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Cross sections for prompt-photon production at collider energies are not strictly inclusive because
an isolation requirement is imposed whereby the photon is detected only if accompanied by a re-
stricted amount of hadronic energy. In this paper we provide a consistent treatment of the isolated
prompt-photon cross section in QCD perturbation theory. The isolation requirement reduces sensi-
tivity of the cross section to poorly known long-distance fragmentation contributions. However, the
normal cancellation of infrared singularities is upset by the isolation cutoffs, rendering the short-
distance perturbative calculation highly nontrivial. In our solution we address both the short- and
the long-distance issues in detail, showing that well-behaved predictions can be derived for a wide
range of isolation parameters. Calculated cross sections are presented at several energies and scale
dependence of the cross section is exa.mined.

I. INTRODUCTION

The quantitative reliability of calculations done within
the context of perturbative quantum chromodynamics
(QCD) is an issue of importance whether one's focus is
testing the theory or computing backgrounds in searches
for new physics. In the specific case of inclusive prompt-
photon production at large values of transverse momen-
tum (PT), the basic theory is particularly simple [1]. For
example, in nucleon-nucleon interactions at fixed-target
energies, the dominant QCD subprocess in lowest-order
perturbation theory is one in which an incident quark in-
teracts with an initial gluon: qg ~ yq. Correspondingly,
provided that calculations can be done well enough, it
is generally believed that measurements of NN —+ pX
would determine the distribution of gluons in a nucleon,
g(z). Analogous statements may be made about prompt-
photon production at large values of transverse momen-
tum in proton-antiproton interactions at CERN and Fer-
milab collider energies, pp ~ pX. However, important
theoretical issues must be addressed before data at col-
lider energies can be used directly.

In this paper, we examine the uncertainties inherent in
perturbative calculations of prompt-photon production.
We treat in detail the very important difFerence between
the in elusive prompt-photon cross section and the cross
section for isolated prompt-photon production [2]. At
large pz, a photon can be produced through a point-
like, perturbatively calculable hard-scattering term, as
well as through a nonperturbative fragmentation process
(generalization of the bremsstrahlung process). Because
of the nonperturbative nature of the fragmentation pro-
cess, perturbative QCD alone cannot predict the size of
the prompt-photon cross section. To establish whether
definitive constraints on the gluon distribution may be
obtained from the data, it is necessary to examine the-
oretical uncertainties associated with any given order of

the perturbative calculation.
We may mention several types of uncertainties. First,

there are intrinsic theoretical uncertainties associated
with the choices of the renormalization, factorization,
and fragmentation scales. Second, there are more pro-
saic uncertainties related to the imperfect determination
of required parton distributions from other processes (no-
tably deep-inelastic lepton scattering), and in particular,
to the lack of knowledge of the fragmentation functions
which specify the probabilities for quarks and gluons to
fragment into photons. To the extent that one's ambition
is to determine the gluon distribution and AgcD from
prompt-photon data, it is important to understand and
control these uncertainties. Third, and most important,
experiments detect isolated photons at collider energies
[3]. This experimental constraint must be imposed on
theoretical calculations in order to compare the theory
with data. Imposition of the isolation cut threatens to
make the theoretical calculation ill defined since the pos-
sibility arises that infrared divergences will be introduced
[4]

The first class of uncertainty, scale dependence, can in
principle be addressed by calculations of the higher-order
corrections to the short-distance hard-scattering part of
the cross section. In practice, however, it is diFicult
to calculate the corrections beyond the next-to-leading-
order. The next-to-leading order calculation has been
done in perturbative QCD for the one-photon inclusive
cross section [5—7). We will use the available result to
study and to understand the size of uncertainties associ-
ated with the choice of scales. The second class of un-
certainty can be addressed only through independent and
more precise experimental measurements. At present, we
do not have photon fragmentation functions which are as
well measured as other parton distributions. Whether
the uncertainty associated with the photon fragmenta-
tion functions prevents us from extracting reliable infor-
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mation on the gluon distribution from the direct photon
data is one of the main issues that we will address in this
paper.

At low energy, or at large zT = 2p~/+s, we find that
the inclusive cross section is dominated by processes in
which the photons arise directly from short-distance hard
scattering. Consequently, the next-to-leading-order QCD
calculation, with the inclusion of a model of the fragmen-
tation functions, is expected to and does show reasonable
agreement between theory and data for the one-photon
inclusive cross section at fixed-target energies [8]. How-
ever, at high energy, or at small z~, the fragmentation
process is important and even dominant.

The third issue is that of photon isolation. In this pa-
per we expand on previous work [2] in which we showed
that the cross section for prompt-photon production with
an isolation cut is a perturbatively well-defined quantity.
The isolated cross section is much less sensitive to pho-
ton fragmentation functions, enabling us to use the high-
energy prompt-photon data to determine the small-z be-
havior of the gluon distribution. In this paper, we present
a detailed description of the proper evaluation of such
isolated cross sections for prompt, -photon production in
perturbation theory, and give an all-orders argument to
show that the isolated cross section is perturbatively well
defined.

Additional uncertainties should be mentioned. These
include the role of higher-twist contributions [9] and in-
trinsic transverse momentum of the incident partons, and
nuclear target dependence. Higher-twist and intrinsic-
transverse-momentum effects may be of substantial rel-
evance at fixed-target energies where values of p~ are
relatively small. Nuclear target effects at fixed-target
energies induce broadening of the pT distribution and,

correspondingly, complicate the extraction of g(z). We
will not discuss either nuclear effects or high-twist con-
tributions in this paper.

This paper is organized as follows. In Sec. II, we
present a general factorized form for the one-photon in-
clnsiee cross section in Eq. (2.1), and we describe in de-
tail the evaluation of the short-distance hard part o.;j,.
We provide a prescription for handling the singularities
associated with the Feynman diagrams when o,j, is eval-
uated, and we also give a physical picture to o;j, at the
parton level. In Sec. III, we explain how to define a
cross section with an isolation cut in perturbation theory
and how to evaluate it. We argue that such an isolated
cross section is perturbatively finite order by order, and
that the convergence of this perturbative expansion is no
worse than that of the corresponding inclusive cross sec-
tion. In Sec. IV, we provide calculations of the prompt-
photon cross sections at +s = 630 GeV, i//s = 1.8 TeV,
and +s = 400 GeV, and we present results of our nu-
merical study of the uncertainties associated with the
theoretical predictions. Finally, we summarize our con-
clusions in Sec. V.

II. INCLUSIVE PROMPT-PHOTON
PRODUCTION IN @CD

In high-energy hadron-hadron interactions, the ob-
served photons can be produced directly through short-
distance hard scattering at the parton level and through
the long-distance fragmentation of quarks and gluons, as
well as of intermediate photons. Thus, in general, the
inclusive cross section for prompt photon production at
large transverse momentum has the factorized form

dzifi/A(zi) / /) dz2 f, /Ir(z2, p/)

GZ
X ) 2 Dp/c(z) /iF) u&j, c(Pe& zi

& z2) & /i& / f & / F)
g y ml ri

(2 1)

where A and B refer to initial hadrons, i and j label
the types of incident partons (gluons, quarks, and an-
tiquarks), and c labels a final parton emerging from the
short-distance process. The functions f and D are parton
distribution and fragmentation functions, respectively.
In parton language, these functions are interpreted as
probability densities. For example, f;/~(zi, /i/)dzi is
the probability to find a parton of type i in the hadron
A with the parton's (light-cone) momentum between zi
and zi + de~ times its parent hadron's incident momen-
tum. Similarly, Dz/, (z, pF)dz is the probability to find
a photon in the parton of type c with the photon car-
rying (light-cone) fraction between z and z + dz of its
parent parton's momentum. The integration limits z~,
zp, and zm;„are fixed by kinematics. The parameters

p, py, and p~ are renormalization, initial-state factor-
ization, and fragmentation scales, respectively. ozj p is
a perturbatively calculable short-distance cross section
for the subprocess i + j ~ e + A . Its normalization is
specified by the definition (or choice) of f and D.

To evaluate Eq. (2.1), we must compute o;j „have
sets of parton distributions f's and photon fragmenta-
tion functions D's, and determine the scales p, pf, and
p~. In principle, cr;j, can be calculated perturbatively in
QCD perturbation theory. The f's and D's are nonper-
turbative functions, and they must be measured through
a number of different experiments. The scales p, py, and
p~ are unphysical parameters whose appearance is an
artifact of the perturbative calculation to a finite order.
Their values cannot be determined from first principles.
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The uncertainty due to the choice of these parameters
should be considered as a theoretical systematic uncer-
tainty.

Py

Ae C8.1ClllB.El@118 Of 0&j

cr;&. , is the parton-parton hard scattering cross section
for the subprocess i + j ~ c+X, It may be expressed as
a perturbative expansion in the strong coupling strength
~.(p):

~V, =AV, ~", (p)(1+~&, ~.(p)+ ) (2.2) Py

Up to order nz(p) in o;z „ the expression for n, (p) in

Eq. (2.2) is

4~ Pi ln ln p'/A2

PD ln p'-/A2 Po ln p2/A2 (b)

(ln p2/A~)
(2.3)

where Pi ——(306 —38Xf)/3, Po ——(33 —2&f)/3, and

NJ is the number of quark flavors. The renormalization
scale p in Eq. (2.2) is expected to be of the same size as
the large momentum invariants in the parton-scattering
subprocess, controlled by pT, the transverse momentum
of the observed photon. The efkct of the diA'erent choices
of p will be discussed below. When the scale p rises
above the thresholds of heavy-quark masses, i.e. , p = my
or p = m, , we use the same expression for n, (p) but
with diA'erent values of Ny and A. We determine the
new A by requiring the strong coupling strength n, to be
a continuous function of p. I or example, when p passes
through m', we find A5 (the five-fiavor value of A) from
the equation n, (p = m', Ny = 5, A5) = n, (p = m',
Nf ——4, A4) [10].

