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We obtain estimates of the lightest glueball masses, the string tension, and the topological susceptibili-
ty in an exploratory study of QCD with two light flavors of quarks. Our calculations are performed at
B=5.6 with staggered quark masses m,=0.010 and 0.025 and on lattices ranging from 12% to 16*. Our
estimates suggest that, just as in the pure gauge theory, the 07" is the lightest glueball with the 2*7
about 50% heavier. Our m,=0.01 results predict a 0" * glueball mass of about 1.6 times the p mass and
the square root of the string tension of about 0.48 times the p mass, which is surprisingly close to the
usual phenomenologically motivated estimates of around 0.55. Our value of the topological susceptibili-
ty at m,=0.01 is consistent with the prediction, to O(m,) of the standard anomalous Ward identity.
However, the variation of this susceptibility between m,=0.01 and m,=0.025 is weaker than the linear
dependence one expects at small m, in the broken-chiral-symmetry phase of QCD.

I. INTRODUCTION

Lattice QCD presents us with a tool to calculate the
hadron spectrum from first principles. In addition to al-
lowing the calculation of the low-lying meson and baryon
states, which would ultimately test QCD, it also allows us
to determine the fate in full QCD of the pure glue states
(glueballs) which make up the spectrum in the absence of
quarks and for which the experimental situation is still
confused [1]. Should lattice QCD point to the presence
of relatively pure glueball states and give their masses,
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this would greatly clarify the experimental situation. The
verification of any such predictions would be a crucial
test of QCD, since they depend on the gluonic sector
which distinguishes QCD from simple quark models. To
date the only convincing lattice-gauge-theory calculations
of glueball masses have been in pure gauge theories
without the presence of dynamical quarks [2—4]. The
primary purpose of the present paper is to begin the pro-
cess of obtaining equally reliable calculations of “glue-
ball” masses in full QCD.

Including light dynamical quarks in the glueball calcu-
lations changes things in two important ways. First there
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will be mixing between glueballs and mesons and this will
alter the level pattern that one observes in the pure gauge
theory. Indeed the level pattern may undergo large
changes irrespective of the amount of mixing because the
vacuum itself is qualitatively altered by the presence of
light quarks. Second, even if the level pattern is not
grossly altered, the simultaneous calculation of states
such as the p meson enables us to assign values in GeV
units to the “glueball” masses, something which is not
really possible in the pure gauge theory. Of course, if the
mixing is large then the lattice calculations will inevitably
encounter some of the same difficulties that experiments
do in attempting to identify the glueball spectrum. Even
in this case, however, lattice calculations possess what is
likely to be a crucial advantage over the “real world:” pa-
rameters can be varied away from their physical values in
such a way as to smoothly reduce some of the obscuring
phenomena. For example, increasing the quark masses
will gradually reduce the mixing, and perhaps more im-
portantly increase the pion mass thereby inhibiting “de-
cays.” Decreasing the volume can also prevent some
states from ‘““decaying.” In any case, the present explora-
tory calculation is not accurate enough to confront us
with the challenge of having to resolve such difficulties.
Indeed, as we will see, the reliability of our estimates of
glueball masses depends, in practice, on the mixing being
small: if it is not small then our numbers merely provide
upper bounds on the lightest masses in the appropriate
channels. Although we have not attempted a direct cal-
culation of meson-glueball overlaps (a lacuna which we
intend to correct in future work) we do have some in-
direct handle on the mixing. In particular by calculating
glueball masses both at a larger quark mass (in lattice
units), m, =0.025, where any mixing is likely to be small,
and at a lower mass, mg =0.010, where it could well be
sizable, and by comparing these with the older quenched
data, we can search for the changes in the (apparent)
glueball level spectrum that would (probably) accompany
the onset of any substantial mixing.

In addition to calculating glueball masses we shall also
calculate the mass of the lightest periodic flux loop, i.e.,
the loop of color-triplet flux that closes on itself through
one of the periodic spatial boundaries. Such a mass can
be calculated [2] from correlations of operators of the
same type as Polyakov loops and/or Wilson lines whose
mass per unit length is simply the string tension. Of
course, it is not a priori clear that there are going to be
any such flux loops once the vacuum acquires light-quark
loops. We shall, for now, ignore this important point but
shall return to it, nearer the end of the paper, after we
have presented all the details of our calculations.

Another focus of our work in this paper concerns to-
pology. The nontrivial topological structure of non-
Abelian gauge theories [5,6] is closely associated with the
detailed dynamics of QCD. In particular, through the
U(1) anomaly it gives the large 7’ mass [7,8] and contrib-
utes to 7 decay. It has also been implicated in spontane-
ous chiral-symmetry breaking and hadronic structure [9].
Topological fluctuations can play such roles because they
are very sensitive to the presence of light quarks. Thus
the question whether the density of such fluctuations is in
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accord with our theoretical expectations [10] is interest-
ing and one which we shall pursue further in this paper.

We turn now to a brief resume of various technical de-
tails concerning our simulations. We simulate lattice
QCD with two degenerate flavors of quarks using the hy-
brid molecular dynamics method. We have run simula-
tions with quark masses m,=0.025 and m,=0.010 on
124, 123X24, and 16* lattices. Low-lying meson and
baryon masses have been calculated and reported else-
where, along with more details of the simulations [11,12].

For our glueball and topological charge calculations
we have used 500 equilibrated configurations on a 12* lat-
tice with m,=0.025, and another 500 with mq=0.010.
In addition we have used 100 configurations on a 123X 24
lattice and 125 on a 16 lattice, each with m,=0.010.
Here all consecutive configurations are separated by ten
time units. For the 12* and 16* lattices we have im-
proved our effective statistics by calculating the glueball
propagators with all four possible choices of the “time”
direction. For the 16* lattice we have also calculated a
restricted number of states on 1250 configurations
separated by only one time unit (using what we shall call
“inline code”). For purposes of the error analysis we
have binned our data into 20 or 25 bins: thus the bin size
was 20 configurations for the 12* lattice and 5 for the 16*
lattice.

Given our limited statistics, a crucial ingredient in our
glueball calculations was the use of extended ‘fuzzy”
wave functions [2,13] which have a large overlap onto the
low-lying states of interest. However, even with the im-
proved signal-to-noise ratio this gave, we were still re-
stricted to measuring propagators at small separations, in
part due to statistics and in part due to the sensitivity of
some of our states to modes of the system with very long
relaxation times. The only states which gave signals
which we could measure with any reliability were the
0%+ and 2% glueballs and the “fuzzy” Wilson-Polyakov
line (which gives an estimate of the lowest mass periodic
flux loop and hence of the string tension).

The topological charge of a given lattice gauge field
configuration was calculated by the cooling method [14],
where the gauge configuration is smoothed locally by
bringing each link into contact with a 8=« heat bath,
and iterating this procedure. This is designed to remove
small topological excitations which are lattice artifacts.
The topological charge was found to be sensitive to the
long time behavior of the system (as, indeed, was the
string tension).

We finish now with a summary of the rest of the paper.
In Sec. IT we describe the “fuzzy” glueball wave functions
which we have used to construct “good” glueball and
flux-loop wave functionals. Section III describes in detail
the cooling method for calculating the topological charge
and summarizes the theoretically expected behavior of
the topological susceptibility. Section IV presents the re-
sults of our calculations of glueball masses and the string
tension, while Sec. V present the results of our topologi-
cal charge calculation. In Sec. VI we return to a discus-
sion of the effects, if any, of quark loops and mixing on
the glueball spectrum and on the string tension. Finally,
in Sec. VII, we present our conclusions.
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II. IMPROVED GLUEBALL WAVE FUNCTIONS

Simple glueball wave functions, such as the plaquette,
have the disadvantage that they only have small overlaps
with the lowest-lying glueball states, and that these over-
laps become rapidly smaller as the lattice spacing is de-
creased. This situation can be improved by considering
larger Wilson loops as wave functions and by performing
a variational calculation. However, in practice any im-
provement is limited because only a very restricted set of
trial wave functions can be included easily. In response
to these problems methods have recently been developed
to define “smeared” or “fuzzy” wave functions which are
extended objects that are linear combinations of large
numbers of Wilson loops and have a large overlap with
low-lying glueball states [2—4,13,15,16]. Such choices are
typically inspired by renormalization-group methods.
We have used the version of [2,13].

The need for such improvements to glueball wave func-
tions becomes painfully obvious, in the present calcula-
tions, when one considers the behavior of a zero-
momentum glueball propagator C(T) where T is the time
separation on the lattice. Ignoring, for the moment, the
effects of the finite lattice extent in the time direction, we
can perform the usual energy decomposition on C(T)
and obtain

C(T)

— =3 A(n)exp[ —E(n)T],

n

~Aexp(—MT), A=1 2.1

at large T, where A is a constant and M is the mass of the
lightest (glueball?) state in that channel. A represents the
magnitude squared of the projection of the glueball wave
function on to this lowest-lying state, and would thus be 1
if there were no contamination from higher-mass states.
Thus the closer A is to 1, the less the contamination from
excited states, and the smaller the T values at which this
asymptotic form is a good approximation. If we make a
total of N independent measurements, we can only hope
for a sensible determination of this mass provided the sig-
nal is much larger than the error, i.e.,

Ae MT>>1/VN . 2.2)

hence we need A to be as close to unity as possible, so
that M can be extracted from as small T as possible.

