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Perturbative QCD, a universal QCD scale, long-range spin-orbit potential,
and the properties of heavy quarkonia
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A modified version of Richardson s potential is used to calculate the energies, fine-structure splittings,
leptonic widths, and dipole transition rates of charmonium and the Y system. The effects of the pertur-
bative color-magnetic (spin-dependent) potentials are included to the full radiative one-loop level. The
question of the consistency of the data with a universal QCD scale and its expression in the central and
spin-dependent potentials is addressed.

I. INTRODUCTION

Since quantum chromodynamics (QCD) is one of the
cornerstones of the standard model, it is imperative that
its predictions receive careful experimental scrutiny in a
wide variety of experimental contexts. Because of the
special role played in the theory by the hypothesis of
asymptotic freedom, it has been necessary to carry out
precision tests of the theory at high-energy scales [1],
where perturbative QCD is expected to be valid. Recent-
ly, Kwong et al. [2] have shown that it is feasible to ex-
tract precise information about the QCD coupling con-
stant a, at heavy-quark-mass scales by a careful examina-
tion of the gluonic and leptonic decays of heavy-
quarkonium states. To implement this program it is
necessary to assume that the hadronic and leptonic decay
widths can be factorized into a nonperturbative part,
whose effects are adequately considered by a potential
model that includes the effects of a confining potential,
and a perturbative part. However, the controversy [3]
surrounding the recent results of the European Muon
Collaboration for polarized deep-inelastic scattering has
called into question the validity of perturbative QCD at
low-energy scales. Thus, it is a pressing concern to ex-
plore the possibility of additional tests of perturbative
QCD at low-energy scales.

Heavy-quarkonium systems afford an opportunity to
develop further tests of QCD at energy scales somewhat
lower than those appropriate for heavy-quarkonium an-
nihilations. The nature of the spectra quite naturally sug-
gests a division into a hierarchy of fine structure,
hyperfine structure, and gross structure, in analogy with
the spectrum of positronium [4,5]. To apply perturbative
QCD to these systems, one needs a means of separating
the perturbative effects from the nonperturbative effects.
The hypothesis of electric confinement [6] provides one
context for this separation. As initially formulated [6],
this hypothesis held that color-electric effects alone were
responsible for the confining potential of heavy-quark—
antiquark systems. The effects of the color-magnetic de-
grees of freedom were assumed to be short ranged and
thus amenable to treatment by perturbation theory.
However, at least one of the spin-orbit potentials should

have a nonperturbative component because, as
Buchmiiller pointed out [7], a rotating tube of color-
electric Aux in the center-of-mass frame would also have
color-magnetic properties. In two recent papers [8,9], I
have shown how one can use Gromes's consistency con-
dition [10] to determine the nonperturbative spin-orbit
potential in a manner that does not make any ad hoc as-
sumptions about the Lorentz nature of the confining po-
tential. A straightforward consequence of this applica-
tion of Gromes's condition is that one expects destructive
interference between the nonperturbative spin-orbit po-
tential and the leading perturbative contribution to this
potential. Thus, one expects a value of the fine-structure
ratio r that is smaller than 0.8, a universal value for P
states that can be derived from the one-gluon-exchange
(OGE) potential. Observations of the fine-structure ratio
yield r =0.60—0.70 for the 1P and 2P states of the Y sys-
tem [1,11,12] and r =0.40—0. 50 for the 1P states of char-
monium. All of these values are below the OCHRE value,
which is experimental support for the destructive in-
terference between perturbative and nonperturbative
spin-orbit effects [8,9].