In Eq. (2.2) the leading- and next-to-leading-order
terms A and B are functions of kinematic invariants. The
calculation of A is straightforward. It involves calcula-
tions of 2 ~ 2 free diagrams. If the photon is produced
directly through hard scattering (c = p), the expression
for A is obtained from the @CD "Compton, "

qg ~ pq,
and annihilation, qq ~ pg, subprocesses, and the power
n = 1 in Eq. (2.2). These subprocesses are sketched in
Fig. 1. If the photon is produced through parton frag-
mentation (c = q or g), the expression for A is derived
from the tree-level 2 ~ 2 parton-parton scattering di-
agrams, and the power n = '2. Some sample processes
are shown in Fig. 2. In all these cases, the A's are P-
n ice because of the requirement of large pT . They have
neither explicit dependence on the scales p, pj, and py,
nor explicit dependence on the scheme used to define the
nonperturbative functions, f and D.

The calculation of B is more complicated. The func-
tion B depends not only on the scales p, pf, and p~, but
also on the scheme used to define the f and D. For a cal-
culation valid up to order n, (p) for the hard-scattering
term o,

&
„we need to consider the function B only in

the case c = p. In this case, we must calculate the
two parton ~ p+ one parton one-loop interference di-

FIG. &. Diagrams for tile subprocesses: (a) gluon-quark
to photon-quark (or "Cornpton"), and (b) quark-antiquark to
pllotoll-glllon (ol' alllllllllatloll).

Pc Pc

(a)

Pc Pc

P2

FIG. 2. Some sample diagrams for the leading 2 ~ 2 sub-
processes toithout a photon in the short-distance hard part.

agrams, illustrated in Fig. 3(a), and calculate the tree
diagrams for 2 ~ y + 2 subprocesses, such as qg —+ qgp,
gg ~ ggy, gg ~ gyp, illustrated in Figs. 3(b)—3(d), re-
spectively. These diagrams have ultraviolet and collinear
divergences, as well as infrared divergences. The infrared
divergence associated with real emission of a soft gluon
is canceled exactly by a corresponding divergence in one-
loop interference diagrams. This is a result of factoriza-
tion —the short-distance hard part 8 has no infrared
singularity. The renormalization of the ultraviolet diver-
gence in the one-loop interference diagrams introduces
the p dependence of B. When the gluon of momen-
t, urn pq, shown in I'ig. 3(b), is parallel to the incident
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(0)

(b)

(c)

FIG. 3. Some sample diagrams for the next-to-leading-
I p

order nF.Mn', subprocesses.

quark of momentum p~, the diagram develops an initial-
state collinear singularity. The treatment of this initial-
state collinear divergence is standard. The initial-state
collinear divergences are absorbed into the parton distri-
butions through the subtraction terms which are needed
to avoid double counting. The subtraction procedure in-
troduces the py dependence of B. Difkrent values of pj
are equivalent to moving finite portions of the product
between the hard part and the parton distributions, in
addition to moving the collinear poles. Larger py means
more is attributed to the parton distributions. Similarly,
when the quarl& of momentum p~, shown in Fig. 3(c), is
parallel to the outgoing photon, the diagram develops a
final-state collinear singularity (or bremsstrahlung singu-
larity). If the momentum pq is parallel to photon's mo-
mentum p&, the contribution has already been included
in the leading fragmentation contribution, A,& &, via a
quark-photon fragmentation function. Therefore, when
we calculate the hard part, 8;& & from the diagrams which
have final-state collinear singularities [e.g. , such as the
one shown in Fig. 3(c)], we must introduce a subtraction
term, just as is done for the initial-state collinear singu-
larities, in order to avoid double counting. For example,
the subtraction term for the diagram shown in Fig. 3(c) is

equal to A&& &
convoluted with the leading-order parton

level quark-photon fragmentation function. As a result of
such subtractions, those final-state collinear singularities
of the 2 —+ y + 2 subprocesses that are associated with
a photon becoming parallel with the parton from which
it was emitted are absorbed into the photon fragmenta-
tion functions D~g~. Correspondingly, the function B;~ ~

becomes dependent on p~ in addition to p and pf .
When we calculate the hard part cr;z, beyond the next-

to-leading order in o, , we have to deal with nonlead-
ing corrections a,z, with c g y. Beyond the order of
2 ~ 2 tree diagrams, the diagrams contributing to o.;z,
can have both soft and collinear singularities, just like
the diagrams contributing to cr,

& ~. The soft singularities
are removed when contributions from all virtual and real
diagrams are added together, The initial-state collinear
singularities are again absorbed into the parton distribu-
tions in a standard way. The final-state collinear singu-
larities associated with the parton c, when its momen-
tum is parallel to its parent's momentum, are absorbed
into the nonperturbative photon fragmentation functions
D&~„with c = q, g as well as |"= p. For example, to cal-
culate the order of n, contributions to 6;& „we must
calculate the functions B,&, with c g p. The diagrams
shown in Figs. 4(a)—4(d) all contribute to the function
B,z, with c g p. In this case, the measured photon
results from fragmentation of the quark (or gluon) of
momentum p, . In this example, the diagrams shown in
I"igs. 4(a)—4(d) all have final-state collinear singularities
when momentum p4 is parallel to p, . Similar to the di-

agram in Fig. 3(c), when p4 is parallel to p„ the dia-
grams shown in Figs. 4(a) and 4(b) are already included
in the leading term, A&& z convoluted with D&~&. This
can be seen from the example shown in Fig. 4(f). The
splitting from the quark to quark in Fig. 4(a) [or quark
to gluon in Fig. 4(b)] is part of the fragmentation func-
tion D~~&. We can easily find a similar example for the
initial-state collinear singularities. For example, when

p4 is parallel to p~, it is clear that the splitting from
the quark to quark in Fig. 3(b) [or gluon to quark in
Fig. 8(d)] is just a part of the quark distribution of an
incoming hadron. In a fashion very similar to the treat-
ment of the initial-state collinear singularities, when we

calculate the hard part o,z, with c g p from the di-
agram shown in Fig. 4(a), we need a subtraction term

A&& &
convoluted with the leading-order quark-to-quark

splitting (or fragmentation) function. Similarly, for the
diagrams shown in Figs. 4(b)—4(d, ) subtraction terms are
proportional to the corresponding A convoluted with a
leading-order parton-to-parton splitting (or fragrnenta-
tion) function. The diagram shown in Fig. 4(e) also has
a final-state collinear singularity when p4 is parallel to p, .
This diagram is not a leading-order diagram in the elec-
troweak coupling constant o,EM. Nevertheless, it shows

why the photon-to-photon fragmentation function D&y&
is generally needed in Eq. (2.1). The final-state collinear
singularity in the diagram shown in Fig. 4(e) is absorbed
into the function D~~~.

We conclude from the above discussion that the hard-
scattering term o;.z, in Eq. (2.1) is a perturbatively fi-
nite quantity. It can be understood as a parton-level
2 —+ 1 inclusive cross section with all collinear contri-
butions along the directions of momenta p, , p&, and p,
subtracted. The collinear contributions are absorbed into
the long-distance parton distribution and fragmentation
functions. The scales pg and p~ define the sizes of the
collinear contributions. A larger scale means more is
subtracted. For example, the scale p~ defines a region
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'c

P4

Pc

Pc

(b)

(c)

around the direction of momentum p„such, that at the
parton level, o;&, is like an "isolated" cross section with
no final-state partons from collinear splitting in that re-
gion. Of course, fina-state partons can be in the region
defined by py if the final-state partons are not from split-
ting of the final-state parton under discussion.

The theoretical calculation of B,z &, the next-to-leading
contribution to the hard part o';&, has been done in per-
turbative /CD for the one-photon inclusive cross section
[5, 6]. When a next-to-leading-order expression is used
for o';&, in Eq. (2.1), it is certainly preferable in principle
also to use next-to-leading-order evaluations of the par-
ton distributions f and the fragmentation functions D
The extent of knowledge of these nonperturbative func-
tions directly affects the predictive power of Eq. (2.1).

P4

Pc B. Determination of the nonperturbative functions

P2

P4

Pc

(e)

P7

Pc

Pc

Pc

7/q

FIG. 4. (a)—(d) Some sample diagrams for the next-to-
leading-order a, subprocesses without a photon in the short-
distance hard part. (e) A sample high-order diagram in nsM.

(f) A diagrammatic representation of a process in which the
photon is produced through a quark fragmentation function.

Many sets are available of parton distributions f deter-
mined from fits to data from deep-inelastic lepton scatter-
ing of neutrinos, muons, and electrons, sometimes with
constraints supplied from massive-lepton pair production
and/or prompt-photon production in hadron-hadron in-

teractions. Diferent emphases placed on the selection of
sometimes contradictory deep-inelastic data are reflected
in different final parton densities for both quarks and
gluons. Fits based on next-to-leading-order @CD have

been published recently. These include the parton densi-
ties of Diemoz ef aL [ll] (DFLM) which we shall use in
this paper, Martin e$ at. [1'2], and Morfin and Tung [13].
DiAerent sets of parton densities are provided by DFLM
corresponding to a range of choices of a, or AgcD, viz. ,

Aqco ——160, 260, and 360 MeV. The values of A are
correlated fairly strongly with the behavior of the x de-

pendence of the gluon density. Thus, the diA'erent sets
labeled by A correspond to different gluon densities. It
is of interest to see whether prompt-photon data may
discriminate among these sets. The values of A quoted
above are those appropriate for four flavors.

For the photon fragmentation functions D's, the situ-
ation is very different from that, of parton distributions.
There are not yet any next-to-leading-order photon frag-
mentation functions. Model photon fragmentation func-
tions are available based on leading-logarithm evolution
and vector-meson dominance [14]. In principle, fragmen-
tation functions, just like the parton distributions, should
be determined and refined through diAerent experiments.
For example, one can try to extract photon fragmentation
functions from the cross sections for one-photon inclusive
or one-photon plus two-jet data in e+e scattering pro-
cesses. Although the available simple photon fragmenta-
tion functions can roughly fit earlier experimental data
[15], because of large experimental uncertainty, we must
allow for possibly large alterations to the fragmentation
functions, in particular, in the small-z region. As a result,
it is perhaps best to state that the available photon frag-
mentation functions will give us a reliable prediction for
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hadronic prompt photon production, i+the contribution
to the cross section from the fragmentation subprocesses
is much smaller than that from direct short-distance pro-
duction. Otherwise, it is better to use such direct pho-
ton experiments to determine the photon fragmentation
functions.

