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The differences in family-lepton numbers are anomaly-free in the minimal standard model (MSM),
and can therefore be gauged. For three generations of quarks and leptons, three models emerge
depending on whether (i) Le-L,, (ii) Le-Ly, or (iii) L,-L, are gauged. These are the simplest
models to feature a Z’ boson because no fermions beyond those already present in the MSM are
required to cancel gauge anomalies. We analyze the phenomenology of models (i) and (ii) in detail,
and present constraints derived from low-energy neutral-current data and CERN LEP data. We find
that these Z’' bosons may have a relatively low mass yet still evade present experimental bounds, while
remaining detectable in current accelerators. The introduction of neutrino masses into the models is
then considered. We discuss how one may incorporate both the reported 17-keV neutrino, and the
Mikheyev-Smirnov-Wolfenstein effect solution of the solar-neutrino problem. We then describe how
to embed the extra U(1) gauge group into a horizontal SU(2)-symmetry group acting on leptons.

I. INTRODUCTION

The minimal standard model (MSM) is constructed
on the basis of a number of principles. The most funda-
mental of these principles is that the gauge group Gmsm
is given by Gmsm =SU(3).®SU(2)L®U(1)y. Of equal
importance is the requirement that Gpmsm be sponta-
neously broken to SU(3).®U(1)g where Q is the electric
charge generator. This symmetry breaking is associated
with two pieces of physics, which although related, may
not be performed by exactly the same sector of the the-
ory: gauge-boson masses and mixing, and fermion masses
and mixing. The MSM has the additional assumption
that both of these phenomena are generated in the mini-
mal manner, namely, by the nonzero vacuum expectation
value (VEV) of a fundamental Higgs doublet.

In the MSM, fermion masses and mixings arise from
the Yukawa Lagrangian

Lyuk = /\1ZL£R¢+)\3QLUR¢C+/\3QLd3¢+H.C. (1)

where the quark and lepton fields are classified under
GmsmMm as

£ ~(1,2)(-1), €r~(1,1)(-2),
QL ~ (3,2)(1/3), ur ~ (3,1)(4/3), 2)
dr ~ (3,1)(—2/3),
and the Higgs field ¢ is given by
¢ ~ (1,2)(1). (3)

Note that we are considering the minimalstandard model
here, so there are no right-handed neutrinos.

The above Yukawa Lagrangian results from the min-
imal symmetry-breaking sector of the MSM. As well
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as generating fermion masses and quark mixing angles
it leads to a number of exact global symmetries be-
ing present in the MSM. These global symmetries are
generated by the family-lepton numbers (L., L,, and
L, for the three-generation case) and baryon number
B. There is no confirmed laboratory evidence for either
family-lepton number or baryon-number-nonconserving
processes, although there have been some claims re-
cently of an admixture of a 17-keV neutrino state in the
electron-neutrino state vector [1]. Other groups, how-
ever, claim to see no such effect [2]. If confirmed, the
experiments of Ref. [1] would provide the first evidence
for family-lepton—number symmetry breaking. The cur-
rent situation therefore appears to support, on balance,
the prediction by the MSM of family-lepton—number con-
servation. We will assume for the first part of this pa-
per that family-lepton—number invariance is indeed ex-
act, and comment on how the 17-keV neutrino may be
incorporated into extensions of our models later.

In their pioneering paper on non-Abelian gauge the-
ory, Yang and Mills [3] expressed the view that local
symmetries are more in accord with the modern view
of local interactions than are global symmetries. Global
symmetries have the property that fields at widely sep-
arated spacetime points are transformed by the same
amount. Local symmetries, on the other hand, allow
the change in the field to vary with spacetime coordi-
nate, and thus a subset of the possible local symmetry
transformations will be in accord with intuitive notions of
locality. In other words, according to Yang and Mills, lo-
cal symmetries are defined in a more “physically accept-
able” way than global symmetries, and thus may be more
fundamental. Presumably this argumentation should be
viewed as being of heuristic rather than rigorous intent,
since there is also a “physically unacceptable” subset of
local symmetry transformations (for instance, every lo-
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cal symmetry implies a global symmetry). At any rate,
heuristic notions such as these have led people to pos-
tulate that every global symmetry should ultimately be
embedded in a local symmetry, and thus all symmetry
currents should couple to associated gauge fields.

In the context of the MSM the question therefore
arises of whether or not the symmetry currents of family-
lepton-number and baryon-number invariance are cou-
pled to gauge fields. From a model-building point of view,
this raises a serious issue. There are strong indications
that gauge theories are viable only if they are free from
gauge anomalies. This in turn has implications for the
fermion spectrum of the theory.

The anomaly cancellation requirement allows one to
elaborate on the heuristic idea that all symmetries should
be local. Consider a gauge theory, such as the MSM,
which has a given fermion spectrum and a number of
global symmetries. In general, one would expect to be able
to gauge those linear combinations of the global symmetry
generators that are anomaly-free with respect to the given
fermion spectrum. If one accepts that all global symme-
tries should be ultimately embedded in local symmetries,
then one should be even more convinced that the subset
of these global symmetries which is anomaly-free given a
preexisting fermion spectrum should be gauged.

The remaining global symmetries, which are anoma-
lous with respect to the given fermions, cannot be gauged
without also extending the fermion spectrum. In gen-
eral, there would be many possibilities a priori available
for these exotic fermions. So without some indication
from experiment as to the identity of these fermions the
task of the model builder is quite ill defined. Thus it
appears sensible to adopt the intermediate position that
all global symmetries which are anomaly-free given the
known fermions should be gauged, while retaining the
anomalous global symmetries as just global. One would
then have to wait and see whether any exotic fermions
are discovered.

This situation actually pertains to the MSM, though
this does not appear to be a widely appreciated fact
[4,5]. Of the four global symmetry generators of the
MSM, the linear combinations

Ly=L.—~L,, Ly=L.—L;, Lz=Ly—L, (4)
are anomaly-free, although they are not simultaneously
anomaly-free. Therefore the MSM gauge group can be

extended to [5]

Gy =Gmsm® UQ1)z,, (5)
or

Gy =Gmsm® UQ)L,, (6)
or

Gz=Gmsm® U(Ql)L, )

without the addition of any new fermions, not even right-
handed neutrinos.

A purpose of this paper is to study the three theories
defined by the gauge groups G1,2,3. A preliminary anal-
ysis was performed in Ref. [5]. In the present work we
give a more complete account of the phenomenological
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constraints, as well as discussing some theoretical devel-
opments.

Before commencing this analysis, more theoretical is-
sues need to be addressed. First of all, there is another
way of implementing the “all symmetries are local sym-
metries” hypothesis. Global symmetries can simply be
explicitly broken by terms in the Lagrangian. For in-
stance, in the MSM the family-lepton numbers and total
lepton number can be explicitly broken by introducing
right-handed Majorana neutrinos and a mixing matrix
in the lepton sector. (In this case the baryon number
remains as an exact though anomalous global symmetry,
whose role is to be determined by future developments.)
So there are three possibilities regarding anomaly-free
global symmetries: (i) they are gauged, (ii) they are ex-
plicitly broken, or (iii) they are just exact global sym-
metries and no particular significance should be given to
the circumstance that they are anomaly-free.