There has been a steady march of progress in the at-
tempt to establish connections between both the spin-
independent and spin-dependent portions [6] of the quar-
konium potential with the underlying theory of QCD.
An early calculation of hadron masses by De Rujula,
Georgi, and Glashow [13]emphasized the role of OGE in
the explanation of the fine structure and hyperfine struc-
ture. The potential of Eichten et al. [14] gave an in-
creased precision in accounting for the locations of the
heavy-quarkonium levels. Another important advance
occurred when Gupta, Radford, and Repko [15] extended
the QCD perturbative calculation of both the central po-
tential and the spin-dependent potentials to the full radia-
tive one-loop level. Of course, it was necessary to supple-
ment their perturbative potentials with a linear confining
potential to obtain agreement with the measured spectra.
Pantaleone, Tye, and Ng [16] pointed out that using the
radiative one-loop expressions for the perturbative spin-
dependent potentials allowed one to determine the QCD
scale parameter A, which should be a universal value, al-
though the value of the coupling constant e, might ex-
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II. RICHARDSON'S PQTKNTIAL

Most of the successful calculations of the properties of
heavy quarkonium [8,9,15,16,20—24] have some mecha-
nism for softening the QCD coupling constant at small
distances, as required by the hypothesis of asymptotic
freedom. A careful analysis of all the one-loop vacuum-
polarization bubble graphs [25] leads to the usual loga-
rithmic dependence of the running coupling constant on
momentum transfer, that is,

~, (Iq'I) =
(33 2nf)ln(/q //A )— (2.1)

where nf is the number of quark degrees of freedom. To
apply Eq. (2.1) to heavy-quark spectroscopy one has to
have some strategy for dealing with the singularity at
~q ~

=A . Richardson [19]showed that the replacement

~+ ~
A A

(2.2)

hibit flavor dependence.
In this paper we will argue that recent improvements

in the precision of the measured fine-structure splittings
of the r system [1,11,12] and a better understanding of
the implications of Gromes's consistency condition [10]
provide a fresh opportunity to address questions of the
expression of a universal QCD scale in the spectra and
leptonic widths of charmonium and the Y system. Input
from recent lattice gauge calculations [17,18] of the
long-range behavior of the spin-dependent parts of the
quark —antiquark potential will also be important. In
previous report [9], I have established that a modified
form of Richardson's potential [19,20] leads to superb
agreement with the measured values of the leptonic
widths, level spacings, and fine-structure splittings of
both charmonium and the Y system. However, the re-
sults for the charmonium hyperfine splittings were
50—70% too large. Since the perturbative magnetic po-
tentials of the previous calculations were determined
from OGE, it is natural to ask whether extending the
magnetic part of the calculation to the next level of per-
turbation theory, the full radiative one-loop level, will re-
move this discrepancy. The contributions to the pertur-
bative spin-dependent potentials from the eight Feynman
graphs of this order of perturbation theory have been
evaluated by Gupta and Radford [15].

Some of the goals of our present calculation can be
summarized as follows: (1) to emphasize the importance
of including the nonperturbative spin-orbit potential to
obtain reasonable fine-structure ratios; (2) to show that
extending the perturbative magnetic potentials to the full
radiative one-loop level leads to better agreement with
experiment than the OGE potentials; (3) to explore
whether it is reasonable to view the scale parameter A of
Richardson's potential as the QCD scale parameter of the
perturbative magnetic potentials. Are the heavy-
quarkonium data [16] consistent with a universal QCD
scale A? Finally, I would like to note three other impor-
tant calculations [21—23] of the properties of heavy-
quarkonium systems.

leads to a potential that does a satisfactory job of predict-
ing the locations of the spin-averaged heavy-quarkonium
levels. However, since Richardson's substitution
prescribes a value of 8m.A /(33 —2n&) for the string con-
stant, it is very restrictive. Moreover, the relationship of
A to the small-distance behavior of QCD is blurred be-
cause the string constant is mostly determined from the
large-distance behavior of the confining potential.