Using the available photon fragmentation functions, we
find that at fixed target energies, the fragmentation pro-
cess contributes less than 10% of the total one-photon
inclusive cross sections, whereas at collider energies, it
can provide over 50% of the total inclusive cross sections.
Therefore, we conclude that Eq. (2.1) will give a reliable
prediction for inclusive processes only at relatively low
energies. However, as we will show later, at collider en-
ergies, the photon isolation restriction make theoretical
predictions less sensitive to nonperturbative fragmenta-
tion functions, restoring predictability of the theory.

C. Choice of sca1es
The expression for the next-to-leading-order term B

in Eq. (2.2) depends on the choice of py and p&, on the
choice of p, and on the scheme used to define the parton
distribution and fragmentation functions. We consider
each of these in turn.

DifFerent choices of py or p~ are equivalent to moving
finite pieces between the nonperturbative functions f and
D and the hard-scattering term B in Eq. (2.2). Different
choices of the renormalization scale p modify B by a term
having an ext, ra power in n, .

The dependence of B on the factorization scale py or
on the fragmentation scale p~ is apparent because of the
evolution of the parton distributions and the fragmenta-
tion functions. For example, the evolution of the type-i
parton distribution of hadron h, j)~&(z, pg), with changes
in py is expressed through

o n~(&t) py
0

f(~(zpy) =&]~(& Sy)+» o ).
Ijlg

fq]~—(V) p~)P~j — +

In Eq. (2.4), P)~(z) is the appropriate Altarelli-Parisi
splitting function relating partons i and j.

The dependence of B on the choice of the renormal-
ization scale p appearing in n, (p) is apparent from the
expression

33 —2' Pn. (S) = n. (Vo) 1-
12' n. (po) ln —,

Po

(2 5)

Finally, B depends on the scheme used to define the
parton distributions and photon fragmentation functions.
In the case of quark distributions, the standard reference
process is deep-inelastic lepton scattering. The quark dis-
tributions may be defined such that the structure func-
tion Fz(z, py) is expressed as

(2.6)

with no O(n, ) correction, normally called the deep-
inelastic scattering (DIS) scheme. In Eq. (2.6), e; is the
charge of the quark of flavor i. A definition different
from Eq. (2.6) would result in an order-n, correction to
Eq. (2.6) and to a corresponding change in B in Eq. (2.2).
It is important to emphasize that when using next-to-
leading parton distributions, one has to make sure that
the scheme used in defining the distributions is the same
as the scheme used in defining o'zj

If the terms in Eq. (2.2) were computed to all orders
in n, , then the results of Eq. (2.1) would not depend on
the choices of scales p, py, and p~. Any change in p
or py or p~ would alter the relative magnitudes of the
different terms in the series expansion in n, , leaving the
sum unaltered. However, for calculations done through a

finite order in n, , there necessarily is dependence on the
choices of p, py, and p~.

There are several approaches to the matter of p, pg,
and p~ dependences. We may vary the scales p, py, and
p~ over a "reasonable" range of values and examine the
resulting band of values of the cross section. This band
constitutes one estimate of the theoretical systematic un-
certainty in our final result. This is the approach we shall
adopt, . For inclusive prompt-photon production at large
pT, it seems clear to us that the scales p, pg, and p~
should be about equal to the momentum transfer which
occurs in the physical hard-scattering process. Other-
wise, one is left to explain the occurrence of disparate
scales in the problem. Furthermore, in order to avoid
the large logarithms due to mismatch of difFerent scales,
we normally choose all scales p, pg, and pF in Eq. (2.1)
to be of the same size as the large momentum invariant in
the parton scattering subprocess, which is ~. We choose
to vary the scales from pT/2 to 2pT. There is no require-
ment that Ij; = py ——p~, but such a choice simplifies the
discussion. It is made in some of our calculations.

Other approaches have been advocated for selecting
preferred choices of the scales p, pg, and p~. One might
choose the scales so that the term B in Eq. (2.2) is
very small. This approach, called the fastest apparent
convergence [16] (FAG), is predicated on the hope that
the unknown yet higher-order terms will also be mini-
mized at the same time. Otherwise, one might determine
the scales from imposed supplementary conditions, viz. ,

Bo/BIJy = 0 and Ba/Op = 0. This approach is known as
the principle of minimal sensitivity [17] (PMS). A simi-
lar condition might also be imposed for p~. The supple-
mentary conditions are true, of course, if 0. is calculated
to all orders in n, . Neither the FAC or the PMS ap-
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proach is guaranteed to converge, in the sense that the
required values of p, pj, and p~ may not exist in the re-
gion p ) p, py & p&, and p~ ) p& where o., (p) and the
functions f;~i, (z, py) and D~y, (z, p~) are well specified.
Stated difI'erently, the procedures would not be accept-
able if unreasonably large values of n, (p) or unreasonably
small values of py and p~ are derived through applica-
tion of the procedures. As we will demonstrate explicitly
in Sec. IV, one has to be careful in applying the PMS
procedure.

III. ISOLATED PROMPT-PHOTON
PRODUCTION

As explained in the preceding section, the one-photon
inclusive cross section is t, heoretically well defined, but
the t,heoretical prediction depends heavily on our knowl-
edge of the nonperturbative functions, particularly, of the
fragmentation functions. In Eq. (2.1), the value of z;„ is
fixed by kinematics, in particular, by z~. The smaller zz.
is, the smaller z~;„ is. Smaller values of z~;„mean that
the cross section is more sensitive to the fragmentation
functions. Therefore, at high energy, or at small z~, the
fragmentation process is important and even dominant.
It follows that the one-photon inclusive process at small
zT is not a good place to test the theory unless frag-
mentation functions are known. On the other hand, at
collider energies, experiments detect isola/ed photons [3].
In this section, we present a general description of the
proper evaluation of the cross section for prompt-photon
production with an isolation cut. We will show that the
isolation cut is actually an advantage since it makes the
theoretical prediction /ess sensitive to nonperturbative
fragmentation functions.

We first introduce the terminology and variables which
will be used in defining the cross section with an isolation
cut. An isolation cone is defined, as shown in Fig. 5, to be
a cone of opening angle 6, and whose axis is the direction
of the observed photon. This definition can be converted
into the isolation parameter R used in experiments [18];
R = /(Aq)2+ (A$)z. This expression shows that R is
the radius of a circle in pseudorapidity (g) and azimuthal
angle (P) space. Hence, when g = y = 0, R —b. If the
total hadronic energy Eg in a photon s isolation cone is
less than ~ times the photon's energy F~, the photon is
said to be isola/ed. Parameter e is the energy resolution
parameter. It is a finite number fixed in experiments
to control event acceptance. An isolated cross section is
t, he cross section for isolated prompt-photon events. (We
note that our definition of 6, Fig. 5, as the half-angle

I'IG. 5. Diagram illustrating the isolation cone whose axis
is the momentum direction of the photon.

of the cone difI'ers from that used by Aurenche, Baier,
Fontannaz, and SchiK [5] (ABFS).)

For the purpose of the following discussion, it is con-
venient technically to treat the isolated cross section as
the one-photon inclusive cross section minus a subtrac-
tion term. The subtraction term is the cross section
for photons with accompanying hadronic energy greater
than eE& in the isolation cone. Because the one-photon
inclusive cross section is perturbatively well defined, to
study the behavior of the isolated cross section is to study
the subtraction term, which depends only on the events
in which photons are accompanied by more than eE&
hadronic energy in the isolation cone. If we use the isola-
tion cone to define a jet, the subtraction term may actu-
ally be thought of as a "jet" cross section for jets having
a photon and hadronic energy grea/er than eE&.

The subtraction term is just, a part of the one-photon
inclusive cross section (or is a "jet" cross section). It
should have a factorized form similar to that given in
Eq. (2.1). The calculation of the subtraction term should
be the same as that for the one-photon inclusive cross
section, but with a limited phase space. When the ob-
served photons come from a fragmentation process, we
must show how an isolation cut can be imposed on the
nonperturbative quantities, the fragmentation functions.
We must also address the possible noncancellation of in-
frared singularities due to the fact that the isolation cut
restricts the phase space for integration of the momenta
of soft gluons. In addition, because several new scales
(the cone size 6 and momentum fraction e) are intro-
duced, we should also estimate the effect of possibly large
logarithms in high-order corrections caused by the mis-
match of difII'erent scales.

A. Isolation cut on the fx agmentation functions

When a phot, on is produced through the fragmentation
of a quark or a gluon, the event has the character of a
photon accompanied by a hadronic jet in the direction
of the photon. Because of the nonperturbative nature
of fragmentation functions, we do not know theoretically
how the hadronic energy is distributed within the frag-
mentation jet. Therefore, for an arbitrarily defined frag-
mentation function, when we impose an isolation cone
around the photon, we must try to estimate how much
hadronic energy from fragmentation will fall into the cone
or fall outside of the cone.

Because of the freedom in defining fragmentation func-
tions, we can include the isolation cone as part of the def-
inition of the fragmentation functions, provided the cone
size is large enough. If the cone size is too small, the sep-
aration of soft and hard contributions will attribute too
much of the cross section to hard scattering, rendering
the perturbative calculation unreliable. Fragmentation
functions, including the isolation restriction, can be mea-
sured in principle through difI'erent processes in which the
same definition is employed. For example, such functions
can be measured in isolated photon production in e+e
scattering. The fragmentation functions defined through
the isolation cone can be related to other definitions by
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a convolution with perturbatively calculable coeFicients
(or kernels). The fragmentation functions with different
definitions should have the same scale dependence on p, ~
because all valid fragmentation functions should have the
same long-distance behavior.

As discussed in Sec. II, the fragmentation scale pF is a
scale that determines how much of the finite contribution
of a diagram is included in the nonperturbative fragmen-

tation functions and how much in the hard-scattering
part. A larger value of p~ means more is included in
the fragmentation function (or in the fragmentation jet),
and the jet size is bigger. Therefore, in calculating the
isolated cross section, p~ should be chosen small enough
so that the whole jet is small enough to fall within the
isolation cone. Then, the subtraction term for the frag-
mentation contribution is

/~SU b

E~ (due to fragmentation)' d'J.