The MSM adheres to possibility (iii). In the MSM
case, scenario (ii) has been exhaustively studied under
the subject heading of “neutrino masses and mixing.” We
believe scenario (i) is also an interesting, and unorthodox,
possibility.

Before discussing the details of gauging U(1)r, it is
pertinent to discuss possibility (iii) a little further. This
point of view actually leads to a certain predictivity prob-
lem. In fact in the case of the MSM it leads to hyper-
charge and electric-charge dequantization. The reason
for this is quite simple, as was first pointed out by Foot
[4,6]. Let us focus on the anomaly-free symmetry gen-
erated by Ly = L. — L,. There is one other anomaly-
free U(1) symmetry in the theory, and that is of course
standard hypercharge Y. If there are two anomaly-free
symmetries of a theory, and one only chooses to gauge
one of them, then no theoretical principle demanded by
the theory can tell us which linear combination of the
two should be the actual local symmetry, and thus the
actual hypercharge in the case of the MSM. Therefore the
MSM has a 1-parameter arbitrariness in the definition of
the actual hypercharge:

Yactual = €08 0Ystandard +8infL;. (8)

Actually, it is also possible to replace Ly by either Ly or
L3 in Eq. (8). Thus the MSM has both a one-parameter
continuous ambiguity and a trichotomic discrete ambi-
guity in the definition of actual hypercharge. Through
symmetry breaking, electric charge is defined in terms of
Y, and so an arbitrariness in actual hypercharge leads to
an arbitrariness in electric charge. If U(1)r, were explic-
itly broken or anomalous this potential dequantization
would not arise. Therefore the existence of anomaly-free
global symmetries leads to a predictivity problem, which
in the MSM manifests itself as the old problem of charge
quantization.

What happens to charge quantization if we couple the
anomaly-free global symmetries of the MSM to gauge
fields? In order to answer this question it is useful to
consider an arbitrary U(1)®U(1) gauge theory. Let the
generators be denoted by @Q; and Q2. These can always
be chosen to be Hermitian. The gauge-boson sector of
this theory is specified by the gauge kinetic energy terms
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and the covariant derivative. The most general forms for
these two objects consistent with gauge invariance are

D, =0, +1i91(aQ1 +0Q2)A, + iga(cQ1 + dQ2)B,,
9

Lxe = k1 F* Fuy + k2 F* Gy, + k3G* Gy, (10)

where g;, are real coupling constants, F,, and G,
are the field-strength tensors of the real gauge fields A,
and B, respectively, and a,b,c,d are real parameters.
There exists a region of (ki, k2, k3) parameter space for
which the kinetic energy Lagrangian can be written in
the canonical form for two properly normalized, inde-
pendent, propagating U(1) gauge fields [7]. This corre-
sponds to rewriting Lkg in terms of gauge fields which
are certain linear combinations of A, and B,. It is clear
that reexpressing D, in terms of these new linear com-
binations can only redefine g; 2 and a,b,c,d. So without
loss of generality we may choose k1 = k3 = —1/4 and
ko = 0. Which of g;,2 and a,b,¢,d are physical param-
eters? Suppose a,d # 0. Then we may rescale the cou-
pling constants so that ¢ = d = 1, and thus a and d are
unphysical. We are also free to rotate the gauge fields by
an arbitrary 2 x 2 orthogonal transformation (specified
by an angle ¢), since this preserves the canonical form
of Lxg. This allows us to remove one more parameter.
In fact a simple calculation shows that one can always
choose ¢ so that the covariant derivative can be put in
the form

Dy =04+ ig1@Q1 A, +ig5(Q2 + €Q1) B, (11)

where 9/1,2 and € are appropriate combinations of g o
and b,c. This is the most general form that the covari-
ant derivative of U(1)®U(1) gauge theory can take when
written in terms of physical parameters. Note that apart
from the gauge coupling constants, there is an additional
free parameter ¢ which cannot be transformed away by
an orthogonal redefinition of the gauge fields or by rescal-
ing. The cases where one of a or d or both are zero do
not lead to a more general form than given by Eq. (11).

Let us now apply this result to the MSM with gauged
U(1)r,. The most general gauge group is therefore G;
where

Gei = SU(3)e ®SU(2)L ® U(l)y ® U(L)L,4ev - (12)

There are two observations one can make about this.
First, there is a one-parameter class of Z’ models one
can study. In this paper we will study the ¢ = 0 the-
ory, because in this case the Z’ boson does not couple
to quarks, and so the experimental constraints are ex-
pected to be the least severe. Second, there is still a “hy-
percharge” quantization problem, because no theoretical
principle demanded by the theory can be used to restrict
€. However, since one can always choose a symmetry-
breaking scheme so that the e-dependent generator does
not contribute to electric charge, this arbitrariness will
only manifest itself in the interactions of the Z’ boson,
rather than the standard Z or the photon.

Note that the parameter ¢ must be zero if the extra
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U(1) is embedded in the non-Abelian gauge group SU(2),
whose diagonal generator is just L;. We study such mod-
els in Sec. IV.

The plan of this paper is as follows. In Sec. II the
neutral-current phenomenology associated with gauging
U(1)r, where ¢ = 1,2, 3 is analyzed, and constraints are
placed on the Z} coupling constant and mass from low-
energy neutral current data and CERN ete™ collider
LEP data. Section III discusses extensions of the models
which introduce neutrino messes and solve a U(1) quanti-
zation problem. We show, in Sec. IV, how U(1)r, can be
easily embedded in a non-Abelian horizontal SU(2) gauge
symmetry acting on leptons. Section V is a conclusion.

II. ZZ PHENOMENOLOGY

The major phenomenological consequence of gauging
U(1)g, or U(1)r, or U(1)L, is the existence of a second

neutral gauge boson, which we call Z;, Z}, and Zj§, re-
spectively. [The reader should not forget that we are
considering three different models here, because no two
of these U(1)’s can be gauged simultaneously.] These
three Z’ bosons have different phenomenological impli-
cations. The first two are of great relevance to current
collider experiments, because they couple to electrons.
Therefore, data collected at ete™ colliders such as KEK
TRISTAN [8], the SLAC Linear Collider [9] (SLC), and
LEP [10] will place bounds on their masses and coupling
constants. The obvious difference between Z{ and Z} is
that the former couples to muons and muon neutrinos,
while the latter couples to 7’s and 7 neutrinos. Thus Z
boson effects would add a nonstandard contribution to
ete™ — ptpu~ while leaving the corresponding process
involving 7’s in the final state to standard neutral-current
effects. The Z4 boson does not couple to first-generation
particles, and thus its properties are less severely con-
strained than the other two. The constraints derived in
Ref. [5] for Z4 do not need to be updated. None of these
gauge bosons couple to hadrons.

We first need to specify how U(1)r, (where i = 1,2, 3)
is spontaneously broken in these theories. This is easily
achieved by the introduction of a Higgs field S which is
neutral under Gmsm but has a nonzero L; charge:

S~ (1,1)(0,m), n#0. (13)

So far there is no constraint in the theory to tell us what
the L; charge 1 of S should be. This represents a U(1)
charge quantization problem for the theory, in addition
to the problem of arbitrary e. We will ignore this issue
in the present section, because it is irrelevant for neutral-
current phenomenology, but return to it in the following
section.