Moxhay and Rosner's [20] proposal provides a way out
of this dilemma. These authors suggested treating the
coef5cient of the linear term as a parameter, and thus
their modified form of Richardson's potential is given by

V(r) = Ar — f(Ar ),8m

(33—2nf )r

where

(2.3)

4 ~ slntx(t)=-
7T 0 X

1 1
dx

ln(1+x ) x
(2.4)

—6mA=pexp (2.5)

To state the challenge faced by perturbative QCD in
heavy-quarkonium systems more explicitly, can one
reconcile the set of parameters o., and p that accounts for
all the fine-structure and hyperfine splittings in the Y sys-
tem with the set that accounts for these splittings in char-
monium, as demanded by Eq. (2.5)'7 After a value for A
has been determined from the magnetic potentials under-
lying the fine structure and hyperfine splittings, one can
ask if this value is consistent with the scale parameter A
in the short-range part of Richardson's potential.

III. POTENTIAL MADEL

Our calculation is based on a Hamiltonian that de-
scribes the interaction of a heavy-quark —antiquark (QQ)
pair in mutual orbit about its center of mass [9] through a
central potential E(r) and a spin-dependent potential
VsD(r), that is,

H=IC+E(r)+ VsD(r) . (3.1)

In Eq. (3.1) the kinetic energy operator includes the lead-
ing relativistic correction, and the central potential in-
cludes spin-independent relativistic corrections ( Vsi) as
well as the modified Richardson's potential of Eq. (2.3).
The defining equations for the unperturbed problem,

HO=2m+p /m+ V(r), Ho+O=EO+0, (3.2)

From the viewpoint of our calculation, the real advantage
of Eq. (2.3) is that the scale parameter A is exclusively as-
sociated with the short-range behavior of the potential,
and thus it is reasonable to preserve the interpretation of
A as the scale parameter of perturbative QCD. The sepa-
ration of long- and short-range behaviors embodied in
Eq. (2.3) will allow us to ask questions about the relation-
ship of the scale parameter A of the central potential to
the coupling constant a, and the renormalization scale p
associated with the spin-dependent potentials. In partic-
ular, do these three parameters satisfy the QCD relation
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bEb -(50 MeV—) /500 MeV=5 MeV,

bE, =(100 MeV) /500 MeV=20 MeV,
(3.5)

where the first result pertains to the Y system and the
second result to charmonium. Although the approxima-
tions used to obtain these two numbers are very crude,
they are nevertheless useful as rough guides to the kind of
accuracy we can expect.

Using an expansion in inverse powers of the mass to
I

are used to determine the unperturbed wave functions +o
and the unperturbed energies Eo by numerically solving
Schrodinger's equation [26] with the potential of Eq.
(2.3).

Before comparing with experiment, we must consider
the effects of the perturbation:

H'= —p /4m + Vs, (r)+ VsD(r) . (3.3)

The form of the spin-independent relativistic corrections
[27] in Eq. (3.3) is the same as that of Ref. [9]. Thus, our
energies and fine-structure and hyperfine-structure split-
tings are determined from the first-order perturbation
theory expression

E(nLJ) =Eo(nL)+ ( JMLSn IH'I JMLSn ) . (3.4)

The perturbation theory formalism affords a means of
estimating how well we could reasonably expect our cal-
culated results to agree with experiments. Surely, it is
not reasonable to expect agreement from first-order per-
turbation theory that exceeds a bound established by the
magnitudes of the corrections of second-order perturba-
tion theory. Using the measured fine-structure splittings
as a means of assessing the strength of the matrix ele-
ments and the spacing between levels as a means of es-
timating the energy denominators, we can make a rough
estimate of the size of the second-order corrections.
Hence,

evaluate relativistic corrections, Eichten and Feinberg [6]
derived a general expression for the spin-dependent po-
tential

LS 1 dV dV& dV2 S)S2
VsD + + + V4

1+ r-S&r-S2 —3S] S2 V3
m

(3.6)

where S=S&+Sp V& and V2 are the spin-orbit potentials,
and V3 and V4 carry the radial dependence of the spin-
spin and tensor potentials. By evaluating the expectation
values of the bilinear combinations of color-electric and
-magnetic fields derived by Eichten and Feinberg for the
potentials V; on a lattice, Michael and Campostrini et al.
[17,18] have found that only the potential V, exhibits
long-range, or nonperturbative behavior. Thus, it is con-
sistent with the results of these lattice gauge calculations to
assume that perturbative QCD sures to determine the
remaining potentials Vz —V4. Furthermore, we can simul-
taneously satisfy the requirements of Gromes's consisten-
cy condition [10] if we require

Vi(r)= V2(r) —V(r) . (3.7)

I have already discussed in some detail [8,9] how the
minus sign of Eq. (3.8) is responsible for the destructive
interference that reduces the fine-structure ratio r below
0.8, the OGE value.