= ) . d&if /~(&l, p/) d*2f, /a(~2, p/)

x ) 1/(1+~) d—
2 Dp/c(z~ pF(b)) pi/, c(pc& zl, z2

& z& p, pf, pF(b) &
b, 6)

Z
(3.1)

In Eq. (3.1), the upper limit on the z convolution is deter-
mined as follows. If p, is the total momentum of a frag-
mentation jet, the photon's energy is equal to z times the
jet momentum, E~ = z p, ; and the total hadronic energy
within the jet is E), ——(1 —z) p, . By the definition of the
isolated cross section, we allow some hadronic energy, but
not more than eF&, into the isolation cone. This gives
the upper limit of the z convolution for the subtraction
term, z ( 1/(1+ e), because (1 —z) p, ) eE~ = c z p, .

The functions D&/, (z, pF(b)) with c = q and g are the
fragmentation functions defined using the isolation cone.
Up to order of n82(p), the hard-scattering cross section
o;j,c(p„zi, z2, z, p, p/, pF(b), b, c) in Eq. (3.1) is simply
equal to the cross section for the tree 2 —+ 2 processes,
and it has no dependence on b or e. However, in general,
as we discussed in preceding section, it is equal to an "iso-

lated" 2 —+ 1 parton-level inclusive cross section, and it is
a perturbatively well-defined quantity. Its 6 and e depen-
dence comes from the effect of the isolation cut on the
nonfragmenting final-state partons when these fall within
the isolation cone. [The nonfragmenting final-state par-
tons are those which do not arise from final-state parton
splitting (or fragmentation) processes; they are not asso-
ciated with the final-state collinear singularities. ]

The import of this discussion is that diKculties asso-
ciated with the nonperturbative functions are effectively
reduced to a definition of fragmentation functions and a
choice of the fragmentation scale.

Up to the order of o., (p), we can combine Eqs. (2.1)
and (3.1) to obtain the prompt-photon cross section due
to the isolation cut on the fragmentation process as

d~ISO
E& (cut only on fragmentation)

pp

= 5 . "»fi/~(&l p/) "»f&/a(» p/)

1 dz
xi ) —D&/c (Z~ PF) ~ij,c (Pc, Zl, Z2, Z, P)

i/(l+c) Z

+). x/(z+~) d
[D~/, (z, pF) —D~/c(z, pF(b))]oij, (&c zi, z2, z, p)

dz—,& I (* P~) ~". (n, ~~, ~~, ~, v, v~, vs))z
(3 2)
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In Eq. (3.2), a.,z, is the cross section for the 2 ~ 2
tree processes with no photon in final state, and o;.j &
for the 2 —+ 2 and 2 ~ 3 processes with one photon in fi-
nal state. The fragmentation functions D~~, (z, p~) and

D~~, (z, p~(b)) can be different in principle because of
the freedom in choosing the fragmentation functions for
the one-photon inclusive cross section. If we give up this
freedom, we choose instead the function D&~, (z, p~(b))
for the inclusive cross section. Then the second term in
Eq. (3.2) vanishes, the hard part in the last term becomes
dependent on p~(b), and the function D~~, (z, p~) in

the first term in Eq. (3.2) is replaced by D~y, (z, p~(b)).
The interesting point is that with such a choice of the
fragmentation functions, the isolated cross section given
in Eq. (3.2) depends on the nonperturbative fragmenta-
tion functions D~~, (z, p~(b)) only in a very small region
of z near z = 1. Because the fragmentation functions
D~~, (z, p~(b)) with c g y should be either finite or van-
ish as a power of (1 —z) as z ~ I, Eq. (3.2) shows that,
when e is small, the isolated cross section is dominated
by the subprocesses in which the photon is directly pro-
duced by short-distance hard scattering. We conclude
that if r is small enough, the isolated cross section is much
less sensitive to nonperturbative fragmentation functions
than the fully inclusive cross section.

In a 2 —+ n process with n & 3, it is possible for a final-
state quark or gluon with energy larger than eE~ to get
into the photon's isolation cone. To define a general iso-
lated cross section, we must subtract such contributions
from the cross section given in Eq. (3.2). As we discussed
before, the fragmentation functions include all final-state
collinear singularities as well as all collinear contributions
in a region around the direction of momentum p, . This
region is specified by the scale p~. We need, therefore,
to subtract nonfragmenting contributions within the iso-
lation cone only from the hard part o.zj p The discussion
of this issue is given in the next subsection.

We now estimate the fragmentation scale p~(b) such
that the nonperturbative fragmentation jet can be
roughly included in an isolation cone of opening angle
b. The relationship between p~ and the size of the frag-
mentation jet cannot be expressed in terms of a simple
equation because it depends on the choice of the fac-
torization scheme. It can be estimated best in terms of
a transverse-momentum cutoA' scheme. When the trans-
verse momentum between the photon and its accompany-
ing partonic fragments is larger than py, we attribute the
contribution to hard scattering. Otherwise, we include
the contribution in the fragmentation jet. For example, if
the photon comes from a quark through bremsstrahlung
radiation, we can estimate the relation between p~ and
the cone size b as p~(b) bp~ = b E&(l —z)/z, with
z~;„( z ( 1/(1 + e), where pz is the momentum of a
quark accompanying the photon. It follows that p~(b)
is of order bE&. Note that when z is near its upper
limit, p~(b) could be as small as ebE~. This occurs at
the edge of phase space where the fragmentation func-
tion is very smaIl. More typica1 values of z, where the
fragmentation function is large, are close to z~;„where
p~(b) = bE&(1 —z~;„)/z~;„) bE&. In general, once we
choose a scheme, we can only approximately estimate the

relation between the value of py and the size of the isola-
tion cone b. The uncertainty is the theoretical systematic
uncertainty due to the choice of the scheme.

Once p~(b) is chosen in the fragmentation functions,
the short-distance hard-scattering cross section will de-
velop a ln(b) dependence owing to the introduction of a
second scale, b E&, into the problem. If b is too small,
the large ln(b) dependence may cancel a power of n, and
make the perturbative expansion converge slowly. Con-
sequently, the isolated cross section would not be well
estimated by the perturbative calculation. The isolation
cone used in experiments [3] is small but fortunately not
so small that ln(b) is large.

In general, to avoid a situation in which p~(b) would
become too small in the short-distance hard-scattering
part, we can fix p~ to be of order of p~ for the inclusive
contribution, and retain the second term in Eq. (3.2) for
the isolated cross section. Although the second term in
Eq. (3.2) depends on the nonperturbative fragmentation
function D through D(z, p~) —D(z, p~(b)), the size of
this term is still small because p p (b) is of order pF —pl,
except when z is near its upper limit 1/(1 + e), in which
case the fragmentation function is near zero.

B. Contribution of soft gluons

d k 1

(2z.)s2~ (2z.)s

m8, X

2
(3.3)

where u is the parton's energy, and u „ is fixed by
kinematics. In principle, the subtraction term is per-
turbatively /nike for fixed values of 6 and e. The is-
sue is whether the perturbative expansion converges fast
enough, so that it is unnecessary to compute higher-order
corrections to get a reasonable estimate.

When b ~ 0 and e —+ u „/E~, the subtraction term
vanishes. As we will show explicitly below, when b is
finite and e —+ 0, there is an infrared divergence. This
is exactly what we expect because a comp/etely isolated
cross section, with absolutely no hadronic energy in the
isolation cone, is not a perturbatively well-defined quan-
tity for a massless particle. However, the value of e is
fixed experimentally to be finite. The question of interest
is for what values e becomes so small that the subtraction

Hadronic energy may enter the isolation cone not only
from the fragmentation process but also from the non-
fragmenting final-state quarks and/or gluons produced
in the short-distance hard scattering. In any 2 ~ p+ n
partonic subprocess, with n ) 1, it is possible for n —1
of the n final-state partons to fall into the isolation cone.
The other final-state parton must have large pT to bal-
ance the photon's transverse momentum. The subtrac-
tion term should include the part of the total cross sec-
tion for which the nonfragmenting quarks and/or gluons
within the cone carry total energy larger than eE~.

Again, up to order of n2(p), we must consider only the
2 ~ 3 process with one photon in the final state. In this
case, only one of the two final-state partons (quark or
gluon) can fall into the isolation cone of the photon. The
phase space for the parton of momentum k in the cone is
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term is too big (or is infrared divergent).
To investigate this question, we study the behavior of

the subtraction term when e is small. When e is small,
only soft gluons, not quarks, will produce a possible in-
frared divergence. As discussed below, the matrix ele-
ment associated with soft-gluon emission is proportional
to 1/u . When combined with the udw phase-space fac-
tor, Eq. (3.3), the soft gluons yield a ln e divergence. On
the other hand, the matrix element for soft-quark emis-
sion is proportional to I/cu, resulting in no divergence for
quarks. We will use the soft-gluon approximation [19] to
examine the leading behavior as e goes to zero. The dom-
inant contribution of 2 —3 processes as e ~ 0 is given
by diagrams shown in Fig. 6. In these diagrams, the dots
are the places where a soft-gluon may be attached. No-
tice that we show only dots on the external lines because
the soft-gluon attachments on the internal lines will not
give the leading behavior as gluon's momentum goes to
zero. The leading contribution of diagrams in Fig. 6 can
be written as

FIG. 6. Diagrams for the subprocesses (a) gluon-quark to
photon-quark and (b) quark-antiquark to photon-gluon. The
large dots on the external lines are locations at which a soft
gluon emission may be attached.