Because S is neutral under the electroweak group,
there is no tree-level mixing between the standard Z
boson and Z;. This is phenomenologically significant
because it removes a major constraint that usually re-
duces the acceptable parameter space in Z’ models quite
severely. In particular, there will be no observable shift
in the value of the standard Z-boson mass. (One can eas-
ily check that higher-order processes which induce Z-Z!
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mixing do so at a level which is experimentally inacces-
sible at present.)

Another important consequence of the quantum num-
bers of S is that it cannot couple to fermion bilinears in
the Lagrangian. This means that the global symmetries
associated with family-lepton—number conservation are
actually independent of the local symmetry U(1)r,. In
other words, the symmetry associated with family-lepton
number is actually

Gfamily lepton No. = [U(l)L;]local

®U()r. ®U(1)L, ® U(1)L,]global-
(14)

When S develops a nonzero VEV, the local U(1), is
broken, but the global family-lepton—number symmetries
remain exact, because the latter symmetries only act on
fermions. Consequently the existence of a massive Z]
is not necessarily associated with family-lepton—number-
violating processes. This is obviously very important
phenomenologically, since the experimental constraints
on such processes are severe.

In summary then, with our choice of symmetry-
breaking scheme the Z boson is flavor conserving, and
its mixing with the standard Z boson is negligible.

In Ref. [5] a preliminary phenomenological analysis was
performed to obtain constraints on the (Mz,, g}) param-
eter space, where these quantities are the mass and cou-
pling constant of the Z!, respectively. We used experi-
mental results for the total cross sections relative to QED
and forward-backward asymmetries for the processes

et

e~ —putp~, 7tr (15)
as measured at TRISTAN and at earlier machines [8,11].
We denote these quantities by R, , and ARg. We also
used cross-section data for [12]

vye — vue, vye — vyue,

Ve€ — Ve€, Ve€ — Vee.

(16)

We did not incorporate any LEP data into this initial
study.

In this paper, we complete this analysis by (i) including
some more recent data from TRISTAN, (ii) incorporat-
ing corrections where necessary for initial-state radiation
near the Z! and Z resonances through a radiator function
which is convoluted with the bare tree level cross-section
formula, and (iii) including results from LEP on the stan-
dard Z resonance. The incorporation of constraints from
Bhabha scattering is beyond the scope of this analy-
sis, because t-channel contributions complicate the tree-
level and especially the radiatively corrected cross sec-
tions enormously. Although it is interesting to look at Z!
effects in Bhabha scattering, we expect that the incor-
poration of constraints from experimental data on this
process will only change our results slightly.

The interaction Lagrangians we need are those for pho-
ton (), standard Z and Zj] , coupling to fermions. They
are given by ’

2121
Ly = CA”(é'Yue + dvup + ;7_'7;17')) (17)

g2 _ _ _
Lz= ﬁ/ﬁzy[ (2~ 3)(ELvuer + ALYuBL + TLYuTL)

+z(ErTuer + ARYulR + TRYLTR))],

(18)
Lz; = 9121" (Evue — Brun), (19)
Lz, = 9525 (By,e — Ty,T), (20)

where z = sin?fw and g3 is the SU(2)L coupling con-
stant. Remember that we are considering two theories
here; Z{ and Z) cannot appear in a theory simultane-
ously. It should be clear from context in each of the
following equations whether we are referring to one or
the other or either.

Our theoretical treatment of neutrino-electron scatter-
ing and the experimental data we used in the fit are the
same in this paper as in our previous study, so we refer
the interested reader to this previous work [5].

The analysis of ete™ — ptpu~, 7717 is, however, quite
different, so we will now discuss it fully. The basic
tree-level process is depicted in Fig. 1. Two quantities
are of interest: the total cross section and the forward-
backward asymmetry. We first present the cross-section
formulas.

There are six terms in the formula for the cross section.
Three of these correspond to direct contributions from
v,Z and Z], while the other three are the y — Z,y — Z
and Z — Z| interference terms. The uncorrected total
cross section is a function of the center-of-mass energy
squared (s) and is the sum of all six of these terms:

G (8) = () + () + 2(5) + y2(5)
+6y2:(8) + 622:(5), (21)
where “6” denotes an uncorrected quantity.

In order to properly compare the predictions of our
models with LEP data on cross sections and forward-
backward asymmetries near the Z peak, we have to in-
corporate initial-state radiation effects. This is done by

convoluting the uncorrected cross section with a radiator
function R [13]. The corrected cross section is then

1—-3s/s0
Oot(s) = /0 dz 6iot[s(1 — 2)] R(z2),

where sg is a cutoff. The radiator function R is a com-

(22)

+ +
e , Y
2
& + ot
b e (i) -
Y.z P
+ e , T
- . %
e Pt >’M<
e (ii) T
FIG. 1. Feynman diagrams showing the contributions of

v, Z,and Zi 5 to ete™ — (i) pTp, (i) 7.
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plicated object, and the above integral cannot be done
analytically. It is possible to perform this integration nu-
merically, but for efficiency we choose in our analysis to
instead adopt an approximate analytical form [14]. This
form is used to change both the Z and Z] line shapes
near their respective peaks. The accuracy claimed for
these analytical approximations is about 0.4% for the in-
terval (Mg — 3T, Mg + 2T'g) where G = Z,Z] and I'g
is the total width of G.
The uncorrected direct photon cross section is

Tem(8)?
oy(s) = Z2eemlL (23)

where aep(s) is the running electromagnetic fine-
structure constant. The analytic approximation for the
corrected quantity is

r(s) =) 1440 () +o] . 0
where /55 ~ 1 GeV and
B~ 2;“6# [ln (7:2> - 1] . (25)

The rest of the uncorrected cross section can be written
in the generic form

Giot(s)—64(s) = D7 ( )|7(AS+B)+|D ( )‘Q(A’s+B)
(26)

where
Dg(s) = s — M% +isvg, e E%GG_' (27)

The quantities 4, B, A’, and B’ will be specified shortly.
The analytic approximation to the corrected cross section
is then

Orot(s) — a4(s)

o8 T8 sin(1 — F)z]
= |Dz(s)]2 2 sin 9] ( (As + B) sinéz
sin B¢z
—(2AS + B)T]ZE)
+(Z — 2"), (28)
where
€z = g + arctan (i%——)—;—yj-) (29)

and

2
a=1dpsm (21)

3 aem 2 72 3
St (3-%) o @
The quantity K is given by
2 ard
K= M, (31)
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where G is the Fermi constant. The coefficient A is

A=2(3 -3z + %)% +4(1 - z)z(: — z)?
Mg .
vy (32) Gtz - g -, @

where the first, second, and third terms are the direct Z,
photon-Z interference, and part of the Z — Z] interference
contributions, respectively. The coefficient B is

Mz \*
= (z—1)M3 [4x(1 —z)(3-2)+y (-VZZ—) alMg] ,

(33)

where the first term is from photon-Z interference and
the second is part of the Z-Z; interference contribution.
The coefficients A’ and B’ are, respectively,

o8 (My
v=% ()
v (B2) -2+ G~ )00t - 50,
(30

B = yM%ﬁ (%—) [z(1 —2)+ agMZ (5 -x)]. (35)
The first, second and third terms of A’ are the direct Z/,
v-Z! interference and part of the Z-Z/ interference con-
tributions respectively. The two terms in B’ refer to y-Z
and part of the Z-Z/ interference effects, in that order.
The other quantities appearing in these expressions are

