develop in field quantities so that
the top-quark field becomes nonlinearly realized. The un-
derlying symmetry SU(2)U(1) is still preserved at the S-
matrix level. We have also shown how to use the deriva-
tive expansion and the external field technique to con-
struct I,„p, and L",I"' '""'",explicitly for the bosonic sec-
tor to one-loop order. We have given several examples to
demonstrate how our results recover what are already
known.

We have stressed that I1Lpy is different from the
effective Lagrangian L",f"' '"' '". The latter is obtained, so
that after wave-function and parameter renormalizations:

T exp i Lfull theory ~ ~ ~ li ht theory= T exp

for all the low-energy light-particle processes. The
reason that we are interested in the construction of L,ff is
because through it we can validate the effective theory for
m, &&p,„„m~zb, without making any restriction be-
tween p,„, and m ~z b. In addition, this is the most com-
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pact way to enforce some basic properties of quantum
Geld theory, such as analyticity, unitarity, and CPT.

The construction of L,z follows closely Zimmermann's
oversubtraction identity [25] to define heavy vertices. As
we have seen, there are self-generated prescriptions to re-
normalize some seemingly nonrenormalizable operators.
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