The scheme we use [2,13] is based on defining
“blocked” or ““fuzzy” links by

Bl

where the sum is over the four ‘“staples” in the two spa-
tial directions orthogonal to the direction of the blocked
(spatial) “link.” This link matrix is then projected back
into SU(3); that is, if A is the blocked link of the left-
hand side of equation (2.3), we replace it with the SU(3)
matrix U which maximizes Re Tr(UA ). This maximiza-
tion is performed by a method analogous to a Cabibbo-
Marinari heat bath with 8= «. A single sweep of the lat-

(2.3)
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tice was found to suffice, in that the ratios C(T)/C(0)
obtained in this approximation are in agreement with
those for the exact maximation. Higher levels of block-
ing are obtained by iterating this procedure. Thus the
Oth-level blocked link (unblocked) has length 1, the first
length 2, the second 4, the third 8, etc. These blocked
links are used to create wave functions of a given tem-
plate, e.g., a “plaquette,” or a Wilson-Polyakov “line.”
We have comnsidered templates consisting of the 1X 1 loop
(which we shall frequently refer to as a plaquette despite
the fact that its actual size in lattice units is 2V, where N
is the blocking level, a 1X2 rectangular loop, a six-link
nonplanar loop and an eight- link nonplanar loop. These
are shown in Fig. 1. The wave functions with particular
spin-parity assignments are obtained by appropriate
linear combinations of different orientations of such
loops. For details we refer the reader to Ref. [2]. For ex-
ample, the two 1X2,27 " wave functions denoted 1X2L
and 1X2S are from subtracting 1X2 rectangular loops
differing by rotations of 7/2 about the long and short
axes of the rectangle, respectively. The spin-parity-
charge conjugation combinations thus obtained are

0++ 0+— 0—+ O—‘ ,
1t 1t 2.4)
g+t gt—pg—ty—— ,

and higher spin states. In the case of the Wilson-
Polyakov line, we use only one template, the straight line
of links in one of the spatial directions, closed through
the periodic boundary. The only complication occurs
when the spatial extent of the lattice is not an integer
power of 2. In that case we take products of different
blocked links. For example, in the case of the 12* lattice
we define the blocking-level-3 Polyakov loop by multiply-
ing a level-3 link (length 8) with a level-2 link (length 4).
Note also that where necessary we explicitly subtract the
vacuum expectation value from our operator.

In addition to considering states of zero momentum we
also calculate states of nonzero momentum. There are
several reasons to do so: (a) we would like to test the ex-
tent to which the continuum dispersion relation

(c) (d)

FIG. 1. Templates for blocked glueball wave functions: (a) a
1X1 loop; (b) a 1X2 loop; (c) a six-link nonplanar loop; (d) an
eight-link nonplanar loop.
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E?=p2+m?, has been restored: this would provide one
measure of the extent to which Lorentz invariance has
been restored; (b) once the continuum dispersion relation
is well established then one can combine the p =0 and
p70 data to improve statistics; (c) it is frequently hard to
tell if some apparent ‘“anomalous” behavior of p =0
propagators at large T is real or merely a product of un-
derestimating the statistical errors once they are large: a
comparison with p#0 propagators can frequently be il-
luminating in these cases; (d) in small volumes the masses
obtained using m*=E2—p? differ strongly from the
masses obtained from p =0 propagators: this is, in prac-
tice, a sensitive indicator of the fact that the volume is
becoming small.

Wave functions of spatial momentum p are obtained by
associating each loop with a single point on the lattice,
then summing over the loops associated with each point
on the fixed T hyperplane weighted by exp(ip-x) where x
is the lattice point associated with the particular loop.
Denoting such a wave function by W(p,T), our glueball
propagator C(p,T) is given by

C(p,T>=lV<2W*(p,t)W(p,t+T)> , 2.5)

t

where V is the space-time volume of the lattice and { )
represents an average over the ensemble of gauge field
configurations. In practice our fuzzy operators become
less efficient as p is increased. This is not surprising be-
cause the “blocking” algorithm was originally tuned to
work well for the low-lying p =0 states [2,13]. This has
the practical consequence that in order to extract the en-
ergy of the lightest glueball one has to go to larger T
along the corresponding propagator as p is increased.
However, since E (p) increases with p, the correlation
function will descend more rapidly into the “noise” with
increasing T for larger p. All this can obviously intro-
duce systematic biases when we extract E (p) in calcula-
tions of limited statistics, such as ours. For these reasons
we shall use, in our final averages, only masses that are
extracted from p =0 or the lowest nonzero value of p.

In practice we have limited ourselves to the smallest
nonzero momenta because once the momentum and ener-
gy become large the signal disappears too rapidly to be
useful. For the 07" wave functions based on the 1X1
loop we have calculated the propagator with one spatial
component of momentum nonzero and equal to 27 /L,
with L the spatial dimension of the lattice (this being the
lowest nonzero momentum allowed) and also the propa-
gators with two spatial components of momentum
nonzero and equal to 27/L. For the 2% T plaquette wave
function we have also calculated the propagators with the
component of the momentum in the direction common to
the two plaquettes defining this wave function equal to
27 /L. This ensures that the momentum is parallel to the
spin so that when boosted back to its rest frame this sup-
posedly 27T wave function does not acquire any 0 "
component. For the spatial Wilson-Polyakov line we
have calculated the propagators with one or both of the
spatial components of momenta orthogonal to the line’s
orientation, equal to 27 /L.

We end this section with some general remarks on our
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above iterative scheme. Its purpose is to construct in an
efficient way large smooth wave functions. Good wave
functions need to be large so as to match the expected
~1-fm size of physical glueballs and they should be
smooth because that is the simplest expectation for
ground states. One would hope, ideally, that if the lattice
spacing is reduced by a factor of 2, all one needs to do is
iterate the procedure just once more and use the same
template as before to obtain an equally good wave func-
tion. In the pure gauge calculations this does indeed turn
out to be the case [2]. Moreover the best wave function
that one builds in this way typically has 4 >0.8 (in the
pure gauge case) so that one can already obtain a good
approximation to M from C(2)/C(1). Of course once
we allow glueball states to mix with gg states this may all
change. It is only if this mixing is reasonably small that
we can expect A for the best such gluonic operator to be
large; if the mixing is large—and between several
1

states—then A will almost certainly be well below -.

Since statistics limits us, in the present work, to masses
extracted from ¢ <3 it is only in the former case of small
mixing that our effective masses are likely to be any ap-
proximation at all to the true masses.

III. TOPOLOGICAL CHARGE BY THE
COOLING METHOD

The topological charge of a gauge field acquires ambi-
guities when space-time is discretized. Nonetheless we
expect that as the lattice spacing is made to vanish these
ambiguities will also vanish: at least as far as the long-
distance physical properties of topology are concerned.
We expect this because we know from standard semiclas-
sical calculations that the density of instantons decreases
very rapidly as the instanton scale size p decreases. This
argument does, however, break down once p~1 (in units
of the lattice spacing): as p is reduced to zero the gauge-
invariant core of the instanton shrinks within a hyper-
cube and disappears from the lattice. At the same time
the field configuration interpolates smoothly between
0 =1 and Q=0 and the action between S =87/g2 and
S =0. Although the density of such configurations may
be large they are irrelevant to the physics of topology:
the associated zero modes, for example, are in fact far
from zero. Nevertheless they pose an obvious complica-
tion for any attempt to calculate the topological charge
on the lattice. A further complication arises when we at-
tempt to define a lattice topological charge density: such
a composite field operator, if applied to rough lattice
gauge fields, is inevitably dominated by ultraviolet fluc-
tuations.

A simple way to obtain a topological charge from a
given rough lattice gauge field that is insensitive to the
above lattice artifacts is to first smooth out the local fluc-
tuations of the given lattice field. Such a local smoothing
can be achieved by altering the field configuration one
link at a time in such a way as to minimize the piece of
the action that involves that link. This procedure can be
repeated and a finite iteration of it will leave unaltered
the physical component of the global topology if the lat-
tice spacing is small enough. This is because, in the con-
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tinuum, sectors of differing topological charge are
separated by infinite action barriers which cannot be
breached by “local smoothing.” The following remarks
should serve to clarify this last assertion. First we ob-
serve that on the lattice of lattice spacing a the finite rem-
nants of these barriers are provided by the fact that the
action of an instanton whose core is a few lattice spacings
across is

872

~— (3.1)
g(a)?

w, as a—0

where g(a) is the running coupling constant on a size
scale of one lattice spacing. (Technically speaking, to
have a barrier one requires that the action of such an in-
stanton diverge fast enough as a —0 for the diverging
density of states factor, 1/a*, to be overwhelmed by the
vanishing e ~5 factor. This indeed happens to be the case
for non-Abelian gauge theories in four dimensions.)
Now, to change the lattice topological charge on physical
length scales, via a local procedure, requires that an
(anti-)instanton grows or shrinks through size scales of a
few lattice spacings. Because of the diverging action of
such instantons, the probability that this should happen
in, for example, a Monte Carlo—generated sequence of
configurations goes rapidly to zero as a —0 and so the se-
quence becomes locked into a given topological charge
sector. Thus, as a —0 the physical topological charge of
a typical lattice field resides in cores that are on a length
scale >>a. In addition to this topological charge, there
are “instantonlike” lattice fluctuations on size scales p Sa
whose action has been sufficiently reduced by the discreti-
zation that it is not large enough to control the 1/a* den-
sity of states factor. (These effects are clearly not univer-
sal and depend on details of the lattice action.) These ob-
jects are lattice artifacts in the sense that they do not
affect fermionic (or other) physics on physical length
scales. Thus we would exclude them from our calcula-
tions. Now if we locally smooth (cool) such a lattice
gauge field, in the way described earlier in this paragraph,
then these lattice artifacts with p Sa will shrink out of
the lattice in the first few iterations of the smoothing pro-
cedure. On this time scale the physical topology will
hardly shrink at all, and will certainly not shrink right
out of the lattice. This is, of course, because p>>a for
such charges. Moreover the shrinking of these instantons
is driven by O(a?/p?) corrections to the instanton action
which become increasingly weak as a—0 in physical
units.