_ V(s = ME)*+ 5292

77G - m ’ (36)
gt
Y= 37
\/§GFM%{ ( )
~ Mg

M, = ——=, 38
G ot (38)

A1+ As(vz —vz:) + Dayzyz:

) = (AZ + A2 )(1 +7Z') ) (39)
1+ ’YZ‘I_
g = al—l——-r"y_z—’ (40)
MZ(AI - A2’72 )
A= Ry apa ) (1)
MZ,(Ar+ Az
2 = - 272) (42)
(A )(1 + 7z)
where
Ay =M% — M2, (43)
Ay = M3yz + M3yz:. (44)

_ The uncorrected forward-backward asymmetry App is
defined as
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&FB(S)
&(s)
(45)
The corrected forward-backward asymmetry App is sim-
ply obtained by inputting the corrected cross section in

the above equation. The result of the approximate ana-
lytic integration for the numerator is

I(Z Wﬁ

R ™% ds(s,0) — do(s,m— ) _
AFB(S) =/ &(S) =

7B() ¥ 15 P " sim
sin[(1 — B)¢z]
((C’ + D) v A
sin 8¢z /
—(2Cs + D)nz e, ) +(Z — 2'),
(46)
where
Kz = K(% -2)?, (47)
C=14—t (1-z)
=1+ 2(% — o) z z
2
My
_% W) (201 M2 - B1) |,
(48)
M2 Mz -
-7 e { (MZZ> a M2 — (1 — m)] . (49)
G M3
1{21 = 167(' y(?agMZl - ,32) (50)
c’' =1, (51)
M2, M2,
D=2 ET (52)
Ba — 2a2M§:

The data used in the fit were obtained from Refs.
[8, 10-12]. A scan was made over a grid in (r}, Mz:)
(¢ = 1,2) space for the region

40 GeV < Mz: < 1040 GeV, (53)

where r; = (g//g2)? (it turns out that the range r; < 0.01
is the most interesting phenomenologically). The cor-
rected cross sections and forward-backward asymmetries
were used in the LEP region of 88-96 GeV, while the un-
corrected quantities were sufficient for use in the TRIS-
TAN region of 40-64 GeV.

An ideal analysis would consist of performing a global
fit to both MSM and Z; parameters. We have cho-
sen for simplicity to instead input the MSM parameters
sin? Ow,Mz, and T'z from a fit performed within the
MSM to experimental data. These results were taken
from Ref. [15]. This approximate procedure should yield
accurate results, because Z; physics only affects purely
leptonic processes. Since the bulk of the neutral-current
data concerns hadronic processes and our theories are

SIMPLEST Z' MODEL
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identical with the MSM in this sector, a combined fit
should yield standard parameters which are very close to
those obtained from a fit purely in the MSM.

The results of the x? fits for both relevant models are
shown in Figs. 2 and 3, where the 90% C.L. allowed re-
gions are plotted, for Mz up to 100 GeV and »} up to
0.008. Several features of these graphs are worth not-
mg (1) The most striking aspect is that a Z] , boson
is allowed to exist in the region between 64 GeV and
87 GeV, for values of r; up to 0.003 for model L;, and
up to 0.007 for model L,. Note also that the L; model
is more severely constrained than the L; model in this
region. This energy regime is as yet unexplored exper-
imentally, because TRISTAN has only searched up to
about 64 GeV, while LEP has concentrated on the stan-
dard Z resonance region. Our analysis shows that it is
possible for a Z] , to exist in this “window” without af-
fecting the successful predictions of the MSM at ener-
gies already explored. (ii) The allowed value of g; , rises
rapidly with mass for the area above the standard Z res-
onance. Clearly this represents a large allowed area in
parameter space, extending to relatively large values for
the coupling constant. (iii) There are small pockets of
parameter space allowed at 90% C.L. for both models in
the regions already explored by LEP and TRISTAN. The
reason for this is that Z] , is a very narrow resonance (see
later), and so x* decreases when My  is chosen to lie
between data points. ’

The best fit values are

Li=L.— L, model: ] —0, Mz — oo, (54)
Ly=Lc— Ly model : r5=5x10"% Mgz, =58 GeV.
(55)

The first result indicates that Z] interactions cannot be
used to improve on the agreement between theory and
experiment over the MSM. The second result shows that
a slightly better fit to neutral-current data can be ob-
tained in the gauged L, — L, model than in the MSM.
The best fit point (indicated by a cross in Fig. 3) actu-
ally occurs inside one of the small allowed regions in the

L —L  model
e Tu

.003 4 N /

) \ -
//Owowec \ !
\

)
i
001 -, ,/ region l ‘ Jl‘/
' \ . o at 90% c.L. WA
OOO T T T T T T T T
50 55 60 65 70 75 80 85 90 85 100
7' mass (GeV)

FIG. 2. The allowed region at 90% C.L. in (g1, lel) space
for the gauged L.-L, model.
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.008 L - L L | 1 I L |
007 .
.006 + -
.005 -
.004 -
.003 1 -
0027 allowed 0
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TRISTAN regime.

Figs. 4(a) and 4(b) show R, and ALy for this best
fit point in the U(1)r, model, compared with the MSM
best-fit curve. The experimental data fluctuates, and the
measurement errors are quite significant. The Z) reso-
nance shows up as a narrow peak for both quantities lying
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FIG. 4. (a) The best-fit point contribution to R, for the

gauged Le-Lr model (solid line), compared with the MSM
best fit (dashed line). (b) The best-fit point contribution to
A%p in the TRISTAN region for the gauged L.-L, model
(solid line), compared with the MSM best fit (dashed line).
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between two TRISTAN data points. The Zj line shape
in R, indicates that Zj — v interference is important, as
well as the direct Zj contribution. The statistical signif-
icance of this result should not be overestimated: there
is considerable experimental uncertainty exhibited in the
data, and it may be that the sharp spike produced by 7}
effects happens to imitate a random fluctuation in the
data for this particular point, rather than indicating the
presence of an actual Z4 contribution. Note also that the
best-fit point in the present analysis is at a slightly differ-
ent location from our previous analysis [5]. This reflects
the presence of new data from TRISTAN. The effect of
the best fit Zj in the LEP region is negligible.

Figures 5(a)-5(d) show the comparison between the
U(1)r, model and the MSM for cross-sections and
forward-backward asymmetries in the TRISTAN and
LEP regions corresponding to the point

rh =0.006, Mz =805 GeV. (56)
2

These values have been chosen as an illustration of the
effect which a Z) lying in the window has on measurable
physical quantities at experimentally accessible energies
for TRISTAN, LEP, and the SLC. The value of the cou-
pling constant corresponds to the maximum allowed at
90% C.L. in the window. Note first of all that there are
negligible differences between the MSM predictions near
the Z resonance and the predictions of the above exam-
ple. The differences are greater in the TRISTAN region,
particularly for R,, because the standard cross section
here is relatively small. So, a decrease in the percentage
error at TRISTAN to about 10% may be able to detect
virtual effects from a Z} in the window, or significantly
reduce the allowed parameter space. Note that the ef-
fects of a Zj would have the characteristic signature of
increasing R, relative to the MSM for s < Mz: while
leaving R, and hadronic processes unaffected.