&2—+3~9
dO

(2')s
(3.4)

where C, with i = 1, 2, and 3 are color factors associated
with the vertex where the soft gluon is attached, c* is the
polarization vector for the soft gluon, and 0" = k"/u. In
Eq. (3.4), o2 g is the hard-scattering cross section for
the normal 2 ~ 2 process with one photon in the final
state, given by the diagrams shown in Fig. 1, but with
color factor generally connected with the C s. Actually,
because the color factor for diagrams in Fig. 1(a) [or in
Fig. 1(b)] is the same, we can completely factorize o'2

including the color factor from o'2 s, such that

~2~3(pp i zl ) z2) ~) &) ~ I (pp ) zl ) z2| ~) ~) ~2~'2(pp) zl ) z2) i

(3.5)

where aq 2(p»zq, z2) is the standard leading contribu-
tion from a 2 ~ 2 process with one photon in the final
state. M/'hen the isolation cone b is small, the function I'

.is given by

I' (p~, z g, zz, 6, c)
dB ™xcu dku 1

-'- 1-- p„-., - +
(3.6)

In deriving Eq. (3.6), we assumed that 6 is small. We
used the fact that the angle 0& ~ is large, and we ap-
proximate o„k 0&,~, so that p; k cu, (1 —cos(0,~))pl
does not depend on dA. As a result, the quantity C in
Eq. (3.6) is approximately independent of parameters 6
and c, but it depends on kinematical variables x1, z2,
and p~. For example, for the diagrams in Fig. 6(a), the
expression for C is

N —1 —1

N N2 —1 jl C

N N —1

) ) ~
(gy) yAHCp p

Pl tH pACp
N(N~ —1) k+

Cl A 2
gH pACp ~3

kl 2a /jP2. k p3 I"
(3.7)

The subscript a stands for the diagrams in Fig. 6(a), and
the first factor, in the large parentheses, is the color factor
for the corresponding 2 ~ '2 tree process. In Eq. (3.7),
f is the structure constant of the color group, and

t; is the color matrix in the fundamental representation,
normalized so that Tr(tA t+) = bA+/2. One may deduce
from Eq. (3.7) that the C's for diagrams in Fig. 6 are
positive, and are of order l. We do not need the detailed
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expression of C here because we are interested only in its
sign and magnitude for the following discussion.

Equations (3.5) and (3.6) show that the subtraction
term due to soft gluons is infrared divergent if we keep 6
fixed and let e go to zero. However, because of the energy
resolution of the detector, e can be small but never equal
to zero. Consequently, the subtraction term in the defini-
tion of the isolated cross section is always perturbatively
finite. It could be very large for a tiny e. For isolated
cross sections measured in today's experiments, the fac-
tor I"(p~, zi, z2, b, e) in Eq. (3.5) for the subtraction term
is actually much smaller than unity because c is not very
small [for example, e = 0.15 for the Collider Detector

at Fermilab (CDF) experiment], and because the factor
(n, /x) sin (b/2) is very small. Therefore, soft gluons
will not destroy the convergence of the perturbative cal-
culation of the isolated cross sections. The fact that the
subtraction term for the short-distance hard part o.;j ~ is
small explains why the program distributed by Aurenche
et at. [5] can roughly fit collider data, even though the
program is in error in not taking into account the efI'ect
of the isolation cut on the short-distance hard part o.;j ~.

To conclude our theoretical discussion of the definition
of the isolated cross section, we present the general form
for the isolated prompt-photon cross section

do'
Ep {pT ) y) b, e) = ) dzifi/A(zi ) pf )"'p dz2f /@(z2, P/)

1 dz-
x )

c=p, q, y I/(1+ ~) Z

(3.8)

o,';;, (p», », », z, p, p/ p~(b) b e)

= o;,;, (p„», z2, z, p, p/, pr(b))

+[ o,", (p~, zi, z2, z, p)

o.,'," (p~, z„z2, z—, p, b, e)] . (3.9)

When e is small, the subtraction term above is propor-
tional to the standard leading-order term, as shown in
Eq. (3.5), and the second term in Eq. (3.9) is approxi-
mately given by

Equation (3.8) is a direct extension of Eq. (3.2). It is
obtained after the isolation cut is included on the non-
fragmenting final-state partons. When the photon is from
the hard part, the parton-photon fragmentation function
is proportional to b(1 —z). We ignore the nonleading
terms in o.EM. The partonic hard cross section ozj c is

7

provided by the i + j ~ c+ X subprocess after subtrac-
tion of those contributions, for which hadronic energy in
the isolation cone (caused by the nonfragmenting final-
state partons) is larger than e F~. The cross section o,",
is perturbatively finite. Because of the limits on the z
convolution, Eq. (3.8) shows that the isolated cross sec-
tion for prompt-photon production is much less sensitive
to the nonper turb ative fr agmentation functions.

Up to order n, (p), the short-distance hard part cr;&

in Eq. (3.8) is very simple. When c g p, o;~, is equal to
the partonic cross section for 2 ~ 2 tree-level processes
with no photon in the final state. When e = p, o;j ~
has two parts. One is the regular next-to-leading-order
(order-n2) term in the inclusive cross section. It depends
on the isolation cut only through the fragmentation scale
p~(b). The other is given by the standard leading-order
term minus a subtraction term. That is,

o;, (p~, zi, z2, z, p) —o.,'," (p~, zi, z2, z, p, b, e)

~ [I F(py) zi I z2) b) e)] o7, ' (p7 ) zi ) z2) z) p) )

(3.10)

where I (p~, zi, z2, b, e) is given in Eq. (3.6).
Experimentally, in order to have uniform efFiciency to

cut ofI' the hadronic background, it may be better to use
a fixed cut on the hadronic energy, Et, = const- 1 GeV.
The parameter e in such a case may be much smaller than
the value used in today's experimental analysis. If e is

tiny, there is a risk that multiple soft-gluon contributions
could destroy the perturbative expansion of the isolated
cross section. In this case, the @CD resummation tech-
nique for real soft gluons can improve the calculation
through exponentiation of the subtraction term [20]:

I —I'(p~, z i, z2, b, e) ~ e

((X, /7r) Sin (b/2)C(P~, X I,Xg)

(3.11)

Even if e is tiny, Eq. (3.11) shows that the soft-gluon
contribution is infrared insensitive after resummation be-
cause C ) 0.

To examine how small e can be before resummation
appears to be necessary, we take a specific case of a fixed
cut E) = 2 GeV aild Ep = 100 GeV. In this case E:0.02,
which is much smaller than the value ~ = 0.15 typical of
present experiments. Calculating I' from Eq. (3.6), we
obtain I' {n,/ii) Csin (b/2) ln 50. Using R = 0.7 (b
40') and n, (100) 0.13, we find I' 0.02C. Equation
(3.4) shows that C is a dimensionless quantity of order
unity. Thus, even for values of e as small as ~ 0.02,
I' « 1 and. exponentiation should not be required.

So far we have considered efI'ects associated with pro-
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duction of photons through the long-distance fragmenta-
tion process and the contribution of soft gluons. We did
not consider the case in which one or more final-state par-
tons, which are not in the photon's isolation cone at the
parton level, can fragment into hadrons some of which
enter the isolation cone. Such effects should be small if
the photon is produced near 90' in the center-of-mass
frame, but they might not be small if the photon's rapid-
ity (y) is too large. Thus, we anticipate that theoretical
systematic uncertainties may be larger at large rapidity.

Before closing this subsection, we remark that the iso-
lation cut is not implemented properly in the program of
ABF .[5]. These authors do not subtract contributions
from nonfragmenting final-state partons (quark or gluon)
having energy larger than e E~ which enter photon's iso-
lation cone. As a result in the program of ABFS, there
is no ln(e) divergence when e goes to zero.
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C. Dependence on isolation parameters

We have described above how the isolated cross section
for prompt-photon production depends on the isolation
parameters, the cone size 6 (or R) and the energy reso-
lution parameter e. The dependence on e should not be
dramatic for a reasonable range of values of e, because
the subtraction term is very small in comparison with
the leading term [I' in Eq. (3.10) is much less than 1].
We now show numerically the dependence of the isolated
cross section on the isolation parameters.

Two programs a,re available to calculate an isolated
cross section for prompt-photon production [5, 7]. As
mentioned above, the isolation cut is not imposed cor-
rectly in the ABFS program. Approximations are also
found in the program of Baer e7 aI. For example, the
fragmentation scale p~ used in the 2 ~ 3 part of Baer
et al. is not chosen to be p~(b), appropriate to the cone
size. Thus, the second term on the right-hand side of
Eq. (3.2) does not vanish. However, this term is omit-
ted altogether from the program of Baer et al. If p~ is
not far from p~(b), we will consider ignoring the term an
approximation. The isolation constraint is implemented
perhaps more properly in the program of Baer et at. How-
ever, because a Monte Carlo technique is used to do the
integrals, considerable time is required to obtain good
numerical precision. We use the program of Baer et aI.
to test the numerical dependence on the isolation param-
eters.

In Fig. 7, we present calculations of the isolated cross
section for prompt-photon production at ~s = 1.8 TeV
with diferent values of e. The isolation cone is Axed by
R = 0.7, which is the value used by the CDF Collabo-
ration. Since the cross section is nearly independent of
rapidity in the central region of rapidity, we fix y & 0.75.
As expected, the isolated cross section is insensitive to
the value of e. From Eq. (3.11), we see that smaller e

means that the subtraction term is larger. The cross sec-
tions shown in Fig. 7 decrease slowly as t. gets smaller,
as they should.

In Fig. 8, we present similar calculations with diAerent
values of isolation cone R, but wit, h a fixed value of e.

FIG. 7. The cross section for yp ~ pX as a function of
the energy resolution e at ~s = 1.8 TeV and at pr = 17.5
GeV (solid), 27.5 GeV (dotted), 37.5 GeV (dashed), and 47.5
GeV (dot-dashed), respectively.

The points with R = 0 are the one-photon inclusive cross
sections. When R is large enough, R & 0.4, the isolated
cross section is not very sensitive to the actual value of
R.

IV. NUMEMCAL STUDY

The cross section for production of photons at large
transverse momentum in hadron-hadron collisions may
be used to test the predictions of perturbative @CD and
to constrain the gluon distribution. In this section we
present theoretical predictions and discuss their uncer-
tainties.
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I'IG. 8. Dependence of the prompt-photon cross section
on the size of the isolation cone B. The notation is the same
as that in Fig;. 7.
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A. Constraints on the gluon distribution
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FIG. 9. The cross section Eda/d p for pp ~ pX as a
function of p~ at rapidity y = 0 at ~s = 1.8 TeV (upper
set of lines) and at ~s = 630 GeV (lower set). The solid
lines show the total rates in /omest order, whereas the dashed
and dot ted lines show the partial contributions from the
lowest-order qg ~ yq and qq ~ pg subprocesses, respec-
tively. The DFLM set-2 parton densities were used with
P = Py =P&.