Clearly such a smoothing or “cooling” method is
unambiguous only if the lattice is large enough and the
lattice spacing small enough so that the short- and long-
distance fluctuations are well separated and the action
barriers separating the sectors of differing physical topo-
logical charge are large. Our calculations here are not,
of course, performed in this ideal limit, but all the evi-
dence is that the degree of ambiguity is not intolerable.

In practice we follow [14] and perform the local
smoothing by minimizing the plaquette action of the
gauge field (see [10] for a discussion of this choice action).
This is achieved by updating the lattice gauge field in
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question using a Cabibbo-Marinari heat bath at
B(=6/g%)=c. One such sweep through the lattice is
usually referred to as one “cooling sweep.” Typically,
after a few cooling sweeps ultraviolet fluctuations con-
tributing to the topological charge are almost wholly re-
moved and what remains can be considered to be the
physical artifact-free topological charge of the original
configuration (provided the original 3 is large enough for
there to be a clear separation between lattice and physical
length scales).

If the number of cooling sweeps employed is small then
we can expect, in addition, that the topological charge
density on the cooled lattice is a reliable reflection of the
distribution of the physical topological charge in the orig-
inal “hot” configuration. The reason for this is that the
cooling is a local procedure and, just like a Monte Carlo
heat bath, can only create (or destroy) coherent struc-
tures over long distances after a sufficiently large number
of sweeps.

To calculate the topological charge Q of a smoothed
configuration we recall that, in the continuum,

1

Q= 32 2 fd4x eyvpa Tr(F,uVFpa) . (32)
T
On the lattice we replace this with
1
o= 3272 2 GIWPO T qu Upa ) (3.3)
sites

where U is a product of the SU(3) matrices representing
our gauge fields around a plaquette in the uv plane. This
operator has the required continuum limit, and the
smoothness of the cooled fields makes it a good approxi-
mation, even on fairly coarse lattices.
From Q we calculate the topological susceptibility
1.,
x==40% (3.4)
where V is the space-time volume of the lattice. The
anomalous Ward identity for the flavor-singlet axial-
vector current requires Y to obey [8,10,17]

2
m , -+ m
=— - (3.5)
X n2 (Py) p Xp
even at finite volume, where
X, = [ d*x {Px)iy sp(x)PO0)iy s9(0)) . (3.6)

For light quarks of mass m in the chirally broken phase,
the leading O(m) contribution to y is

(Py) .

i 3.7)

X n fz
At infinite volume, we would evaluate () at m =0 to
avoid having to define a subtraction scheme to remove
the (perturbative) divergences at m+0. [Note that the
difference between using () at zero mass or the sub-
tracted version at mass m contributes a piece of O(m?) to
Eq. (3.5) and so is of the same order as other terms we
have neglected.] For a large volume, we can extrapolate
() to m =0, provided the finite-volume corrections of
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Hansen-Leutwyler [17] are not too large. This extrapo-
lated (44) would be close to the infinite-volume value at
m =0, and thus distinct from the finite-volume value at
m =0, which is zero.

For contrast, in the chirally symmetric phase we would
expect
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IV. GLUEBALL AND STRING TENSION
CALCULATIONS

We have calculated the zero- and nonzero-momentum
propagators for the wave functions mentioned in Sec. II,
for blocking levels 0—3. Figure 2 shows the normalized
propagators for the 0t and 2** plaquette wave func-

X< m" (3.8) tions and the Polyakov loop, as a function of T for vari-
ous blocking levels (all on 12* at m,=0.025). Just as in
where n; is the number of light-quark flavors. the case of the pure gauge theory we see that blocking

12* 0** 1x1 PROPAGATOR —— M=.025 12* 2** 1x1 PROPAGATOR —— M=.025
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FIG. 2. A linear plot as a function of blocking level. Blocking level zero is unblocked. All on the 12* lattice with m,=0.025. (a)
The 0" *1X 1 loop propagator. (b) The 2% 71X 1 loop propagator. (c) The Wilson-Polyakov line correlation function.
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has greatly improved the signal-to-noise ratio by enhanc-
ing the overlap between the chosen wave function and the
lowest-lying gluonic states. The similarity between levels
2 and 3 indicates that higher levels of blocking are un-
necessary. These features are characteristic of the results
on our other lattices and quark masses as well.

In Figs. 3—5 we show the best plaquette propagators

12* 0** 1x1 PROPAGATOR —— M=.025

0 )

1.0 & BLOCKING LEVEL=3

IIIIIII

PROPAGATOR

T T T T I T T T T I T T T 1 l T L
1.00 k& ( b )—:
E BLOCKING LEVEL=3 3
[+
o
5 0.10
< -
% »
e L
o, L
0.01 E— —
1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1

o
N
IS
[2]

FIG. 3. The 01X 1 loop propagator on a 12* lattice: (a)
m,=0.025. Blocking level 3 on a logarithmic scale. The fit is
to the form 0.7829{exp(—0.8422T)+exp[ —0.8422(12—1T)]}
which fits the T=1 and T=2 data points. (b) m,=0.010.
Blocking level 3 on a logarithmic scale. The fit is to the form
0.8298{exp(—0.80807)+exp[ —0.8080(12—T)]} which fits
the T=1 and T'=2 data points.
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for the 07" and 2% glueballs and for the Polyakov
loop, respectively. [Recall that, as is conventional in
these kinds of calculations, “best’’ means the one with the
largest value of C(1)/C(0).] In each case we show propa-
gators from the 12* lattices at both m,=0.010 and
m,=0.025. As is apparent, our accuracy rapidly
deteriorates for T > 2 and we know, from pure gauge cal-
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FIG. 4. The 2**1X1 loop propagator on a 12* lattice: (a)
m,=0.025. Blocking level 3 on a logarithmic scale. The fit is
to the form 0.5688{exp(—1.2256T)+exp[ —1.2256(12—T)]}
which fits the T=1 and T=2 data points. (b) m,=0.010.
Blocking level 3 on a logarithmic scale. The fit is to the form
0.5438{exp(—1.1303T)+exp[ —1.1303(12—T)]} which fits
the T=1 and T=2 data points.
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culation [18], that once an error becomes large it is usual-
ly badly underestimated (due in part to the breakdown of
simple, quadratic error analysis, and in part to the fact
that at large T where the errors are large, autocorrelation
times are also large). Thus we find it convenient to ex-
tract local effective masses m (T) from along the correla-
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FIG. 5. The Wilson-Polyakov line correlation function

on a 12* lattice: (a) m,=0.025. Blocking level 3 on a
logarithmic scale. The fit is to the form
0.7435{exp(—0.6863T)+exp[ —0.6863(12—T)]} which fits
the T=1 and T=2 data points. (b) m,=0.010. Blocking level
3 on a logarithmic scale. The fit is to the form
0.7210{exp( —0.5536T)+exp[ —0.5536(12—T)]} which fits the
T =1 and T =2 data points.
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tion functions, rather than relying on global fits. We do
this as follows: we fit our glueball propagators locally in
T to the asymptotic form

C(T)=A{exp(—MT)+exp[—M(N,—T)]} (4.1)

and calculate the effective mass m (T') by solving

exp[—m(T —1)]+exp[—m(N,—T+1)]  c(T—1)
exp(—mT)+exp[—m(N,—T)] c(Tm)

4.2)

The errors in m (T') are estimated using the jackknife pro-
cedure on our binned data. m (T) should approach M as
T — o0, so ideally we should look for a plateau in m (7))
as T increases. Unfortunately for the statistics we have,
errors become large before such a plateau becomes evi-
dent; indeed in almost all cases m (T) is not useful for
T >2. Hence we appeal to quenched simulations which
indicate that for the “best” fuzzy wave functions even fits
from T=1 to T=2 give reasonably accurate estimates
for glueball masses and periodic flux loops [2,18]. In
Figs. 3—5 we also show the fits obtained by using m (2) in
Eq. (4.1). As can be seen these mostly look reasonable
bearing in mind that we know that the values of C(T) at
different T are strongly correlated and given our remarks
about the likelihood of the errors at large T being un-
derestimated. In some cases, e.g., Fig. 3(a), it is true that
the apparent discrepancy between the fit and the data at
larger T (between T'=2 and 3 to be precise) is so large as
to be worrying. As we shall see this is a good example of
a situation where the p70 results will serve to reassure
us.