Figures 6(a) and 6(b) display the corlespondmg graphs
for the U(1)r, model with values

7y = 0.003, Mz =84 GeV (57)
which again corresponds to the maximum allowed value
for the coupling constant in the window. Observations
similar to those in the previous paragraph can be made
here as well. We do not include graphs for the Z reso-
nance region, because nonstandard effects are negligible
there [as in Figs. 5(a) and 5(b) for the other model].
How may one understand these results qualitatively?
First of all it should be noted that the way we have con-
structed the model allows any value of the Z! mass to
be experimentally consistent, provided the coupling con-
stant is made small enough. Since there is no theoret-
ical constraint on the value of the coupling constant, it
can be made arbitrarily small. However, the interesting
observation to be made here is that even with r; val-
ues of the order of 0.005, the Z! boson can still provide
a very striking ezperimental signature while simultane-
ously evading all current bounds. This is illustrated in
Figs. 4(a) and 4(b), where one sees a very narrow reso-
nance with small off-resonance effects. One should note
also that 7; & 0.005 is not so small when an appropriate
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comparison is made. One may see this by calculating the
value of the coupling constant for the standard Z boson
coupling to left-handed charged leptons, and comparing
it with the same vertex involving the Z! boson. These
two quantities are about 0.18 and 0.04, respectively, for
r; & 0.005, so the nonstandard number is only about a
factor of 4 or 5 smaller than the standard one.

As is depicted in Fig. 4(a), the Z] boson has a very
small width. It is given by

gt
Iz = Z;;Mzr. (58)

For r; = 0.006 and Mz: = 80 GeV, this yields
[z =16 MeV. (59)

This small width means that the energy interval affected
by the Z! resonance is extremely short. Therefore a tall
Z! peak can exist in the window between the TRISTAN
and LEP regions, without disturbing standard-model

L —L_ model
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FIG. 5.
for the gauged L.-L. model (solid line),
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predictions for those energy ranges which have already
been explored.

In summary then, we have found that a Z/ boson
with a mass in the window between TRISTAN and LEP
data can be consistent with known neutral-current re-
sults, while allowing large and interesting effects near
its resonance. Both Z{ and Z) are expected to be nar-
row resonances. Zi effects increase the cross section for
ete™ — ptu~ for s < Mz, decrease it for s > My,
while leaving the ete~ — 7+ 7~ and hadronic final-state
processes unaffected. The same observations apply for
the Z5 boson with the roles of ¢ and 7 interchanged. An
improvement by a factor of 5 or so in the accuracy of mea-
surements of R, ,; in the TRISTAN energy regime may
either observe virtual effects from a Z] in the window,
or rule out a considerable piece of the currently allowed
parameter space. Of course the largest connected region
of parameter space occurs for Z] masses greater than
the standard Z mass, an area that could be explored by
LEP2.

10 A

e
<-40 -

—~70

35 40 45

\/_55(06(-?\/)

L,—L, model
1.0 1 1 1 1 1 1 1

0.6 o

| | L
—0.2- l]

—-0.6 1 -

AFB

T T T T T
91 _92 93 94 95 96
Vs (Gev)

(a) R, corresponding to the maximum allowed coupling constant case in the TRISTAN/LEP window
compared with the MSM best fit (dashed line).

(b) Arp for the

TRISTAN region corresponding to the maximum allowed coupling constant case in the TRISTAN/LEP window for

the gauged L.-L, model (solid line), compared with the MSM best fit (dashed line).

(c) Z line shape cor-

responding to the maximum allowed coupling constant case in the TRISTAN/LEP window for the gauged L.-L,

model (solid line), compared with the MSM best fit (dashed line).

(d) AFp in the LEP region corresponding

to the maximum allowed coupling constant case in the TRISTAN/LEP window for the gauged L.-L, model (solid line),

compared with the MSM best fit (dashed line).



2126

L =L model
w

2
<< —40 =

I

1]
'}J
|

T T T T
35 40 45 5/0 55 0 65

Vs (GeV)

FIG. 6. (a) R, corresponding to the maximum allowed
coupling constant case in the TRISTAN/LEP window for the
gauged L.-L, model (solid line), compared with the MSM
best fit (dashed line). (b) A% g in the TRISTAN region cor-
responding to the maximum allowed coupling constant case
in the TRISTAN/LEP window for the gauged L.-L, model
(solid line), compared with the MSM best fit (dashed line).

III. NEUTRINO MASSES

In this section we will discuss how neutrino masses
may be introduced into our model. We will consider
constraints from experimental results on oscillations [16],
neutrinoless double-8 decay [17], and direct neutrino
mass measurements [18]. Implications for our theory of
the recent results [1] indicating a 17-keV neutrino mass
will be considered, and the MSW solution [19] to the
solar-neutrino problem will be addressed.

In the previous sections, we pointed out that a gauged
family-lepton—number difference was inherent in the
MSM due to its automatic anomaly freedom. However
when neutrino masses are introduced as an extension of
the MSM, the family-lepton numbers are generally no
longer conserved, and so we do not have the same moti-
vation as before for gauging one of the L;. It is neverthe-
less possible to impose gauged L; on our massive neutrino
theory and to study its consequences. One should note
that although the motivation for doing this is different
from our original motivation, it is still a respectable one.
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The Higgs sector of the theory will have to be ex-
tended in order to generate neutrino masses. Symmetry-
breaking effects due to these fields will then often also
lead to Z-Z{ mixing. These new VEV’s, however, will be
related to neutrino masses, and will thus have to be very
small. Z-Z; mixing will therefore also be small, and so
we do not expect the phenomenological analysis of the
previous section to be greatly altered.

We now systematically study neutrino masses in the
case where only left-handed neutrinos exist, and then we
consider the introduction of right-handed neutrinos also.

A. Left-handed neutrinos

In this case the only way of generating neutrino masses
at the tree level is to introduce SU(2) c-triplet Higgs mul-
tiplets x with appropriate quantum numbers under the
U(1)z, group. We will consider the U(1);, model for
definiteness; the other cases can be similarly treated.

There are different ways of generating neutrino masses
depending on what Higgs triplet x exists in the theory.
The possibilities are

my, c

(A) TeeLfeLm tx1 ~ (1,3)(2,-2),
m -

(B) —v‘;—"e;Le,,LxZ x2 ~ (1,3)(2,2),

my, -
(©  Elptrxs xs ~ (1,3)(2,0),
(60)

m, -

(D) ’U‘::“ égLéuL,\’tl P X4~ (1’3)(270))
m ~

(E) —;'::LE:LZTLX5 foxs ~(1,3)(2,-1),

my,, .
(F) U(: ‘euL‘eTLXG tXe ™~ (l: 3)(2) 1)a

where v; 1s the VEV of x;. Models C and D are different
only by global family-lepton numbers.