It has been argued that hadronic prompt-photon pro-
duction is a good probe of the gluon distribution in a
hadron. The question of interest is how well hadronic
prompt-photon experiments can constrain the gluon dis-
tribution. In lowest order in perturbation theory, prompt
photons are produced by the QCD "Compton, "

qg ~ yq,
and annihilation, gq ~ yg, subprocesses. In nucleon-
nucleon interactions, the Compton subprocess is essen-
tially always dominant. In proton-antiproton interac-
tions at collider energies, the Compton process is also
dominant as long as zz = 2pT/+s is not too great. In
Fig. 9, we show our /ones' order -calculations of E do/dsp
for pp ~ pX at +s = 630 GeV and ~s = 1.8 TeV. Here
we use the DFLM set-2 parton distributions, and we set
p, = p~ ——pT. No fragmentation processes are included
at this order. Since the lowest-order hard-scattering cross
sections are used in this case, we also use the lowest-order
expression for a, instead of the two-loop expression of
Eq. (2.3). Calculations done to next-to-leading order and
with a spectrum of values of p's are discussed below. In
Fig. 9 we note that the Compton subprocess is dominant
at ~s = 630 GeV for p~ + 45 GeV. At +s = 1.8 GeV,
it dominates for pl & 100 GeV.

The dominance of the Compton subprocess in nucleon-
nucleon interactions at fixed-target energies and in pp
interactions, especially at Fermilab Tevatron energies,
suggests that prompt-photon production should be very
valuable for extracting the gluon distribution function.
At rapidity y = 0, the typical value of z of the gluon
density is z = 2p~/+s. Greater and lesser values are ex-
plored as the rapidity of the prompt p increases. These

values of z are not readily accessible in other processes
which provide information on the gluon density.

To establish whether definitive constraints on the gluon
density may be obtained from the data, it is necessary
first to examine theoretical uncertainties associated with
next-to-leading-order calculations and the variations of
the scales, the p's, as well as the dependence on the
nonperturbative fragmentation functions. Useful infor-
mation on the gluon distribution can be obtained only
if these uncertainties are smaller than differences associ-
ated with changes in the gluon distribution.

In the rest of this subsection, we will discuss the con-
straints on the shape of the gluon distribution from the
pT and y dependences of the cross sections, Edo/dsp.
%e use the DFLM parton distributions and the available
program by Aurenche ef al. [5], which includes the next-
to-leading-order calculation for the inc1usive E der/dsp.
The photon fragmentation functions [14] used by ABFS
are obtained by employing just the leading-logarithmic
solutions of the evolution equations. Such solutions are
part of the complete solutions of the equations and are
actually independent of the boundary condition needed
to solve the inhomogeneous evolution equations. Be-
cause the leading-logarithmic solutions are proportional
to o.EM, which is very small, the scale at which we can ne-
glect the nonleading terms that depend on the boundary
condition must be very large [14]. Consequently, these
fragmentation functions are at best an approximation or
a model of fragmentation functions. In principle, the
photon fragmentation functions should be obtained by
solving the evolution equations with input functions at
a scale of p& &) AgcD. The input, functions should he
obtained by fitting independent experimental data. We
should require the scale p& to be much larger than Agcn
because the validity of the leading-logarithmic evolution
equations is in question when the scale is about the same
as AqcD. We set aside these concerns for the moment
since our present aim is to investigate how much can be
learned from prompt-photon experiments rather than to
provide absolute theoretical predictions for cross sections.
We use the ABFS program to test the sensitivity of the
inclusive Ed+/d psto gluon distributions. We defer the
discussion of the isolated Edo jd p to the next subsec-
tion.

Result;s of our numerical calculations are shown in
Fig. 10 for E do/d p at y = 0, and in Fig. 11 for E do /d p
as a function of y. The energies of ~s = 630 GeV and
1.8 TeV correspond to measurements at CERN and I"er-
milab, respectively; the curve for +s = 400 GeV may
be of interest for studies at the Brookhaven Relativis-
tic Heavy-Ion Collider (RHIC). For the calculations in
Figs. 10(a), 10(c), 10(d), and ll, we used the DFLM set-
2 densities, set p = pj, and varied py over the range
&pT ~ py & 2pT. In the program of ABFS, pI; is set
equal to ~s, where ~s is the center-of-mass energy of
the incident parton-parton hard scattering [5]. We ob-
serve that changes of pj over the indicated range result
in about IOFo differences in predicted cross sections at
y = 0 and pT = 10 GeV and about 15% differences at
y = 0 and pz = 80 GeV. In Table I we present results
in numerical form for diAerent choices of parton distri-



CALCULATIONS OF PROMPT-PHOTON PRODUCTION IN QCD 2015

butions and different choices of scale. An examination
of this table shows that changes in Edor/dsJI resulting
from variations of py are comparable to and sometimes
greater than those associated with changes in the DFLM
gluon distribution (i.e., A4).

For purposes of comparison, in Fig. 10(b) we present a

calculation based on the program of Baer et a/. , Ref. [7].
In this program, the leading-order parton densities of
Duke and Owens are used, and p~ —pT. We will return
to a discussion of the comparison of theory and data in
Sec. V.

In Figs. 12 and 13 we present our calculations of
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FIG. 10. The cross section Edo/d p calculated through next-to-leading order at y = 0 as a function of pr at (a), (b)
+s = 1.8 TeV, (c) +s = 630 GeV, and (d) +s = 400 GeV. In (a), (b), and (c) we show results for pp ~ pX; in (d) we show

pp ~ pX. In (a), (c), and (d) the program of ABFS was used, and in (b) the program of Ref. [7] was used. The solid line shows
the prediction for the choice p, = pf = pz. The upper dashed curve in (a), (c), and (d) corresponds to the choice p = pr = zpr,
whereas the lower dashed curve corresponds to the choice p, = yr = 2pT. The data in (c) are from the UA2 Collaboration,
and those in (a) and (b) are from the CDF Collaboration [3]. In (a) and (b), the data points represented by octagonal symbols
were deduced from electromagnetic showers from the electromagnetic strip chambers (CES). Those represented by diamonds
were deduced from conversion electrons in drift tubes (CDT). The data in (a), (b), and (c) include a photon isolation cut but
the theoretical curves do not.
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FIG. 11. The cross section Edo/d p for pp ~ pX calcu-
lated through next-to-leading order as a function of y and for
selected values of pi at ~s = 1.8 TeV. The DFLM set-2 par-
ton densities were used. The solid lines show the prediction
for the choice p = py

——p~. The upper dashed curves corre-
spond to the choice p = py ——2@~, ~hereas the lower dashed
curves correspond to the choice p, = p f = 2@+.

g(» py) —+ g~avovr(Z pg) Z & Z0
0 0

1/2
g(Z& P'f ) + gABpc&M/(+& Pf ) &

Z + ZO.

(4.1)

The normalization constant X is fixed by the
momentum integral requirement I zg (z, p& )dz

I zg„sFow(z, p&0)dz. We select z0 ——0.1 so that only
the small-z behavior of g(z, p&) is affected. Our modi-

E do /d p done instead with the parton distributions
of Aurenche, Baier, Fontannaz, Owens, and Werlen [8]
(ABFOW). The results are in remarkably close agree-
ment with those shown in Figs. 10 and 11, again sug-
gestive that variations associated with changes in pj are
greater than those resulting from differences in the gluon
distribution.

In the DFLM sets, and in the ABFOW set of par-
ton distributions, the small-z dependence of gluon mo-
mentum distribution at its reference value of p& is
parametrized in nonsingular fashion as z ~ 0, e.g. ,

zg(z, p&) ~ const as z ~ 0. Thus, the relative similarity
of final results for E der/dsp may reflect the similarity of
the input gluon distributions. To investigate this ques-
tion, we considered an alternative farm for zg(z, p&) hav-

ing singular law-z behavior, zg(z, p&) ~ z ~ . Specifi-
cally, we use the same quark and antiquark distributions
as in the ABFOW set, but we introduce a new gluon
distribution:

fication leaves the s1&ape of the gluon density unaltered
at large z, but the magnitude of the density is changed
to satisfy momentum conservation. Larger values of zo
result in smaller magnitudes of the density at large z,
where it is constrained to some extent by fixed-target
data. The singular behavior of the distribution at small
z (z ( zo) allows us to examine sensitivity in the low-z
region where collider data contribute, The expression in
Eq. (4.1) must be evolved to the desired values of pf, and
we have done so using the evolution program of Morfin
and Tung [13].

In Figs. 14 and 15 we show the results we obtained for
E do. /d p based on the singular gluon distribution. Com-
paring Figs. 13 and 15 we observe clear difFerences in the
y dependences at low p~, but there is not much differ-
ence in the p~ dependences in Figs. 12 and 14. Naively,
one would expect that, the cross sections shown in Figs. 14
and 15 would be much larger than those shown in Figs. 12
and 13 because the gluon distribution is larger and the
Compton process dominates. The key here is momen-
tum conservation. In the case of the singular gluon dis-
tribution, gluons are moved from the large-z region to
the small-z region. For a given combination of kinetic
variables, there is a threshold such that only gluons of
momentum fraction larger than z;„contribute to the
cross section. If z~;„zo, the cross section obtained
from the singular gluon distribution will be smaller than
that obtained otherwise. If z;„ is smaller than zo, but
not too much smaller, cross sections will not be sensitive
to the choice of the singular distribution. However, if
z;„ is much smaller than zo, the cross section will be
very sensitive to the singular gluon distribution because
of the behavior of the parton-level cross section near the
threshold. In our calculation, small p~ corresponds to
small z;„. The typical value of z~ at +s = 1.8 TeV
is about 0.01—0.1 for p~ ranging from 10 to 100 GeV.
Therefore, one will not see much efI'ect of the singular
gluon density for p~ larger than 50 GeV or so. How-
ever, the small-p~ region is the region in which an efFect
may be observed. The y dependence at small p~ directly
reflects the shape of the parton densities.