As remarked above, we choose our “best” wave func-
tion by the standard variational criterion, i.e., the one
that maximizes C(1)/C(0) for a given state. We then
take as our mass estimate the effective mass m (2) ex-
tracted from the corresponding propagator. In practice,
however, there are ambiguities with this simple pro-
cedure: different wave functions may possess values of
C(1)/C(0) that are equal within errors. Picking out one
of these as better than the others is a procedure that is
subjective and hence one which could introduce sys-
tematic biases. Accordingly we shall extract our mass es-
timates by doing simultaneous “correlated” fits between
T=1 and 2 to all propagators whose values of
C(1)/C(0) are within one standard deviation of the max-
imum value found for this quantity.

In Table I we tabulate the values of m (T) as obtained
for the best zero-momentum 0% operators on our vari-
ous lattices. Table II does the same for the 2% and
Table III for the mass density of the periodic flux loop.
This last quantity is, of course, just the string tension in
lattice units (up to finite-volume corrections).

We can extract effective energies E (T) from the p#0
propagators in the same way as we extract m (7T) from
the p =0 propagators. The values of these energies are
tabulated in Tables IV-VI for the 07, 271 glueballs
and the flux loop, respectively.

To extract masses from the energies in Tables IV-VI
we use the continuum dispersion relation
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TABLE 1. The 0% effective masses as a function of separation 7. The states are as described in the text. The number in
parenthesis after the state label indicates the blocking level. An asterisk indicates measurements from the “in-line code.” Bold type
indicates those states which obey the 1o criterion.

Effective masses

m, Lattice State T=0-1 T=1-2 T=2-3 T=3-4
0.025 124 1X1 () 1.090 (25) 0.931(51) 0.652(89) 0.935(263)
1X2 (2) 1.086(25) 0.861(61) 0.648(100) 0.914(263)
8 link (2) 1.025(25) 0.851(57) 0.612(81) 0.885(239)
1X1 (3) 1.087(31) 0.842(60) 0.566(71) 0.756(210)
0.010 124 1X1 (2) 1.058 (25) 0.939(66) 0.950(66) 1.208(795)
1X2 (2) 1.054(30) 0.897(66) 0.864(159) 0.767(316)
8 link (2) 0.991(30) 0.851(60) 0.816(143) 0.770(276)
1X1 (3) 0.995(34) 0.808(63) 0.825(151) 0.800(283)
0.010 128X 24 1X1 (2) 1.074(64) 1.366(246)
1X2 (2) 1.078(63) 1.332(207)
8 link (2) 1.036(56) 1.241(180)
1X1(3) 0.983(60) 1.065(146)
0.010 16* 1X1 (2) 1.064(41) 0.957(88) 0.881(252) 0.961(708)
*1X1 (2) 1.090(30) 0.894(76) 0.977(228) 0.594(328)
1X2 (2) 1.039(38) 0.942(93) 0.856(221) 0.722(376)
8 link (2) 1.005(35) 0.893(81) 0.854(187) 1.008(511)
1X1 (3) 1.063(33) 0.906(105) 0.878(188) 0.837(485)
*1X1 (3) 1.08731) 0.906(80) 0.875(211) 0.943(516)

TABLE II. The 2" effective masses as a function of separation 7. The states are described in the text. The number in
parenthesis after the state label indicates the blocking level. An asterisk indicates measurements from the in-line code. Bold type in-
dicates those states which obey the 1o criterion.

Effective masses

m, Lattice State T =0-1 T=1-2 T=2-3
0.025 124 1X1(2) 1.738(33) 1.334(90) 0.971(296)
1X2L (2) 1.775(25) 1.470(107) 0.960(298)
1X2S (2) 1.730(32) 1.406(89) 0.875(245)
8 link (2) 1.742(28) 1.279(89) 0.940(217)
1X1(3) 1.790(35) 1.226(101) 1.029(206)
0.010 124 1X1(2) 1.717(29) 1.254(88) 1.473(444)
1X2L (2) 1.751(28) 1.271(72) 1.209(337)
1X2S (2) 1.733(29) 1.173(63) 1.704(431)
8 link (2) 1.767(36) 1.185(82) 1.713(476)
1X1 (3) 1.740(38) 1.130(92) 1.786(532)
0.010 123 %24 1X1(2) 1.526(57) 0.816(168) 1.028(417)
1X2L (2) 1.560(58) 0.712(148) 0.832(311)
1X2S (2) 1.538(32) 0.765(156) 0.945(289)
8 link (2) 1.656(56) 1.062(220) 1.135(539)
1X1 (3) 1.608(76) 0.732(144) 0.388(194)
0.010 16* 1X1(2) 1.697(54) 1.439(190) 2.111(1397)
*1X1 (2) 1.747(37) 1.472(173) 1.502(686)
1X2L (2) 1.737(44) 1.518(172) 1.769(1059)
1X2S (2) 1.705(45) 1.455(189) 1.452(814)
8 link (2) 1.772(45) 1.524(258) 0.858(441)
1X1 (3) 1.867(57) 1.724(305) 0.493(516)

*1X1 (3) 1.854(42) 1.389(164) 0.923(413)
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TABLE III. The Wilson-Polyakov line effective masses per unit length, i.e., string tensions as a function of separation 7. All mea-
surements are at blocking level three. An asterisk indicates measurements from the in-line code.

Effective masses per unit length

m, Lattice T=0-1 T=1-2 T=2-3 T=3-4 T=4-5 T=5-6
0.025 124 0.0818(18) 0.0572(23) 0.0518(34) 0.0455(42) 0.0393(53) 0.0415(128)
0.010 124 0.0731(15) 0.0461(18) 0.0418(24) 0.0370(33) 0.0416(42) 0.0534(83)
0.010 128x24 0.0640(21) 0.0402(28) 0.0305(34) 0.0294(51) 0.0197(60) 0.0227(67)
0.010 16* 0.0932(15) 0.0612(40) 0.0520(64) 0.1056(458)

* 0.0945(16) 0.0665(30) 0.0625(109) 0.0505(215) 0.0759(862)
E =m?2+p? (4.3) Wwe note that the errors along and between correlation

and this provides us with the effective masses tabulated in
Tables VII-IX. Of course, even in the ideal case where
Lorentz invariance has been effectively restored we
should expect O(a?) lattice corrections to be present.
Thus one might equally well have used in place of (4.3)
the dispersion relation one obtains from the free field bo-
son propagator; i.e.,

4sinh®(E /2)=4sinh®(m /2)+ S4sinX(p, /2) . (4.4)

On the 16* lattice the momenta are sufficiently small that
using (4.4) would make little difference; even on the 12*
lattice the (upward) shift in the masses is usually within
the statistical errors. We have deliberately presented the
raw energy values (in Tables IV-VI) so that the reader
can use his own favorite variation on Eq. (4.3) in extract-
ing the masses.

The utility of these p70 calculations is well illustrated
by looking at the 0" T effective masses on the 12* lattice
at m,=0.025. As we previously saw in Fig. 3(a) and can
now see in more detail in Table I, m (7T =3) appears to be
considerably smaller than m (7 =2). However if we look
in Table VII at the effective masses extracted from the
lowest nonzero momentum, we see no such effect. This
serves to reassure us that this apparent discrepancy is
probably no more than a large statistical fluctuation.

There are several comments worth making again at
this point. First, we recall the conclusions in the pure
gauge case [18] that once the calculated statistical errors
reach ~15% they become seriously unreliable. Second,

functions are highly correlated: the correlation functions
tend to fluctuate as a whole. Third, we remind the reader
that because the distribution of m (7T) is not normal; a 20
error (95%) is actually greater than twice the 1o error
(68%)—and very much greater once the error is large.
This means that the effect of any underestimate of an al-
ready large error is usually greatly magnified.

In order to investigate whether all this is perhaps un-
duly alarmist, we have taken our longest runs, the 500
configurations on the 12* lattices at m,=0.01 and 0.025,
and have split them up into the first 240 and the last 260
configurations. In Figs. 6 and 7 we plot the effective 01+
and flux-loop masses obtained separately on these
different subsets. We clearly see effects which confirm
the necessity for caution.

Thus, given the nature of our statistical errors, we only
feel confident in trusting our effective masses out to
m(2). Even here it is clear from Tables I-III that the
low-statistics run on the 123X 24 lattice is behaving in a
bizarre fashion. It is interesting to note that the masses
extracted from the p=2%/L propagators are in much
better accord with what we see on the 12* and 16* lat-
tices. Although the 16* lattice does not show any “anom-
alous” behavior it is clear that here too the statistics must
be far from satisfactory. For example, when we exam-
ined separately the correlations of smeared Polyakov
loops in the x, y, z directions and extracted string ten-
sions from each we obtained the values k=0.0723(64),
0.0850(71), 0.0544(37), respectively; which shows that
these correlation functions are sensitive to modes of the
system whose relaxation times must be of the order of the

TABLE IV. 0" * effective energies.

Energy (E)
m, Lattice State T=0-1 T=1-2 T=2-3 T=3-4
p=(2m/L,0,0,E)
0.025 124 1X1 (2) 1.206(12) 1.047(30) 1.066(83) 0.923(204)
0.010 12¢ 1X1 (2) 1.240(10) 1.037(25) 1.031(96) 0.691(123)
0.010 123X 24 1X1 (2) 1.215(29) 0.953(75) 0.826(147) 0.753(316)
0.010 16* 1X1 (2) 1.144(20) 0.905(40) 0.734(89) 0.683(147)
p=Qn/L,27w/L,0,E)
0.025 124 1X1 (2) 1.351(12) 1.163(43) 1.049(69) 1.029(233)
0.010 124 1X1 (2) 1.392(11) 1.213(42) 1.071(97) 1.334(404)
0.010 123X 24 1X1 (2) 1.373(29) 1.180(98) 0.963(248) 0.416(331)
0.010 16* 1X1 (2) 1.227(18) 1.001(43) 0.784(120) 0.783(236)
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TABLE V. 2% * effective energies.
Energy (E)
m, Lattice State T=0-1 T=1-2 T=2-3
p=Q2w/L,0,0,E)
0.025 124 1X1 (2) 1.875(24) 1.466(74) 1.602(371)
0.010 3124 1X1 (2) 1.825(17) 1.498(74) 1.105(233)
0.010 12°X24 1X1 (2) 1.859(60) 1.314(194) 0.996(573)
0.010 16* 1X1 (2) 1.748(26) 1.356(99) 1.214(398)

total length of the run.