If one of the above Higgs multiplets is introduced into
the theory, some neutrinos will have Majorana masses,
but there will be no neutrino oscillations. It is also in-
teresting to note that of the above theories, only C and
D have physical Majorons, provided the relevant global
family-lepton numbers are imposed as exact symmetries
of the Lagrangian. We in fact do choose to impose these
symmetries because later on it will allow us to use the
Majoron as a decay product of the 17-keV neutrino. (Al-
ternatively, one may explicitly break the global symme-
tries through the Higgs potential terms ¢2x) and ¢2x}.)
Given that there are Majorons in C and D then, if there is
no further extension of the Higgs sector, they are already
ruled out (as is the similar Gelmini-Roncadelli model
[20]) from the Z-width data at LEP. However, C and
D can be rescued by introducing one Higgs-singlet field
S’, which is completely neutral under the gauge group,
but transforms under the relevant global family-lepton—
number symmetries. If (S’) = vg/ is much larger than v;,
then the Majoron is mostly ImS’. Therefore the contri-
bution of the Majoron to the Z width is suppressed by a
mixing angle
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Since there are no neutrino oscillations, the only rel-
evant experimental constraints are from double-# decay
and direct mass measurements. These yield the bounds:
m,, < 1.8 eV [17], m,, < 270 keV and m,_ < 35 MeV
[18]. These can obviously be satisfied.

It is impossible for the above theories to use the
Mikheyev-Smirnov-Wolfenstein (MSW) effect to solve
the solar-neutrino problem, because there are no neu-
trino oscillations. Also, they cannot accommodate a
possible 17-keV neutrino, with properties as indicated
by the experiments on  decay and electron capture in
various nuclei [1]. In order to accommodate these two
things a further extension of the Higgs sector is necessary.
We find, however, that it is impossible to accommodate
both at the same time. This is because the neutrinoless
double-3-decay experiments have constrained the effec-
tive electron mass (m.) = |UZ,m,, + UZ,m,, + U%m, |
to be less than 1.8 eV. The claimed experimental prop-
erties of the 17-keV neutrino yield m, = 17 keV and
U2, =~ 0.01. (The 17-keV neutrino cannot be identified
with the muon-neutrino because neutrino oscillation ex-
periments already constrain Ufu to be less than 0.001.)
Incorporating this constraint on U,,, the effective elec-
tron mass bound yields 170 keV < |m,, | < 270 keV for
the muon-neutrino mass. With this neutrino mass spec-
trum it is not possible to have neutrino mass-squared
differences and mixings in the right range for the MSW
solution of the solar-neutrino problem to be invoked.

It is, however, possible to accommodate one of them.
For example, if we introduce both x» and x4 it is possi-
ble to have a solution for the solar-neutrino problem via
the MSW mechansim. Remember that this requires [21]
|m2, — m,z,“lsin2 20~ 3 x 1078eV? and |o| > 0.03 where
« is the v,-v, mixing angle. Of course a Higgs singlet S’
with a large global family-lepton—number-breaking VEV,
and which couples to x4, is necessary in order for the the-
ory to be consistent with the Z-width measurement.

It is also possible to accommodate the properties of the
17-keV neutrino. This can be achieved by introducing
X2, X3 = x4 and x5. Note that here we are identifying x3
and x4 by explicitly breaking some family-lepton—number
global symmetries. The resulting mass matrix after the
x’s develop VEV’s can satisfy the data from neutrino-
less double-8-decay, neutrino oscillation experiments and
the 17-keV neutrino. Again a Higgs singlet S’ is need to
break global family-lepton number at a high scale so that
the Majoron-Z coupling is suppressed. Imys has a Ma-
joron (J) component of order vs/vs:. Since the coupling
of J to v, does not conserve flavor, the 17-keV neutrino
can decay through vi7 — v, + J with lifetime < 107
sec. This makes the theory consistent with cosmologi-
cal and large-scale-structure formation constraints [22].
The ratio vs/vs/ can also be chosen so that the theory is
consistent with big-bang nucleosynthesis and astrophysi-
cal constraints [22]. It is possible to have a viable theory
with x4 and xg instead of the above; this is similar to
a model studied in Ref. [23]. In this case there are two
17-keV neutrinos.

Finally, note that one of the predictivity problems of
the original theory can be solved in extensions A, B, E,
and F. The L; charge 7 of the original singlet-Higgs boson
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S can be fixed by demanding that the Higgs potential
term x!¢2S exists.

B. Left- and right-handed neutrinos

Unfortunately, none of the theories considered above
can yield a neutrino spectrum that is consistent with
the 17-keV neutrino data and can also solve the solar-
neutrino problem via the MSW effect. However, with
further extensions to the fermion sector this is possible.
The simplest extension is to introduce right-handed neu-
trinos, a scenario we now study. There are two distin-
guishable classes of models: (a) pure Dirac neutrinos,
and (b) Dirac and Majorana neutrinos.

We consider pure Dirac neutrinos first. We assign the
right-handed neutrinos to the same quantum numbers of
L, — L, and the global symmetry generator L, as the
other leptons. We also introduce two Higgs doublets

¢ ~ (1,2)(+1,+ )41, ¢ ~ (1,2)(+1,+1)_4, (61)

where the subscript is L;. The allowed Yukawa couplings
are

Lyuk = Mliplind + M bipvip¢® + A Lep TR

X5, L e + X L ré® + Nl L verd®,
(62)

where ¢ = e, u, 7.

We require ¢’ and ¢” to acquire small VEV’s; the
global 7 number is thus broken and very small Z-Z] mix-
ing is induced. There is a massless pseudoscalar which is
a linear combination of ¢’ and ¢”. This leads to a possi-
ble dangerous Z — J+light Higgs contribution to the Z
width. To avoid this, and also to avoid a large coupling
of the Majoron to charged leptons, we introduce a Higgs
singlet S’ which again is a gauge singlet but has nonzero
7 number. So again the massless pseudoscalar is mostly
ImS’.

In this model, both the charged lepton and neutrino
mass matrices are nondiagonal. After diagonalizing these
mass matrices it is possible to produce v.-v; mixing at
the 0.1 level, and to have the v,-v, mixing and squared-
mass difference in the correct range to invoke the MSW
solution to the solar-neutrino problem. The 17-keV neu-
trino can again decay through v17 — J + v, because both
¢’ and ¢"” have Majoron components of order vy ¢ /vs:.
Note, of course, that the Majoron coupling to neutrinos
is nondiagonal.

We now treat the case where there are both Dirac and
Majorana neutrinos. Introducing right-handed neutrinos
opens up the possibility of having small neutrino masses
through the seesaw mechansim. One can induce Dirac
neutrino masses through SU(2), doublets and Majorana
masses for the right-handed neutrinos through SU(2)p
singlets. In order that the theory be consistent with the
properties of the 17-keV neutrino, the 7 neutrino needs
to be almost a pure Dirac particle. This implies that
the Majorana mass matrix for the right-handed neutri-
nos must be rank 2 rather than 3. This issue within the
context of gauged U(1)r,-z, has recently been studied
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by Ng [24]. In addition to the standard doublet ¢, and
the singlet S which breaks L, — L,, there is one more
Higgs doublet ¢’ ~ (1,2)(+1,—1); and another Higgs
singlet S ~ (1,1)(—1/2,1/2)_1/2. Both ¢’ and S” are
required to develop VEV’s. The resulting mass matrix
can satisfy constraints from experiments. There is a Ma-
joron in this theory which has nondiagonal couplings to
the neutrinos. Depending on the VEV of S”, the 17-keV
neutrino can decay through Majoron emission with a life-
time as short as 1073 sec, to satisfy cosmological bounds.
The model as considered cannot utilize the MSW solu-
tion to the solar-neutrino problem. This can, however,
be remedied by introducing more Higgs multiplets, e.g.,
¢" ~ (1,2)(+1,—2)o.