One important way to enhance sensitivity to the z de-
pendence of g(z) is to study the doubly diA'erential dis-
tribution do./dy~dy„„dp~. Here y„« is the rapidity of the
dominant hadronic jet recoiling against the prompt pho-
ton.

B. EA'ect of isolation cut at different energies

As discussed in the two previous sections, the pho-
ton fragmentation function is the key for determining
whether prompt-photon data can yield useful information
on the gluon distribution. In principle, we cannot provide
definitive constraints on the gluon distribution without
knowing precisely the photon fragmentation functions.
To get practically useful constraints on the gluon dis-
tribution from prompt-photon data, it is important to
study how sensitively the cross section depends on the
nonperturbative photon fragmentation functions.
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The presence of the fragmentation functions in the
factorized form for the prompt-photon cross section is
necessary because these functions absorb all final-state
collinear singularities associated with the parton-level
Feynman diagrams. The fragmentation functions con-
tribute to the cross sections through the z convolution
with the limits from zIT, jn to 1. The smaller z»,.„ is, the
more sensitively the cross section depends on the frag-
mentation functions. The value of z;„ is fixed by kine-
matics, and it is strongly correlated with zT = 2p7/~s.
Larger zT means larger z;„. It is clear then that at
low energy, the cross section is less sensitive to the frag-
mentation functions, while at high energy it depends
more on the fragmentation functions. In Fig. 16, we
present the ratios of cross sections at difI'erent energies
~s, E dad"/dsp divided by Edo. t "/dsp, where crd" is
the cross section for photons directly produced from the
hard part [i.e. , c = p in Eq. (2.1)], while crt t is the

one-photon inclusive cross section. To obtain Fig. 16,
we used the program of ABFS, with no isolation cut,
and with the approximate leading-logarithmic fragmen-
tation functions. Figure 16 shows that, at low energy,
the inclusive cross section is not very sensitive to possi-
ble uncertainties in the fragmentation functions. But, at
collider energies, the inclusive cross section is very sen-
sitive to the contributions from fragmentation processes,
and, consequently, to the fragmentation functions. The
one-photon inctusiee cross section at collider energies is
not very useful for measuring gluon distribution unless
we know the photon fragmentation functions well.

As discussed in Sec. III, the photon isolation cut re-
duces the dependence on fragmentation functions. This
is because the limits of the z convolution for the isolated
cross section are not from z;„ to 1, but from 1/(1 + e)
to 1. The lower limit for the isolated cross section does
not depend on any kinematical variable. It is a fixed

TABLE I. Differential cross section Edo/d p for pp ~ pX at ~s = 1.8 TeV for various values of p~ and y. In column 8,
the "central value" is obtained for the choice p. = pr = pT and the DFLM set-2 parton densities (A4 = 260 MeV). Columns
4 and 5 show the variation of the result when the parameter p = p. y is changed from its central value. For columns 6 and 7,
pi —pr f ——pz but A4 is changed from its central value,

pr (GeV)

10.00
10.00
10.00
10.00

20.QQ

20.00
20.00
20.00

0.00
1.00
2.00
3.00

o.oo
1.00
2.00
3.00

E der/d'p

0.1159E+03
0.1190E+03
Q. 1203E+03
0.1005E+03

Q. 3804E+01
o.3875E+01
Q.3685E+01
0.2043 E+01

1
2PT

0.1309E+03
0.1357E+03
0.1370E+03
0.1135E+03

0.4434E+01
0.4553E+01
0.4376E+01
0.2444E+01

0.1046E+03
0.1068E+03
0.1081E+03
Q.9085E+02

0.3411E+01
o.3456E+o 1
0.3252E+0 1
0.1774E+01

160 MeV

0.9480E+02
0.9550E+02
0.9150E+02
o.715oE+o2

0.3396E+01
0.3377E+01
0.3073E+01
0.1663E+01

360 MeV

0.1334E+03
0.1397K+03
0.1496E+03
Q.1337E+03

o.4o28E+01
0.4208E+01
0.4191E+01
0.2391E+01

30.00
30.00
30.00
30.00

0.00
1.00
2.00
3.00

0.4677E+00
0.4705 E+00
0.4018E+00
0.1264E+00

0.5376E+00
o.5447E+oo
0.4745E+00
0.1539E+00

0.4140E+00
0.4147E+00
0.3499E+00
0.1081E+00

0.4341E+00
0.4269E+00
0.3533E+00
0.1122E+00

0.4787E+00
0.4931E+00
o.4355K+oo
0.1365E+00

40.00
40.00
40.00
40.00

0.00
1.00
2.00
3.00

0.1001E+00
0.9902E—01
0.7363E—ol
0.1161E—01

0.1148E+00
0.1144E+00
0.8703E—01
0.1425E—01

0.8865E—01
0.8734E—01
0.6393E—01
0.9800E—02

0.9499E—01
0.9227E—01
0.6738E—01
0.1104E—01

0.1008E+00
0.1016E+00
0.7708E—01
0.1176E—01

50.00
50.00
50.00
50.00

Q. QQ

1.00
2.00
3.00

0.2942E—ol
0.2847E—01
0.1799E—01
0.1197E—02

0.3363E—01
0.3279E—01
o.2121E—ol
0.1461E—02

0.2605E—01
0.2510E—01
o.1556E-o1

0.9875E—03

0.2830E—01
0.2705E—01
0.1702E—01
0.1214E—02

0.2935E—01
0.2878E—01
0.1831E—01
0.1141E—02

60.00
60.00
60.00
60.00

0.00
1.00
2.00
3.00

0.1059E—01
0.9986E—02
0.5243E—02
0.1104E—03

0.1204E—01
0.1145E—01
0.6151E—02
0.1325E—03

o.9379E—o2
o.8793E—o2
0.4520 E—02
0.8973K—04

0.1028E—01
0.9632E—02
0.5107E—02
0.1204E—03

0.1051E—01
0.9978E—02
0.5206E—02
0.9842E—04

70.00
70.00
70.00
70.00

0.00
1.00
2.00
3.0Q

0.4395E—02
o.4o18E—02
o.17l7 E-o2
0.6537E—05

0.4973E—02
0.4590E—02
0.2008E —02
0.7861E—05

0.3896E—02
0.3537E—02
0.1477E—02
0.5168E—05

0.4296E—02
0.3925E—02
0.1717E—02
0.7833E—05

0.4349E—02
0.3979E—02
0.1666E—02
0.5314E—o5
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FIG. 12. The cross section Eda/d p for pp ~ pX cal-
culated through next-to-leading order at y = 0 as a func-
tion of pr at ~s = 1.8 TeV. The ABFOW parton densities
were used. The solid line shows the prediction for the choice
p = pf ——pz. The upper dashed curve corresponds to the
choice p = p f =

z pT, whereas the lower dashed curve cor-
responds to the choice p = pf ——2pg . The dotted line was
obtained after application of the PMS scheme to determine JM,

and pf.

FIG. 14. The cross section E jfo/d p for pp ~ pX calcu-
lated through next-to-leading order at y = 0 as a function of
pz at Vs = 1.8 TeV. Parton densities with a singular gluon
density at small x [Eq. (4.1)] were used. The solid line shows
the prediction for the choice p = pf ——p~. The upper dashed
curve corresponds to the choice p = p f =

2 pz, whereas the
lower dashed curve corresponds to the choice p = p, f ——2p~.

I I I I

(

I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

10

~~ 10-2

pT=40 GeV

100

1o—1

pT
——20 GeV

~ 10
d

~ 10—4

pT=60 GeV

10—2
pT=40 GeV

10
10 4

10
1O

—6

10

T=80 Ge

10 2

1O-4

pT=60 GeV

I I [ I I I I I I I I I I

—3 —2 —1 0 1

FIG. 13. The cross section Edrr/If p for pp ~ pX calcu-
lated through next-to-leading order as a function of y and for
selected values of pr at ~s = 1.8 TeV. The ABFOW parton
densities were used. The solid lines show the prediction for
the choice p, = pf ——p~. The upper dashed curves corre-
spond to the choice p, = p f ——

z pT, whereas the lower dashed
curves correspond to the choice p, = pf = 2pT. The dotted
lines were obtained after application of the PMS optimization
scheme to determine p and pf.

FIG. 15. The cross section Edo/d p for pp ~ yX c»-
culated through next-to-leading order as a function of y and
for selected values of pT at ~s = 1.8 TeV. Parton densi-
ties with a singular gluon density at small g [Eq. (4.1)] were
used. The solid lines show the prediction for the choice
p = p f = pQ. The upper dashed curves correspond to the
choice p = p, f ——

2 p~, whereas the lower dashed curves corre-
spond to the choice p = p, f ——2p~.
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number near 1 because e is a fixed small number. Since
all fragmentation functions, except D&~&, should vanish
as a power of (1 —z), or approach a small fixed number
as z —+ 1, the contribution from the fragmentation pro-
cesses should be limited as e" with n & 1. In Fig. 17,
we present the ratios of cross sections

Edward"/dsp

di-
vided by Edo' "/d p at the collider energy ~s = 1.8
TeV for the inclusive and isolated cross sections. Since
the isolation cut is not imposed correctly in the program
of ABFS, we used the Monte Carlo program developed
by Baer et al. [7] to calculate this ratio for the isolated
cross sections. To obtain the ratios in Fig. 17, we divided
the results corresponding to flag Ib„~ —1 by those for
Ibrem = 3 in the program of Ref. 7. When Il I em = 1
the cross section does not include any long-distance frag-
mentation contribution, while Ib„——3 means that the
leading-logarithmic fragmentation functions are used. As
will be noticed, the calculated ratios in Fig. 17 do not fall
along smooth lines. The scatt, er may be a result of the
random numbers generated in the Monte Carlo program,
associated with the way the program is written for the
case Ib„—l. We remark, also, that the solid curve in
Fig. 16 and the squares in Fig. 17 represent the same re-
sults, in principle, provided the same fragmentation scale
is used. However, the fragmentation scale is fixed to be
~s in the program of ABFS, while it is fixed to be p7
in the program of Baer et aI,. The diA'erent choice of
the fragmentation scale does not affect the total inclusive
cross section much, but it does acct the relative size of
the direct and the fragmentation contributions. Because
~s could be much larger than pT, the fragmentation con-
tribution in the program of ABFS is larger than that in
the program of Baer e$ at. Consequently, the solid curve
in Fig. 16 falls below the squares in Fig. 17.