Keeping only terms through the second order in a, in
the perturbative spin-dependent potentials [15], we have
for the spin-spin, the tensor, and the spin-orbit potentials:

Substituting Eq. (3.7) into the first term of Eq. (3.6) yields
an important result for the spin-orbit potential, that is,

LS dV2 1 dV
SO

32&a
Vss(r) = S, ~ S

9m

as as lnpr +y~(26+9 1n2) 5(r) — (33 2n )V— +
12m 24m r

21a, lnmr +yE
V

16m. r
(3.9)

VT(r) = 4aq S)-rS2 r ——3' S)-S2

m r
4a, a, (33 2nf )—1+ ' + '

(y~+1npr —~4)—
3m 6m

3as
(yE+lnmr ——', ) (3.10)

8a, a, 33—2nf
Vso(r) = ' 1+ (1npr+yz —1) ' '(l—nm—r—+—yz —1)

m r
1 dV

2r dr
(3.11)

31
)GRR 4~

10 (3.12)

We have verified that the potentials of Refs. [15]and [16]

where yE =0.5772 . is Euler's constant and p is the re-
normalization scale. The coupling constant of Eqs.
(3.9)—(3.11) is defined in the momentum-space subtrac-
tion scheme of Gupta and Radford [15]. It is related to
the coupling constant defined in the modified-minimal-
substraction scheme used by Pantaleone, Tye, and Ng
[16]by the relation

I

agree with each other when allowance is made for Eq.
(3.12).

IV. RESULTS

Our calculation for the energies, leptonic widths, and
dipole transition rates of the Y system requires values for
the parameters A, A, m, a„and p. First, we select
values of a, and p that give fine-structure splittings
reasonably close to those of the OGE calculation [9].
Then we determine the values of A and A by fitting the
differences between the centers of gravity of the 1P and
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TABLE I. Energies of the low-lying states of the Y system (MeV). The parameters used for the
present calculation are A=0. 388 GeV, I=4.8855 GeV, p=3.25 GeV, o,, =0.33, 2 =0.164 GeV .

State

1 'Sl (Y)
1 So(r/b )

2 Sl
2'S,
3 Sl
3'S,

GRS
(Ref. [24])

9 460
9412

10016
9 993

10 358
10 340

Fulcher
(Ref. [9])

9 461
9 369

10019
9 975

10 357
10 324

Fulcher
(present work)

9 459
9413

10015
9 992

10 356
10 338

Expt.

9 460. 3+0.2'

10023.3+0.3

10 355.3+0.5

1'P2(rb)
1 Pl
1 Po
1 'Pl(hb)
r&~

9 914
9 893
9 862
9 900

0.65

9912
9 893
9 865
9 900

0.67

9911
9 893
9 865
9 900

0.65

9 913.2+0.6
9 891.9+0.7
9 859.8+1.3

0.66

2 P2
2 Pl
2 Po
2'P,
7 2p

10270
10254
10229
10259

0.65

10 270
10 254
10232
10 261

0.70

10269
10256
10 234
10 261

0.63

10269.0+0.7
10255.2+0.4
10235.3+1.1

0.69

1 D3
1 D2
1 D,
1'D
~1D

10 163
10 153
10 141
10 154

0.96

10 172
10 169
10 163
10 169

0.55

10 172
10 166
10 158
10 167

0.77

' Particle Data Cxroup (Ref. [l]).