Although the tables give a good summary of our re-
sults it is useful to try to assign a single value to our 0%
and 21" glueball masses for each lattice size and/or
quark mass value. For this we shall combine the effective
masses m (2) from each wave function for which m (1) is
within one standard deviation of its minimum value.
This is best done by simultaneously fitting one mass to
each set of 7=1 and T =2 data taking into account the
fact that the propagators for these different wave func-
tions are highly correlated. This gives

Lattice m, From p=0 From p=27/L
12+ 0025 M(O*T)= 0.85(6) 0.91(4)
MQTT)= 1.34(8) 1.37(9)
Vk(2)=  0.239(5) 0.256(4)
Vvk(3)=  0.228(7) 0.233(10)

where we also include values of the square root of the
string tension, as extracted from both 7=2 and T =3, in
each case.

The most striking feature of all these numbers is their
overall consistency. The only case that does not seem to
fit is our low-statistics calculation on the 12°X24 lattice.
However, here we see a very large discrepancy between
the masses extracted from p =0 and p50, and indeed the
p7#0 masses do fit in with our other results. In view of
this, we shall feel justified in disregarding the results from
this lattice in our following discussions.

The consistency of these numbers suggest that the con-
tinuum hadron dispersion relations have apparently been
restored, and that there is no strong dependence on either
the quark mass or on the spatial volume. This last state-
ment is also true of the more accurate effective masses ex-
tracted at T =1 (see Tables I-III).

As for glueballs other than the 07+ and the 2%, their
correlation functions fall rapidly into the noise indicating

12 0.010 M(0"*)= 0.84(6) 0.89(3) ; .
MQ2*TH)=  1.17(6) 1.41(8) that either we have very poor wave _functlons or the statgs
V)=  0215(4) 0.245(5) are heavy. There is some sugﬁestlgn that several addi-
Vr(3)= 0.204(6) 0.225(10) tional states, including the O might populate the re-
’ ’ gion around twice the 0" " mass, or a little above, but
123%24 0.010 M(O+t+t)= 1.04(14) 0.79(10) higher statistics would be 'needed to resolve these.
MQ*TH)=  0.74(14) 1.20(22) Given that we have ‘51multaneou.s1¥ calculgted the p
Vr(2)= 0.200(7) 0.247(10) masses on all_ these lattices [11,12] it is tempting to use
Vi(3)= 0.175(9) 0.239(25) that information to give the glueball masses in GeV units.
Since our glueball masses are not accurate enough to jus-
164 0010 M(0*+*)= 0.86(8) 0.82(5) tify the sophistication of an extrapolation to the physical
M2+tT)=  1.50(16) 1.30(11) quark mass (presumably around m,=0.001) we take ra-
Vr(2)=  0.247(8) 0.253(8) tios of our masses to the p mass and assume this ratio
Vi(3)= 0.228(14) 0.212(23) would not change if m, was reduced. (Clearly such an
assumption is poor, but even if we did have sufficient con-
(4.5) trol over statistical and systematic errors to attempt such
TABLE VI. Periodic flux-loop effective energies.
Blocking Energy (E)
m, Lattice level T=0-1 T=1-2 T=2-3 T=3-4 T=4-5
p=(2w/L,0,0,E)
0.025 124 2 1.378(12) 0.943(22) 0.835(44) 0.695(67) 0.558(99)
0.010 124 2 1.327(9) 0.889(24) 0.801(43) 0.807(111) 0.894(194)
0.010 123X 24 2 1.301(23) 0.899(51) 0.863(114) 1.365(343)
0.010 16* 3 1.647(25) 1.096(60) 0.819(131) 1.077(301)
p=Qmw/L,27/L,0,E)
0.025 12¢ 2 1.628(19) 1.173(43) 1.127(172)
0.010 12¢ 2 1.566(14) 1.103(32) 0.936(102)
0.010 12824 2 1.620(56) 0.879(123) 1.102(181)
0.010 16* 2 1.917(43) 1.180(91) 0.787(222)
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TABLE VII. 0" ™ effective masses obtained from the effective energies of Table IV using the continuum dispersion relation.

Eeffective mass

m, Lattice State T=0-1 T=1-2 T=2-3
p=Q2mw/L,0,0,E)
0.025 124 1X1 (2) 1.086(14) 0.907(34) 0.928(95)
0.010 124 1X1 (2) 1.124(11) 0.895(29) 0.888(111)
0.010 123X 24 1X1 (2) 1.096(32) 0.796(89) 0.639(190)
0.010 164 1X1 (2) 1.074(22) 0.815(45) 0.620(105)
p=Q2w/L,2w/L,0,E)

0.025 124 1X1 (2) 1.130(15) 0.897(55) 0.742(97)
0.010 124 1X1 (2) 1.179(13) 0.961(53) 0.773(134)
0.010 123%24 1X1 (2) 1.156(34) 0.918(126) 0.616(388)
0.010 16* 1X1(2) 1.094(20) 0.832(52) 0.553(170)

an extrapolation, it would be suspect. We say this, since
simple extrapolations for the meson and nucleon masses
using the data of Ref. [11] fail to produce a good N to p
mass ratio. We invite the reader to use the data of this
paper and Ref. [11] to perform his/her own extrapola-
tions.) Setting the p to 770 MeV and using only our
m,=0.01 calculations we find

1.240.140.2 GeV for L=12,
m@+t )= —
1.340.140.3 GeV for L=16,
e [1.7£0.1£0.3 GeV for L=12,
m(27 )= 12 240.240.4 GeV for L=16, *©
Ve |300£10£60 MeV for L=12,
370£10+70 MeV for L=16,

where the first error in each case is statistical and the
second is our estimate of the systematic error from work-
ing at too large a quark mass. Since the error in my/m
due to the large quark mass is approximately 20%, while
that for the p mass (estimated from linear extrapolation)
is about 10%, we estimate our systematic error from us-
ing this unphysical quark mass to be around 20%. The
discrepancy between the L =16 and L =12 value of «
may be a finite volume effect, especially since we have
seen evidence for finite-volume effects in the p to nucleon
mass ratio in the L =12 case [11,12]. It is in the direction
that one would expect [2] from the long-distance fluctua-
tions of the confining string, i.e.,

k(L)=k(o0)—1/(3L?) 4.7)

except that the effect is too large. The discrepancy be-
tween the values of k derived from the p =0 and p=w/6
correlation functions lends further weight to this being a
finite-size effect (the 12* value of Vk from p#0 being
~350 MeV). In any case it is amusing to note that the
string tension on the 16* lattice is close to the canonical
value of around (420 MeV)?, despite the fact that the phe-
nomenological arguments for this value have never been
very compelling. Finally, we note that for the 2% glue-
ball, the value of the mass we obtain from the p70 corre-
lations on the L =12 lattice is in fact consistent with the
mass on the L =16 lattice. This suggests that the ap-
parent discrepancies between the 27 © masses may also be
due to finite-size effects.

Although we have been unable to resist the temptation
of trying to translate the glueball masses into GeV units,
we must emphasize that this procedure is fraught with
systematic biases. For example, if we were to use the nu-
cleon to set the scale, all our values in (4.6) would be re-
duced by almost 20% because our nucleon-to-p mass ra-
tio is around 1.5 rather than the experimental value of
about 1.22. This casts doubt on our cavalier assumption
that the glueball-to-p mass ratio will remain approxi-
mately constant as the quark masses are decreased. Even
if we had good reason to believe in the p rather than the
nucleon, the substantial experimental width of the p must
surely introduce an uncertainty of at least 10% in any
mass scale we deduce from it. On the other hand the nu-
cleon mass is harder to measure and appears [11,12] to
exhibit significant finite-size effects.

TABLE VIII. 2" * effective masses obtained from the effective energies of Table V using the continuum dispersion relation.

Effective mass

m, Lattice State T=0-1 T=1-2 T=2-3
p=Q2w/L,0,0,E)
0.025 124 1X1(2) 1.800(24) 1.369(79) 1.514(393)
0.010 124 1X1 () 1.748(18) 1.403(79) 0.973(265)
0.010 123X 24 1X1(2) 1.784(62) 1.205(212) 0.847(674)
0.010 16* 1X1 (2) 1.703(27) 1.298(103) 1.148(421)
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TABLE IX. Effective string tensions obtained from the effective energies of Table VI using the continuum dispersion relation.