In the above we have discussed possible ways of gener-
ating neutrino masses, including some discussion of the
17-keV neutrino and the MSW effect. Our model shares
similar difficulties of yielding a 17-keV neutrino with the
correct properties with most other theories: quite com-
plicated and somewhat artificial schemes result. Clearly
our model has the most aesthetic appeal in its pure form,
where only massless left-handed neutrinos exist. The
confirmation of the 17-keV neutrino or the MSW solu-
tion would obviously rule out the simplest version of our
class of theories, and indeed the simplest versions of many
other theories.

IV. NON-ABELIAN EXTENSIONS

A. Introduction

We have seen how the possibility of gauging the differ-
ences in family-lepton numbers is inherent in the MSM,
in the sense that these symmetries are anomaly-free. We
have also seen that the phenomenology of the resulting
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Z' boson is rather interesting. A question then naturally
arises: if gauged U(1)y, exists, what are its theoretical
implications? For instance, is such a theory unifiable?
If it is, then the resulting grand unified theory (GUT)
would certainly have to possess rather nonstandard fea-
tures. We are not too concerned at this stage with obtain-
ing answers to questions such as these. Our motivation
for gauging U(1);, was from a low-energy perspective:
the MSM allows this possibility, the resulting theory is
extremely simple and it has low-energy phenomenolog-
ical implications. Nevertheless, we will in this section
speculate about a stage of development that is possible
beyond the gauging of U(1)z,, because these models can
be embedded in a non-Abelian gauge theory based on a
horizontal SU(2) symmetry acting on leptons. As pointed
out earlier, this also requires ¢ to be zero.

The reason SU(2) is relevant is rather obvious. Its
diagonal generator is proportional to diag(1,~1) in gen-
eration space for the doublet representation, while for the
triplet representation it is proportional to diag(1,0,—1).
Thus three generations of leptons can be assigned either
toa2@® 1 or a 3 of a horizontal SU(2) gauge group [de-
noted hereinafter by SU(2)g] with the diagonal generator
identified as the family-lepton-number differences oper-
ator. The gauge group of the non-Abelian extensions is
thus Geyxy where

Gexe = SU(Q)H ® SU(3)c ® SU(?)L & U(l)y

In addition to Z coupling to the diagonal generator,
SU(2)g contains two other neutral gauge bosons (call
them Zi) which couple to the raising and lowering gen-
erators. We will comment on the phenomenology of these
extra neutral bosons later [25].

The four models implied by the above discussion have
the fermion spectra

(63)

(A) £r ~(3,1,2)(-1), £r~(3,1,1)(-2); (64)
(B) b ~(2,1,2)(-1), lir~ (2,1,1)(=2), g~ (2,1,1)(0),
(65)
Lo ~ (1’ 172)(_1)7 lag ~ (1> 1, 1)(_2)) VaRr ~ (1) L 1)(0);
(C) fiL ~(2,1,2)(-1), ¢r~(3,1,1)(-2),
(66)
ZQL ~ (1, 1,2)(*1),
(D) £r ~(3,1,2)(-1), g~ (2,1,1)(-2), £2r ~ (1,1, 1)(-2). (67)

Note that we have included right-handed neutrino mul-
tiplets in model B. This is in order to cancel the SU(2)y
global anomaly that would otherwise result. Note also
that v, need not be introduced, but we choose to in-
clude it to maintain the three-generation structure for
all types of leptons. As we have mentioned earlier, the
introduction of right-handed neutrinos seems to be at
odds with our original motivation for gauging family-
lepton—number differences. Observe, however, that all of

the non-Abelian extensions go against our original mo-
tivation because the MSM does not in general have an
SU(2)g symmetry in its Yukawa Lagrangian. Therefore
we do not think the presence of right-handed neutrinos in
this theory is a great concern. We simply have to accept
that the non-Abelian extensions cannot be motivated in
the same way as their precursor. We will comment on
anomaly cancellation for models C and D later.

We will now describe these four models in detail. The
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reader should remember that there are three precursor
theories and thus three interpretations of each possible
non-Abelian extension. These cases will be treated gener-
ically rather than specifically in what follows.

B. Model A

The standard Yukawa coupling Lagrangian for this
model takes the form

) = M\lrtre+He., (68)

where ¢ ~ (1,1,2)(1). If this Lagrangian was the only
source of lepton masses, then the phenomenologically un-
acceptable mass relations

me = My = my (69)

would result, due to the SU(2) g symmetry and the choice
of this simple Higgs sector. One way of avoiding this is
to introduce the Higgs fields A and Q where

A~ (3,1,2)(1), Q~(5,1,2)(1) (70)

which couple to leptons through Yukawa Lagrangians
given by

L3, = \lLtrA + Hec,
(71)
L) = A3l trQ + He.

Note that A and € act nontrivially in generation space.
We require their L; = 0, I3y = —1/2 components to get
nonzero VEV’s, where L; is of course the diagonal gen-
erator of SU(2)y. This performs the symmetry breaking

SU(2)r ® SU(2)L ® U()y — U(1)z, ® U(1)g. (72)

This breaks the degeneracy between e, x4, and 7 and an
acceptable (though not predictive) lepton mass spectrum
can be arranged. Alternatively, one may attempt to use
this horizontal symmetry as a basis for constructing some
type of predictive lepton mass scheme. This program is
beyond the scope of this paper, although we will note
that since our theories have a horizontal symmetry in the
lepton sector only, it would be nontrivial to also construct
a predictive scheme for quark masses and mixing angles
[26].

Nonzero VEV’s for A and €2 are not sufficient to com-
pletely break SU(2)y since the U(1)r, subgroup remains
exact. In order to break this subgroup, we need to find
a generalization of S. This is provided by another Higgs
field ¥ where

T~ (2,1,1)(0). (73)

Note that X is a natural generalization of S because it
is neutral under the electroweak group, but not under
SU(2)n, and therefore will not induce mixing between
Z! and the standard Z at the tree level.

The one remaining issue in symmetry breaking in this
model is that, as it stands, there cannot be a great mass
difference between the gauge field Z; coupling to the diag-
onal generator of SU(2)y and the gauge fields Zy which
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couple to the remaining two generators. Since these latter
neutral gauge bosons contribute toete™ — ptu—, r+r-
in addition to Z/, and since they also contribute to u de-
cay (see later), we would like the freedom to make them
heavy, while keeping the Z fairly light. Remember that
the Abelian case was phenomenologically interesting be-
cause an obervable Z! could be fairly light, and we wish to
preserve this feature in the non-Abelian extension. This
requires us to introduce a Higgs boson o where

o ~(3,1,1)(0). (74)

The quantum numbers have been chosen so that a
nonzero VEV for the L; = 0 component of o will per-
form the desired breaking

SU2)g — U(1)g, (75)

at an arbitrarily high scale. Note, of course, that (o)
does not induce any mixing between the standard Z and
any of the Z’ bosons.