2P states and the 1 S& state [28]. Then the values of a,
and p are fine-tuned to give the best fit to the fine-
structure splittings. Finally the constituent mass m is ad-
justed to fit the measured 1 S, mass at 9460 MeV. Our
results for the energies of the Y system are listed in Table
I, where they are compared with experiment, with my
earlier calculation of Ref. [9], and with the recent calcu-
lation of Gupta, Repko, and Suchyta [24]. It is worth
noting that the results of Table I did not require the addi-
tion of an arbitrary constant to the central potential.
Agreement with experiment is excellent.

The values of the parameters p (3.25 GeV) and a,
(0.33) require further comment. If perturbative QCD is
valid, then these parameters should be related to the
QCD scale parameter by Eq. (2.5). However, the ap-
propriate value of n& to use there is uncertain. As the
derivation in Griffiths s text [25] makes clear, this quanti-
ty measures the number of different kinds of
quark —antiquark pairs that contribute to vacuum-
polarization effects underlying the running coupling con-
stant. The question is how many of these contribute to a
given process, which in this case is the magnetic scatter-
ing of a heavy-quark —antiquark pair in a mutual orbit.
One viewpoint is that the value of n& appropriate for
magnetic scattering should be the same as that deter-
mined from the short-range behavior of the running cou-
pling constant in the central potential. Under this
assumption, n&

=3 and Eq. (2.5) yields
(A)fi g g

=0.392 GeV, which is essentially the same

16m,
(4.1)

where a is the fine-structure constant, e& is the quark
charge, and M denotes the mass of the initial state. The
factor in large parentheses in Eq. (4.1) arises because of
radiative QCD corrections. Since Eq. (4.1) describes an

value, A=0. 388 GeV, used in the central potential. The
attractive feature of this viewpoint is that it allows us to
fit all of the Y data with a single QCD scale parameter,
which is significant progress towards establishing the
kind of behavior expected from perturbative QCD. An
alternative viewpoint will be discussed below.

The results of Table I suggest a good experimental test
of the universal scale hypothesis. The hyperfine splittings
are very sensitive to the value of the renormalization
scale p after the value of a, is fixed from the fine-
structure splittings. Thus, the measured values of the
hyperfine splittings will allow an additional determina-
tion of the QCD scale parameter. Will this value prove
to be near 0.390 GeV? Hence, the measurements of the
Y hyperfine splittings should lead to a crucial test of the
applicability of perturbative QCD in the Y system.

Our results for the Y leptonic widths are presented in
Table II, where they are compared with experiment and
the results of Gupta, Repko, and Suchyta [24]. These
transition rates were obtained from the leptonic width
formula [2,5]
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TABLE II. Leptonic widths of the low-lying S states of the Y system (keV).

State

Y(1S)
Y(2S )

Y(3S)

GRS
(Ref. [24])

1.21
0.55
0.41

Fulcher
(present work)

1.31
0.57
0.41

Expt.

1.34+0.05'
0.60+0.04
0.44+0.03

' Particle Data Group (Ref. [1]).

annihilation process, the value of momentum transfer in
the argument of a, there should be substantially larger
than that appropriate for the magnetic scattering poten-
tials of Eqs. (3.9)—(3.11). Thus, we expect the value of a,
in Eq. (4.1) to be somewhat smaller than that used in
Table I. Thus we choose a, =0.18 from Ref. [2], a value
obtained from heavy-quarkonium decays. The good
agreement of our leptonic widths with experiment is solid
support for the values of our radial wave functions at the
origin R (0). The agreement of our results for the
2 S—+1 P, 3 S~1 P, and the 3 S—+2 P dipole transi-
tion rates with experiment is also very good. These re-
sults do not differ substantially from those presented in
Table IV of Ref. [9] and will not be repeated here.