Blocking Effective mass per unit length
m, Lattice level T=0-1 T=1-2 T=2-3 T=3-4
p=(2m/L,0,0,E)
0.025 12¢ 2 0.1063(11) 0.0653(23) 0.0542(47) 0.0383(83)
0.010 12¢ 2 0.1016(9) 0.0598(25) 0.0505(46) 0.0512(122)
0.010 123%24 2 0.0993(21) 0.0610(50) 0.0571(120) 0.1051(310)
0.010 16* 3 0.1000(16) 0.0639(40) 0.0449(94) 0.0627(202)
p=Qw/L,2w/L,0,E)
0.025 124 2 0.1208(18) 0.0758(46) 0.0708(190)
0.010 124 2 0.1150(14) 0.0681(36) 0.0478(139)
0.010 123 %24 2 0.1200(55) 0.0395(189) 0.0680(203)
0.010 16* 2 0.1147(28) 0.0650(63) 0.0348(196)

V. TOPOLOGICAL CHARGE

For each gauge field configuration of the four sets of
configurations mentioned above we have calculated the
topological charge by the cooling method. As discussed
in Sec. III this consists of locally smoothing each lattice
gauge field configuration by locally minimizing its pla-
quette action. This is achieved by updating the
configuration using a Cabibbo-Marinari heat bath with
B=oo0.

How many cooling sweeps should one choose to per-
form? If the lattice spacing were very small, then this
choice would not involve any ambiguity. Most of the lat-
tice artifacts would be erased in the first few cooling
sweeps and those that were not would, at this point, have
linear extent p~O (1) in lattice units. Thus they would
be readily distinguishable, by direct inspection of the to-
pological charge distribution on the cooled lattice, from
the physical topological fluctuations with p~O(§), where
& is a typical dynamical length scale, e.g., the p Compton
wavelength (hence £>>1). Since the (plaquette) action of
such a narrow ‘“instanton” is reduced when it shrinks,
after at most a few further cooling sweeps we would ex-
pect all such artifacts to have shrunk out of the lattice. If
we keep cooling beyond this point we would expect iso-
lated topological fluctuations to begin to shrink very
slowly since the instanton action is reduced by lattice
spacing corrections that are of order (1/p)%. Q itself
should remain unchanged for the very large number of
cooling sweeps required to shrink p~0O(&) to p~0(1); at
which point further cooling would expel from the lattice,
one by one, what were originally the very broad topologi-
cal charges. Eventually the configuration will be driven
to the trivial field when the action is zero everywhere.

Of course, our calculations are nowhere near this ideal
limit. The separation between physical and ultraviolet
length scales is significant but is certainly not total.
Hence, the best we can do is to choose some reasonable
number of cooling sweeps that is neither too large nor too
small, and check that the value of Q is insensitive to the
precise number of cooling sweeps employed. Any ambi-
guities that are still left at this stage are hopefully small.
In any case, whether small or not, they are “real” in the

sense that they arise from the overlap between physical
and ultraviolet length scales rather than being merely ar-
tifacts of the particular method.

Following previous quenched calculations [14] we have
therefore calculated the topological charge after 5, 10,
and 25 cooling sweeps. In Table X we show the corre-
sponding values of { Q?). These show, as hoped for, very
little dependence on the number of cooling sweeps. This
reflects the fact that for individual configurations Q rare-
ly changes as we increase the number of cooling sweeps
from 5 to 10 to 25. For example, on our 12* lattice at
m =0.01 we find the following normalized correlation be-
tween the topological charge after 25 cools, Q(25), and
after j cools, Q(j), where j=S5 or 10:

(Q(25)Q(j)> _ 0.92(2), j=5,
<Q(25)2+Q(j)2)/2 0.97(1), j=10.

In practice we shall choose the value of Q obtained after
25 cooling sweeps as an estimate of the topological
charge of the original rough lattice gauge field.

As a further check, we take the configuration after 25
cooling sweeps and remove by hand any ‘instanton”
whose core size is below some suitably chosen critical
size. (We employ the same size criterion as in [14].) This
gives us an estimate of the “large-scale” topological
charge which we therefore label Q. .4- The difference
between Q and Q.4 is some measure of the ambiguities
remaining due to the lack of, as yet, a complete separa-
tion between physical and ultraviolet length scales.

An ambiguity of a much more trivial character arises
from the fact that, due to well-understood order (l/p)2
lattice corrections, the lattice topological charge is not
exactly an integer. For a broad instanton it may be a few
percent below Q=1 but for a very narrow charge the
discrepancy may be much greater. Of course, such very
narrow charges are rare in our calculations (as estab-
lished by our above checks and comparisons) and can in
any case be easily identified in the cooled configuration.
Since there is no reason to believe that the deviation from
integer values on the cooled lattices is any measure at all
of lattice artifact contributions in the original “hot” lat-
tices we round the value of Q to the appropriate integer.

(5.1
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That this procedure is unambiguous in our case is illus-
trated in Fig. 8 where we plot the histograms of the mea-
sured charges, before rounding, and observe that they do
indeed cluster near integer values. For the rare cases that
lie between the peaks, looking directly at the topological
charge density distribution on the cooled lattice almost
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FIG. 6. (a) A comparison between the 0" * effective masses
measured from the first 240 and last 260 configurations on a 12*
latice with m,=0.025. (b) A comparison between the effective
string tensions measured from the first 240 and last 260
configurations on a 12* lattice with m,=0.025.
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always resolves the apparent ambiguity.

Plotting the time evolution of the topological charge,
in Fig. 9, we notice that there are obvious fluctuations
with a long relaxation time, especially in the data for
m,=0.010 on a 12* lattice. Indeed, we see in the severe
skewing of the distribution of Q values in Fig. 8(a) more
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FIG. 7. (a) A comparison between 0" * effective masses mea-
sured from the first 240 and last 260 configurations on a 12* lat-
tice with m,=0.010. (b) A comparison between the effective
string tensions measured from the first 240 and last 260
configurations on a 12* lattice with m,=0.010.
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evidence for such an effect. Thus in order to calculate er-
rors in { Q?) we bin the data into bins that are as large as
possible while still maintaining a reasonably large num-
ber of bins, i.e., into bins of 20 configurations for the two
12* runs, and into bins of 5 configurations for the 123X 24
and the 16* runs. To further investigate the possible
long-time fluctuations in this quantity we divide each of
the sets of 25 bins of our data into the first 12 bins and
the last 13 bins. We find the pattern
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FIG. 8. Histograms of the distribution of topological charge
Q measured on a 12* lattice (a) for the 500 configurations with
m,=0.025; (b) for the 500 configurations with m, =0.010.

4
(g%
Lattice m, First half data Second half data
124 0.025 2.17(31) 1.74(28)
124 0.010 1.93(43) 0.79(16)
16* 0.010 5.48(109) 3.40(82)
(5.2)

In every case there is a reduction in the latter half of the
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run. The effect is only at the level of 1, 2.5, and 1.50, re-
spectively, in the three cases, so while it does suggest that
the topological charge is sensitive to very long-range
correlations in the system (and hence that our errors may
well be underestimated) it would be useful to have some
m(zeasure of topological fluctuations that is less noisy than
Q-
To construct such a measure we follow [19] and define
the quantity

o=3lon)l, (5.3)

where Q(n) is the topological charge density on site n.
On cooled lattices this is clearly a measure of the (long
distance) topological activity of the vacuum. Indeed, if
we assume the strict dilute-gas approximation and if we
also assume that the lattice spacing is small enough for
the cooling not to have caused any significant annihila-
tion amongst neighboring instantons and anti-instantons,
then we can easily show that

(0)Y=(0*» .

Of course, because of the presence of partially annihilated
instanton anti-instanton pairs, @ will, unlike Q, have no
reason to take values close to integers. So, if after 25
cooling sweeps we calculate Q we find the pattern

(5.4)

(0)
Lattice m, First half data Second half data
124 0.025 2.61(9) 2.23(12)
124 0.010 1.96(6) 1.71(9)
164 0.010 6.86(23) 6.08(22)
(5.5)

We see that, once again, we have in every case a reduc-
tion in the latter half of the run: moreover, it is now at
the 2.50 level in each case. This provides stronger evi-
dence that the modes of the system with large spatial ex-
tent which are probed by measurements of global topolo-
gy, have relaxation times of the order of the total length
of our runs (if not longer), and thus, cannot be considered
to have equilibrated. While this is not good news, we can
be somewhat reassured by the fact that although this
effect is visible, the variation we observed in (5.5) is quite
small in absolute terms.

In Ref. [19] the quantity 0 was, in fact, used as a sensi-
tive probe of finite-size effects. It is interesting to repeat
this analysis on our calculations. One defines a “pseu-
dosusceptibility” ¥ as
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¥=<0)/v (5.6)

and compares the values on lattices of different sizes but
with the same values of the couplings. As argued in Ref.
[19], ¥ should be the same on such lattices insofar as
finite-volume effects are negligible. If we calculate this
quantity on our 12* and 16* lattices with m,=0.010 and
compare with the quenched (m,= «) value at 8=5.9
[19] (the quenched value of B at which the hadron spec-
trum most closely reproduces the spectrum on our lat-
tices) we find

X 10*
Lattice B=5.9,m,= o B=5.6;m,=0.010
84 0.93(11)
10* 1.46(8)
124 1.498(22) 0.884(29)
16* 1.498(22) 0.984(27)
(5.7)

In contrast with the pure gauge case there is a significant
change in ¥ as we go from the 12* to the 16* lattice. This
confirms the hints of finite-volume effects that we had
earlier, from the values of the string tension on these lat-
tices. Indeed, the above comparison suggests that in
QCD with two light quarks finite-volume effects begin to
become important on volumes that are about 1.3—-1.5 the
size on which equivalent effects set in, in the pure gauge
theory. Note that this is certainly consistent with what
we know about the scales of the deconfining phase transi-
tion in the two theories.