This completes the specification of the fields in the the-
ory. We now summarize the basic features of the model:
The VEV hierarchy

(0) > (X) > (4),(A), () (76)

is imposed so that the resulting symmetry-breaking cas-
cade is

SU(2)r ®SU(2)L ® U(1)y
1 (o)
U(1)z, ®SU(2)L ® U(1)y
L (®)
SU(2)L ® U(l)y
(8) 1 (A), ()
U(1)q (77)

After the first stage of symmetry breaking, the effective
theory has the same gauge group as the original model.
The Z4 gauge bosons pick up mass at this stage. Note
that the presence of ¢ is essential for generating this in-
termediate scale. The Z; boson gains mass from the VEV
of X, while electroweak symmetry breaking and fermion
mass generation proceed via VEV’s for ¢, A, and Q. Note
that as in the Abelian case, no tree-level Z-Z}, Z-Z4, or
Z}-Z4 mixing is induced by the Higgs bosons. This is
phenomenologically important.

We will discuss the neutral-gauge-boson sector in more
detail after we have introduced all of the models, because
of some common features.

C. Model B

The Yukawa Lagrangian for this model is
Lyuk = AMlirlird + AoliplipA + X3l Lvi Y°
+ Aaly L1 RAC + Asloplord + AelarvoR "
+ hiD{gVarE + ho{giro + Mspvag + H.c.
(78)
The Higgs multiplet A is needed to break a potential de-
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generacy between e and p in this case, while Q is not
necessary and thus not introduced. ¢ and A also give
Dirac masses to the neutrinos. The fields ¥ and o give
Majorana masses to the right-handed neutrinos in this
model, and the singlet field vog can have a bare Ma-
jorana mass. Note that these Majorana masses (apart
from M) are naturally large, because they are correlated
with the high symmetry-breaking scales represented by
(X) and (o). A natural seesaw mechanism can there-
fore be induced. An attractive feature of this model as
compared with model A is that all of the Higgs bosons
couple to fermion bilinears. This provides a deeper mo-
tivation for introducing ¥ and o, which were included
in model A simply to obtain a phenomenologically inter-
esting symmetry-breaking pattern. Also, Higgs bosons
which couple to fermion bilinears may ultimately be in-
terpreted as dynamically generated bound states from
dynamical symmetry breakdown induced by four-Fermi
interactions.

Since the Higgs spectrum in model B is essentially the
same as in model A, the same symmetry-breaking cas-
cade may be induced, and the same observations about
neutral-gauge-boson masses and mixings will remain.

D. Models C and D

The Yukawa Lagrangian in model C is
Lyuk = MliLlrO + Aoliplrp + AalarlrA + Hec.,
(79)
where the Higgs multiplets © and p are given by
0~ (2,1,2)(1), p~(4,1,2)(1). (80)

It is immediately obvious that this model has signifi-
cantly different properties to models A and B, because
the fields © and p do not contain any L; = 0 compo-
nents. Therefore nonzero VEV’s for © and p, which are
necessary for lepton mass generation, would also induce
tree-level mixing between the standard Z and Z;. Since
the phenomenological constraints on any admixture in Z
are quite stringent, we do not consider this model in any
greater detail. [Note also that gauge anomalies do not
cancel within the leptons. This requires either the intro-
duction of exotic fermions, or the assignment of nontrivial
SU(2)y properties to quarks.]

Finally, it is clear model D has the same qualitative
features with regard to symmetry breaking and neutral-
gauge-boson mixing as does model C, so we also consider
it no further. (It also possesses gauge and global anoma-
lies if no new fermions are introduced.)

E. Discussion

We now examine the neutral-gauge-boson sector of
models A and B. Let us use the following matrix notation
for the various VEV’s:

w=(2). @=(000) @=(00u00)
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ug 000
=) @=(320). (82)
In Egs. (81) and (82), SU(2)r acts vertically and SU(2)g
acts horizontally. I3y eigenvalues decrease down the page
and L; eigenvalues increase from left to right.

The neutral-vector-boson mass Lagrangian which re-
sults from using these VEV’s in the Higgs-boson kinetic
terms is

»Cgauge mass — %g%(v") + w2 + wlz)Z"Z“
+30h(w? + w? + ul + u + 8%) 24, 2"
+ 103 (ud +3) 7, 2", (83)

This equation summarizes the observations made about
neutral-gauge-boson masses and mixings in the above
text. First, the standard Z boson, the Z; and Zy do
not mix with each other at the tree level. ‘This means
that any nonstandard admixture in Z is very small. The
fact that Z/ and Z4 do not mix at the tree level is also
significant, because it means that the mass eigenstate Z;
has almost identical couplings to fermions in both the
original Abelian theory and the two non-Abelian exten-
sions A and B. Second, we can see clearly from Eq. (83)
that the VEV hierarchy s > uj,us > v, w,w’ leads to
Mz, > Mz:. Note that the last VEV hierarchy does not
necessarily translate into a significant hierarchy between
the standard Z mass and leq because a small coupling
constant g; can compensate.

The neutral gauge bosons Zi contribute to p decay
because second-generation leptons are changed into first-
generation leptons at the vertex. This has been discussed
by Babu and Mohapatra in Ref. [25]. Using their result
we obtain the bound

Mz, > 3200/7; GeV. (84)

For r; = 0.005 this yields Mz, > 230 GeV. Therefore a
significant mass splitting between Z! and Z4 is required
if we want to have a light Z;.

Finally, we remark that the Higgs potentials in models
A and B are very complicated. The Higgs potential of
model B is similar (though not identical) to that analyzed
in Ref. [25]. They showed that a VEV spectrum similar
to that in Eqs. (81) and (82) was possible in a region
of parameter space. We expect the same to apply in our
models.

V. CONCLUSION

The status of the global symmetries of the MSM is a
subject of great importance and much discussion. Al-
though the conservation laws of family-lepton number
and baryon number are obeyed very closely by nature,
there has been considerable speculation about exotic pro-
cesses which violate these laws. Such effects are seen as
a way to probe physics beyond the MSM.

On the other hand, the important theoretical ob-
servation that differences in family-lepton numbers are
anomaly-free in the MSM allows an obvious and hitherto
unexplored phenomenon to occur: one of them may be
coupled to a gauge field. This has very interesting phe-
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nomenological consequences, because it defines a class of
models which are the simplest possible extensions of the
MSM to feature a second neutral massive gauge boson.
Our phenomenological analysis of two of these theories,
where a gauge field is coupled to L — L, or L. — L,
shows that their effects can be made consistent with all
present data, while allowing the possibility of their de-
tection in the next few years. Such a gauge boson may,
for instance, show up in ete™ colliders as a tall, thin res-
onance in the unexplored region between 64 GeV and 87
GeV. The narrowness of the peak presents a challenge to
our experimentalist colleagues.

We also explored some other implications of these the-
ories. We discussed how neutrino masses may be intro-
duced as a further extension of the models, and showed
how the solar-neutrino deficit and the possible existence
of a 17-keV neutrino admixture in B decay may be
addressed. Some extensions to the non-Abelian gauge
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group SU(2) were also proposed.

If family-lepton—number symmetries are exact, then
the fact that anomaly-free linear combinations of them
exist is very significant theoretically. As well as having
implications for charge quantization in the MSM, it also
allows their status to be upgraded to local symmetries
coupled to gauge fields. The discovery of such a neu-
tral gauge boson would represent an exciting direction
for nature to take.
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