Our results for the energies and leptonic widths of
charmonium are presented in Tables III and IV. These
results are based on a value of A=0. 388 GeV, the same
value used for the Y system. However, it was necessary
to introduce some Aavor dependence into the central po-
tential to achieve high-quality agreement with the data.
For example, the charmonium value of A was about 20%
larger than the Y value, and it was necessary to add an
arbitrary constant to the central potential. A substantial

& I ss &iso=
Qf 2

S 2 8nf
&.-'&s, -s, ,

m.m 2
(4.2)

which gives a small positive shift of about 0.4—0.6 MeV

increase of a, was necessary to give good results for the
charmonium fine-structure splittings. From Table III, it
is clear that the agreement of the hyperfine splittings of
the present calculation with experiment is much better
than those of the OCrE calculation of Ref. [9]. Thus, we
conclude that the full radiatiue one loop -expressions of
Eqs. (3.9)—(3.11), where the coupling constant softens at
short distances in accord with asymptotic freedom, oQer
a significant advantage over the loudest order pe-rturbatiue
expressions of OGE in simultaneously accounting for the
fine-structure splittings and the hyperfine-structure split-
tings of both heavy-quarkonium systems.

The hyperfine splittings of the P states listed in Tables
I and III are very small. The reason for this is easy to
determine from the spin-spin potential of Eq. (3.9). There
the contribution of the 5 function vanishes and one can
evaluate explicitly the action of the V operators on the
terms in square brackets. This yields

TABLE III. Energies of the low-lying states of the charmonium system (MeV). The parameters used
in the present calculation are 4=0.388 GeV, m = 1.30 GeV, p= 1.22 GeV, a, =0.54, A =0.195 GeV .

State

1 Si(J/1//)
1 'So(g, )

GRS
(Ref. [24])

3097
2981

Fulcher
(Ref. [9])

3125
2921

Fulcher
(present work)

3104
2987

Expt.

3096.9+0.1'
2979.6+ 1.7

2 S1
2'S,

3690
3619

3685
3546

3670
3584

3686.0+0.4
3594.0"

1'P2{x,)
1 P,
1 Po
1 P1(h )

Tl p

3554
3507
3412
3518

0.49

3561
3506
3407
3525

0.56

3557
3513
3404
3529

0.40

3556.3+0.4
3510.6+0.5
3415.1+1.0

0.48

1 D3
1 D2
1 D1
1 'D2

~1D

' Particle Data Group (Ref. [1]).
Particle Data Group (Ref. [29]).

3867
3872
3860
3867

3884
3871
3840
3872

0.41

3770(?)
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TABLE IV. Leptonic widths of the low-lying S states of charmonium (keV).

State

J/4(1S )

P(2S)

GRS
(Ref. [24])

5.57
2.87

Fulcher
(present work)

5.23
2.56

Expt.

4.72+0.35'
2. 15+0.21

' Particle Data Group (Ref. [1]).

for location of the single P state relative to the center of
gravity of the triplet P states of the Y system. This split-
ting is about 3 MeV for charmonium. The signs of these
corrections and the magnitudes are in agreement with the
approximate calculation of Pantaleone and Tye [30].
However, a recent determination of the hyperfine split-
ting by Dixit et al. [31] came to the conclusion that this
splitting should have the opposite sign. Their work was
based on a phenomenological short-range potential.
Thus, the sign of the hyperfine P-state splitting may
afford a good test of perturbative QCD.

It is also of interest to investigate whether the values of
a, and p used in Tables III and IV lead to the same value
of the QCD scale parameter A as obtained from the Y
system. Substituting the values of a, and p from Table
III into Eq. (2.5) yields (A),h„, =0.335 GeV, about
14% lower than the value derived from the Y fine struc-

ture. It is not possible to decide if this value is close
enough to 0.390 GeV to support the hypothesis of a
universal QCD scale without further refined study. As an
example of the kind of uncertainty that enters this deter-
mination, we note that one could adopt a different
viewpoint from that used above to determine Afi
Setting n&=4 in Eq. (2.5), which is suggested by a con-
sideration of Y annihilation processes [2], yields
(A')~, s=0.331 GeV. In this case, the two determina-
tions of A from magnetic scattering in the Y system and
charmonium are consistent but differ somewhat from the
value in the central potential.
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