From the value given in Table X, our topological sus-
ceptibility

x=(0* /v (5.8)
takes the following values in lattice units:

Lattice m, X
124 0.025 9.4(10)X 1073
124 0.010 6.5(11)x 1073
123%24 0.010 7.7(14) X 1073
16* 0.010 6.7(10)X 1077
(5.9)

Note the agreement between the three different lattice
sizes at m 7 =0.010, albeit within the substantial errors.
Let us now consider whether these values are con-

TABLE X. Topological susceptibility as a function of the number of cooling sweeps. The last column is the result of removing by

hand narrow instantons, as in [14,18], after 25 cooling sweeps.

m, Lattice 5 cools 10 cools 25 cools Broad
0.025 124 1.94(21) 1.93(21) 1.95(21) 1.56(19)
0.010 124 1.40(25) 1.33(24) 1.34(24) 1.21(23)
0.010 123X 24 3.29(59) 3.34(57) 3.21(58) 2.97(58)
0.010 16* 4.39(78) 4.54(78) 4.40(68) 3.14(53)
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sistent with the theoretical predictions of Eq. (3.5). First
let us argue that we are in the large-volume region. We
suspect that this is so, since even for our smallest
lattice (12%) and smallest quark mass (m,=0.01),
m_ L ~3.2>>1. To make this more precise we need to
argue that f2m2V >>1. We calculate £, from

fimi=m ()

where in this and subsequent equations we have used
ny=2 and (1) has been extrapolated linearly to m ¢=0.
This yields f,=0.0535(13) from the 12* lattice. Note
that if we were to use the p mass also extrapolated to
m,=0 as our scale, we would obtain f,=85(3) MeV
which as expected lies slightly below the true value
f-=93 MeV, but close enough to give us some faith in
our estimates. For the worst case (m,=0.010n a 124 1at-
tice) we find f2m2V ~4.2>>1 so that we are indeed in
the large-volume regime.

Following Ref. [17] we can estimate the finite-volume
corrections to (). This predicts a 13% decrease at
m,=0.01 on a 12* lattice, a 2% decrease at m,=0.01 on
a 16* lattice and a 2% decrease on a 12* lattice at
m,=0.025. At m, =0.01 we have a more direct measure
of these finite-volume effects, the measured values of
(Y¢) which are 0.0549(6) for the 12* Ilattice and
0.0569(5) for the 16* lattice. Although the difference is in
the right direction, the actual magnitude is much less
than the above estimates. One of the reasons for this is
that the Hansen-Leutwyler formulas assume flavor sym-
metry, in the form of degenerate pions. At 8=35.6, this is
not yet achieved. For our calculations we used the mass
of the lightest (Goldstone) pion. On the 12* lattice at
m,=0.01 this is m _=0.2663(30). However, we have
also calculated a second pion mass on this lattice with
m .=0.349(12). Had we use this mass instead, the pre-
dicted 13% would decrease to 4%. Whatever the reason,
the finite-volume effects are small enough that it is safe to
extrapolate (%) to m, =0, and use the small m, predic-
tion

(5.10)

x=%<$¢) (5.11)

which gives
m,=0.025 , x=12.7(6)(3)X107°,

(5.12)
m,=0.010, x=5.1(3)(1)X107°,

where the first error is statistical, the second our estimate
of the finite-volume effects we have neglected.

If we compare the theoretical predictions in Eq. (5.12)
with our calculated values in Eq. (5.9) there are two
features that stand out. The first is the remarkable agree-
ment at the smaller quark mass. The second is that the
calculated quantities appear to possess a much weaker
mass dependence than the linear one that we expect to
find at sufficiently small m,. Indeed the ratio of the sus-
ceptibilities calculated at m,=0.025 and m,=0.010 is
1.46(30) rather than the 2.5 that a linear dependence
would give us. Of course, considering the fact that we
have presented evidence that there are such long-time
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correlations in our measurements of Q, that the statistical
errors quoted in Eq. (5.9) are almost certainly underesti-
mates, the agreement between the measured values y
given in Eq. (5.9) and the predicted values of Eq. (5.12) is
remarkably good. If the apparent discrepancies between
(5.9) and (5.12) are real, they could well be due to finite
lattice size and/or spacing effects, or the terms quadratic
in m,. Included in these terms of higher order in m, are
those involved in extrapolating {91 ) to zero mass, which
are also those terms involved in defining a renormaliza-
tion scheme for Eq. (3.5). Nonetheless if we had seen a
linear m, dependence this would have served to reassure
us that the agreement at the lowest mass, m,=0.010, was
no accident. Without such reassurance we must remain
cautious.

VI. MIXING

Since the vacuum has light-quark loops, the confining
string will break once it is long enough, and it is not clear
that there will be any flux loop from which to extract the
string tension. Similarly, glueballs will mix with g
mesons. Our calculations, on the other hand, have used
purely gluonic wave functions and have extracted masses
from the small-distance correlations of the best such
operators. It is therefore clear that these “masses” can
only be what they purport to be if the states are indeed
largely gluonic and the mixing is weak. What is our evi-
dence for this?

To probe this question directly we would need to have
calculated the overlaps between the “best” glueball and
mesonic wave functions and also between our flux loop
operators and appropriate glueball, mesonic, and vacuum
states. Unfortunately, while we hope to carry out such
calculations in the future, in the present calculations we
have only obtained the overlaps onto the vacuum state.
To extract the most from this limited information we
shall have to supplement what we know with what we
suppose. The upshot of this exercise will be that mixing
is not important. However, it must be emphasized that
all this leaves plenty of scope for surprises. We begin
with the flux loops and the string tension.

Our smeared Polyakov loop operators are designed to
create excitations that are similar to the lowest-mass
periodic flux loop in the pure gauge theory. As such an
excitation propagates from one operator of the correla-
tion function to the other, it may be broken by the excita-
tion of a gg pair somewhere along its length. If this qg
pair immediately reannihilates then all this will do is to
modify the value of the string tension and perhaps the
shape of the wave function. To make a qualitative
difference the ¢g pair has to separate by a distance that is
comparable to the length of the flux loop so as to turn the
periodic flux loop into a local state. If the ¢g pair annihi-
lates at this point then the flux loop will mix with the
vacuum or with glueball states. If not, it will mix with
meson states. (One can straightforwardly generalize this
discussion to the case where several g pairs may be
formed, which would be appropriate for a very long flux
loop on a very large lattice.) In all these cases, the g7 pair
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has to separate over distances > O (1 fm) and so it is the
“constituent” quark mass that is appropriate. Phenome-
nologically, processes involving the production and an-
nihilation of long-distance gg pairs seem relatively small.
Hence the common assumption is that mixing between
gluonic and mesonic states should be weak. It is worth
adding, however, that if the dynamics does not suppress
mixing then we should certainly not expect to receive any
help from the kinematics: the apparent flux-loop mass
falls in the range 0.55 (on 12* at m,=0.010) to 1.07 (on
16* at m,=0.010) which means there are plenty of near-
by states with which to mix.

So much for the background; what do our calculations
indicate? As stated above, we have only calculated ex-
plicitly the overlap between the flux loop wave functions
and the vacuum. To present the results in a physically
meaningful form we calculate the normalized overlap

|{vac|P|vac)|?

S[I{vac|Pn)|?*] "’

n

A= (6.1)

where P is our best smeared zero-momentum Polyakov
loop wave function. Our results are

Lattice m, A

124 0.025 <0.0015

124 0.010 <0.0075

123%24 0.010 <0.0082

164 0.010 <0.0006
6.2)

These overlaps are quite remarkably small; we recall that
the overlaps of this operator on to the lightest loop states
are typically of the order 0.7-0.9. This is in complete
contrast to the case of glueballs where the quantity 4 for
the best (vacuum unsubtracted) 07t glueball operator is
close to 1. So the suppression we are observing here must
be due to a corresponding suppression of the gg creation
and annihilation since this is involved in the vacuum
overlap of the flux loop but not in that of the glueball.
(Remember that in the confined phase of the quenched
theory, global Z; symmetry prevents the flux loop from
having any vacuum overlap.) This is not only providing
us interesting corroboration of the phenomenological ob-
servation that long-distance ¢g vacuum fluctuations are
unimportant, but is simultaneously telling us that the
mixing of flux loops with the vacuum and glueball states
is negligible.

If gg fluctuations are small then we would expect over-
laps between the flux loops and meson states to be on the
order of the square root of their overlaps onto the vacu-
um. So we expect

flux-loop—meson overlap <10% . (6.3)

It is interesting to note that the apparent overlap of our
best operator onto the lightest flux loop state is about
5-10% less on our 12* QCD lattice than it was in the
pure gauge case on the same lattice.

While the above estimates are far from watertight they
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do lead us to believe that the flux loops are not severely
perturbed by the presence of light vacuum quarks and
that what we have extracted in indeed the quantity that
corresponds, phenomenologically, to the string tension.

As far as the glueballs are concerned, we have no infor-
mation on the mixing with mesons except for the obser-
vation that the overlap of the best glueball wave func-
tions onto the (apparently) lightest glueball states are
very similar to the 0.8-0.9 values obtained in the pure
gauge theory at comparable values of the lattice spacing
and that they display no obvious dependence on the
quark mass. This would be consistent with a mixing esti-
mate similar to that in (6.3),

glueball-meson overlap <10% , (6.4)

in which case our glueball mass estimates should also be
quite reliable.

VII. CONCLUSIONS

Perhaps the most informative way to summarized our
results is to compare our calculated masses with the
meson and baryon masses that we have reported else-
where [11,12] (see Fig. 10). It is also interesting to com-
pare these results with a comparable plot obtained on a
12* lattice at 8=5.9 in the pure gauge theory (which hap-
pens to possess a lattice spacing that is comparable to the
one in our QCD calculations).

We only show the 07 % and 27 * glueball masses. The
masses of states with other JC assignments appear to be
considerably larger (or, as is the case with the 0~ ™, too
noisy for us to make an estimate). Unfortunately glue-
balls with “oddball” quantum numbers appear so heavy
as to be of little experimental interest. It has to be em-
phasized, however, that states which appear heavy are
particularly susceptible to lattice-spacing corrections and
all these conclusions need corroboration on lattices with
much smaller lattice spacings (which is not going to hap-
pen soon).

If we use the p to set the scale in laboratory units we
obtain

m(OTT)=1.2-1.34+0.1£0.3 GeV ,
mQ2T ) ~1.5m(0" 7)=1.7-2.240.240.4 GeV ,
Vk=0.30-0.374£0.01£0.07 GeV ,

(7.1

where, as in (4.7), the first error is statistical, the second
systematic. If we were to use the nucleon, then these
numbers would drop by about 20%. (Here we note that
we have provided plenty of evidence that these statistical
errors are probably underestimated.)

Given the theoretical uncertainties in the customary
phenomenological extraction of a value for the string ten-
sion, it is actually quite interesting that our value is not at
all far from the “canonical” (420 MeV)>.

The lightest glueball masses occupy what is phenome-
nologically an interesting mass range. Of course, all our
masses have been calculated under the assumption that
mixing is suppressed and our direct evidence for this, in
the form of (a) the remarkably strong suppression of the
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overlap between periodic flux loops and the vacuum, and
(b) the fact that the overlaps onto the (apparently) light-
est states are large and comparable to the pure gauge
case, clearly needs improving upon in subsequent calcula-
tions. Higher statistics enabling us to observe if we have
a plateau in the effective mass would help. Nonetheless,
point (a) provides nice direct evidence for the suppression
of quark loop effects on physical length scales.

If we accept our limited evidence that gg mixing has

12* MASSES —— M=.01
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little effect on glueballs and the confining string, it is
tempting to question whether reducing the value of the
quark mass from our value of m,=0.01 to the physical
value of about m,=0.001, can possibly alter the qualita-
tive features of the picture we have obtained. The reason
is that, as we see in Fig. 10, the glueball states are already
more massive than some mesonic states with the same
quantum numbers and, moreover, the ‘constituent”
quark mass is not expected to alter greatly when we
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FIG. 10. (a) The 12*m,=0.0100** and 2% * glueball masses and the square root of the string tension compared with meson and
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reduce the bare mass m, any further. Of course, lower-
ing m, will make the pions much lighter and thus
enhance the “decay” of our glueballs into multipion
states. However, even at the present pion mass, “decays”
into few pion states are already kinematically allowed.

It is clear that, as far as the gluonic sector of the theory
is concerned, what we really need is much higher statis-
tics. We also need the direct calculations of glueball-gg
mixings that would become possible in such calculations.
We might then be able to see variations of the spectrum
with m, which are simply not visible with our very crude
data. It would also be useful to get away from the uncer-
tainties adhering to our statistical errors and possible
lack of equilibration.

Unfortunately, what we appear to need most for the
gluonic sector clashes with what we appear to need most
in the hadronic sector, i.e., smaller m,, smaller lattice
spacings and larger lattices. This is because one finds, as
usual in these calculations, that the determination of had-
ron propagators is remarkably accurate when compared
to that of the gluonic states. It is presumably the case
that if we were calculating hadrons in the same way as we
calculate glueballs, i.e., generating directly the pseudo-
Grassman fields and calculating directly the correlations
of appropriate color-singlet products of these field vari-
ables, we would obtain similarly noisy correlators. Cal-
culating quark propagators in a background gauge field
yields the effect of integrating out all these fermion fields,
i.e., of doing a complete fermion simulation in a fixed
gluonic background. This produces the exponential be-
havior of hadronic propagators from a single
configuration thus greatly reducing the number of
configurations needed for accurate measurements. What
we really need is a glueball method that more closely
resembles that for hadrons.

Better statistics from longer runs are also needed to
measure the mass dependence of the topological suscepti-
bility to compare with theory, in both the chirally broken
and chirally symmetric phases. The weaker than expect-
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ed mass dependence from the present calculations is in-
conclusive. Some evidence of the correctness of the pre-
dicted mass dependence has been obtained in simulations
of the SU(2)-four-flavor theory. In this SU(3)-two-flavor
theory, such a measurement is more important, since ob-
serving the predicted mass dependence in both phases
would give evidence that the flavor tuning required to
give two flavors has indeed produced two flavors with the
correct anomaly structure. That the latter is indeed the
case receives some support from the fact that the magni-
tude of our susceptibility at the smallest quark mass is in
good agreement with the predictions of the n,=2 anoma-
lous Ward identity.

Finally, we remark that, as in all lattice QCD calcula-
tions to date, the quark masses are too large, the lattice
sizes too small, and the coupling too large to access the
entire physical continuum limit. However, if quenched
simulations are taken as a guide, which might be a
reasonable thing to do if the mixing between the lightest
glueballs and mesons is relatively small and these glue-
balls exist as narrow states, then it is not impossible that
the kind of exploratory calculation we have described in
this paper should give a recognizable picture of the true
level pattern.

ACKNOWLEDGMENTS

This work was supported under U.S. Department of
Energy Contracts No. DE-FG02-85ER-40213, No. DE-
ACO02-86ER-40253, No. DE-AC02-84ER-40125, No.
DE-AS03-81ER-40029, No. DE-FC05-85ER250000, and
No. W-31-109-ENG-38 and by National Science Founda-
tion Grants No. NSF-PHY87-01775, No. NSF-PHY 89-
04035, and No. NSF-PHY86-14185. The computations
were supported under a Department of Energy Grand-
Challenge Grant at the Florida State University Super-
computer Research Institute which is partially funded by
the U.S. Department of Energy through Contract No.
DE-FC05-85ER250000.

[1] Particle Data Group, J. J. Hernandez et al., Phys. Lett. B
239, 1 (1990).

[2] C. Michael and M. Teper, Nucl. Phys. B314, 347 (1989).

[3] The APE Collaboration, M. Albanese et al., Phys. Lett. B
197, 400 (1987).

[4] T. A. DeGrand, Phys. Rev. D 36, 176 (1987); 36, 3522
(1987).

[5] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S.
Tyupkin, Phys. Lett. 59B, 85 (1975).

[6] S. Coleman, in The Whys of Subnuclear Physics, Proceed-
ings of the International School, Erice, Italy, 1977, edited
by A. Zichichi, Subnuclear Series Vol. 15 (Plenum, New
York, 1979).

[7] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D 14,
3432 (1976).

[8] E. Witten, Nucl. Phys. B156, 269 (1979). G. Veneziano,
ibid. B159, 213 (1979); Phys. Lett. 95B, 90 (1980).

[9] C. Callan, R. Dashen, and D. Gross, Phys. Rev. D 17,
2717 (1978); 19, 1826 (1979). For a recent quenched inves-
tigation, see S. Hands and M. Teper, Nucl. Phys. B347,
819 (1990).

[10] J. B. Kogut, D. K. Sinclair, and M. Teper, Nucl. Phys.

B348, 178 (1991).

[11] K. M. Bitar, T. A. DeGrand, R. Edwards, S. Gottlieb, U.
M. Heller, A. D. Kennedy, J. B. Kogut, A. Krasnitz, W.
Liu, M. C. Ogilvie, R. L. Renken, P. Rossi, D. K. Sinclair,
R. L. Sugar, M. Teper, D. Toussaint, and K. C. Wang,
Phys. Rev. D 42, 3794 (1990).

[12] K. M. Bitar, T. A. DeGrand, R. Edwards, S. Gottlieb, U.
M. Heller, A. D. Kennedy, J. B. Kogut, A. Krasnitz, W.
Liu, M. C. Ogilvie, R. L. Renken, P. Rossi, D. K. Sinclair,
R. L. Sugar, M. Teper, D. Toussaint, and K. C. Wang,
Phys. Rev. Lett. 65, 2106 (1990).

[13] M. Teper, Phys. Lett. B 183, 345 (1987).

[14] M. Teper, Phys. Lett. 162B, 357 (1985); J. Hoek, M.
Teper, and J. Waterhouse, Nucl. Phys. B288, 589 (1987).

[15] The APE Collaboration, M. Albanese et al., Phys. Lett. B
192, 163 (1987).

[16] T. A. DeGrand and C. Peterson, Phys. Rev. D 34, 3180
(1986).

[17] F. C. Hansen and H. Leutwyler, Nucl. Phys. B350, 201
(1991).

[18] C. Michael and M. Teper, Phys. Lett. B 206, 299 (1988).

[19] M. Teper, Phys. Lett. B 202, 553 (1988).