Figure 17 shows that the isolated cross section is in-
sensitive to the contributions from the fragmentation pro-
cesses. Correspondingly, the isolated photon data should
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FIG. 17. The ratios of cross sections E dn '"/d p divided
by E do' '/d p at ~s = 1.8 TeV for inclusive photon pro-
duction (squares), and isolated photon production (crosses),
respectively. For the isolated case, R = 0.7.

give good constraints on the gluon distributions at col-
lider energies. One may ask how sensitively the cross
section depends on the isolation parameters. If the de-

pendence is too great, we must reexamine the value of the
data for determining the gluon distribution. Fortunately,
as shown in Sec. III both theoretically and numerically,
the dependence of the isolated cross sections on the isola-
tion parameters is weak for a wide range of the isolation
parameters. Numerical results for the isolated cross sec-
tions at different energies can be found in Ref. [7]. One
should bear in mind, however, that the second term in
Eq.(3.2) was not included in the program developed by
Baer ef at. [7].

I ~ I I I I I ~ I 1 f ~ I I

1.0 C. Optimization procedure for p's
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FIG. 16. The ratios of cross sections Edo "/d p divided
by Edo' '/d p at ~s = 30 GeV (dotted), ~s = 400 GeV
(dashed), and at ~s = 1.8 TeV (solid), respectively. At ~s =
30 GeV and 400 GeV, the results shown are for the case py ~
pX; at ~s = 1.8 TeV they are for pp ~ 7X.

The authors of Ref. [5] advocate the PMS scheme,
discussed in Sec. II, for determining preferred values of
p and py. In Figs. 12 and 13, we also show predic-
tions at +s = 1.8 TeV obtained through application of
this procedure. We note that the predicted cross sec-
tions are significantly greater (about a factor of 3 at
p7 = 40 GeV, for example) than those calculated with
the choice p = py ——pT. We do not show predictions of
the PMS scheme for pT & 40 GeV because application
of the scheme would require values of p so small that
(n, /x) ) 0.25. Such values (n, ) 0.78) are unaccept-
ably la,rge.

The very large diA'erences in the predicted rates shown
in Figs. 12 and 13 indicate that the choice of scale plays
a major role. To illustrate the scale dependence in more
detail, we present plots of the cross section versus scale
choice in Figs. 18 and 19. In Fig. 18, with the scales
p and py set equal, we see that the cross sections at
pT —40 GeV and pT = 80 GeV decrease monotonically
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with p in both the lowest-order and the next-to-leading-
order calculations. The variation with p is substantial
at p~ —40 and 80 GeV, and it is even more marked
at lower values of pT. The next-to-leading-order cross
sections do not display appreciably less sensitivity to the
choice of scale. For p = py there is no solution to the
equation Bo/Op = 0 for values of p ) p&

——~10 GeV.
(The minimum value of p&o in the DFLM densities is p&0—

~10 GeV.)
The picture changes somewhat if we relax the condition

p = pj, as shown in Fig. 19. In Fig. 19, the scale py is
fixed at pj ——p~, and the cross section is plotted versus
p. In this case we observe that a solution does exist at
pT = 80 GeV for the equation Do/c)p = 0, although not
at pT = 40 GeV, nor for pT ( 40 GeV. The solution
at p2 = 80 GeV corresponds to a very small value of

p, p & 2 GeV. We find it difFicult to accept the PMS
procedure as meaningful since it leads to a scale choice
of p + 2 GeV when the only physical scale in the problem
is as large as pz = 80 GeV.

Since p is less readily interpreted than values of n, (p),
we present in Fig. 20 the calculated cross sections versus
values of n, (p). Figures 19 and 20 are two ways to illus-
trate the same results. For prompt-photon production,
the lowest-order results (dot-dashed lines in Fig. 20) nec-
essarily grow linearly with n, . The next-to-leading-order
results are more complicated functions, cf. Eq. (2.2). At,

pT = 40 GeV, with py = pT, we see that Bo/Bn, (p) = 0
has no solution unless o,, & '1.0, a value which is un-
comfortably large. At pT ——80 GeV, a solution exists
with o., 0.25. We observe that an "optimum" solu-
tion appears to exist only for relatively large values of
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FIG. 1g. The cross section Ed' jd p for pp ~ pX at +s =
]..8 TeV, y = 0, and (a) pT = 40 GeV, (b) pT = 80 GeV
as a function of the scale p, . Calculations are done through
next-to-leading order (solid line) and lowest order (dot-dashed
line). The DFLM set-2 parton densities were used, with the
scales p and p, y chosen equal.

FIG. 19. The cross section E do /d p for pp ~ pX at ~s =
1.8 TeV, y = 0, and (a) pT = 40 GeV, (b) pz = 80 GeV
as a function of the scale p, . Calculations are done through
next-to-leading order (solid line) and lowest order (dot dash-ed

line). The DFLM set-2 parton densities were used, with the
scale p, y fixed at pg

——pz.
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z~ ——2pz/+s. A similar situation is true for hadropro-
duction of heavy flavors where stability requires that
mq/+s not be too small [21].

If we allow both p and pj to vary, as advocated by
ABFS, the solutions shown by the dotted lines in Figs. 12
and 13 correspond to values of p and py presented in Ta-
ble II. Based on these calculations, as well as others done
at fixed target energies, we find that the PMS scheme
provides values of py which are of order p~, as would be
expected, but values of p which stay small, p 1 GeV.
As shown in Table II, an unusual feature is that the val-
ues of pg do not always grow with pz. . The values of p
also show strong z~ and y dependence.

TABLE II. Values of the scales p. and py and of n, (p)
obtained from the optimization procedure; ~s = 1.8 TeV,
y = 0.

pr (GeV)

80

pg (GeV)

78
41
24

p, (GeV)

0.45
0.90
2.14

0.72
0.39
0.26

The values of o., in Table II, particularly that at
pz —80 GeV, may be compared with determinations
of n, from other processes [22]. Indeed, values are more
typically in the range n, (p) = 0.15+0.04 for p ) 3 GeV.
The ABFS/PMS scheme seems to produce values of n,
twice as large as anticipated. That being the case, one
may be especially uneasy about the size of the uncalcu-
lated O(n, ) terms in this scheme.

The results reported in this subsection concern the
scale dependence of the inclusive cross section. The over-
all scale dependence is considerably reduced for the iso-
lated photon cross section. As noted earlier, about half of
the inclusive cross section is associated with the O(n, )
fragmentation contributions. Isolation removes a large
part of the fragmentation contribution and thus reduces
the importance of O(n, ) pieces which are sensitive to the
choice of scale.

It is not, diKcult t, o understand analytically why p is
forced to be small in the PMS scheme. As in ABFS, we
write the cross section, Eq. (2.1), in a form in which the
p and pg dependences are manifestly separated:

I I I I I I I I I I I I I

Edo.
3 = a(p)~Born [1 + a(p)r a(p)p(pf, A)] (4.2)

Our Eq. (4.2) is the same as Eq. (2) in Ref. [5]. In
Eq. (4.2), a(p) = n, (p)/~, r = bin(p/A), b = Pu/2, and
o.g„.„ is the convolution of the Born-level hard-scattering
cross section with the incident parton densities, o.y,.„——
on«» fq fq. The function p is expressed as

c

b

vs =1.8 TeV

p, ,=p~=80 GeV-

PT
p = — 2ln & oBorn + HI 3 fr f2/&norn ~

Py

(4 3)

I I I I I I I I I I I I I I I I

Q. i 0.2 0.3 0.4

FIG. 20. The cross section E der/d p for pp ~ pX at v s =
I 8TeV, y =. 0, and (a) pr = 40 GeV, (b) pr = 80 GeV as
a function of n, (p). Calculations are done through next-to-
leading order (solid line) and lowest order (dot-dashed line).
The DFI M set-2 parton densities ~vere used, ~vith the scale

p y fixed at p, f = p z .
+ cln — + O(a(p)),

1 ba(p)
a p 2

(4.4)

The finite partonic contribution in next-to-leading-order
is represented by III plus the a(p)r term in Eq. (4.2).
In Eq. (4.3) y represents a parton splitting function, and
the term proportional to p is the next-to-leading-orde1.
collinear singularity contribution.

We note next that we may expand r = bin(p/A) ob-
t al ning
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where c = Pt/(4Po). Taking the derivative cia/cia(p) and
setting it to zero, we derive

bin ' '
~

—p'(pI) = ——.
PI 2

(4 8)

Eden C—aopt &Born 1 aopt + 0(ao&t), (4 6)d p 2

where c 1.5. It follows that the ratio of the full cross
section in next-to-leading-order to the lowest-order cross
section, known as the Ix factor, is slightly less than unity
at a(p) = a &t. By comparing Eq. (4.2) and Eq. (4.6) at
p pop/ &

we have

Pops (4.7)

Because of the explicit presence of A in the term pro-
portional to a(p)7 in Eq. (4.2), HI in Eq. (4.3) must
contain a term equal to boB,„—ln(pI/A). Defining

p = bin( pI/A) + p', Eq. (4.7) becomes

0
O
Q3

M

f(a(p)) = 2+ a(p) c 1+21n —2p = 0.ba(p)
2

(4 5)

It is easy to verify that Eq. (4.5) has two solutions, one
for a(p) ( 1 and another for a(p) ) 1. By examin-
ing the next derivative, f'(a(p)), one may show that the
cross section behaves as a function of a(p) as sketched in
Fig. 21. The solution with a(p) ) 1 is unphysical since it
corresponds to an unacceptable value of cr, (p) ) x. We
now turn to an examination of the solution with a(p) ( 1.

The solution to Eq. (4.5) with a(p) ( 1 is defined to be
the "optimized" a &t (:—n, (po&t)/x). By substituting
the a ~t into Eq. (4.2), we obtain the optimized cross
section

and we estimate the value of p'(pI) at any given pI
through the observed Ii factor. By choosing p = pj
in Eq. (4.9), we see that the I~ factor at p = pI is given
by 1 —a(pI )p'(pI ), and then

p'(pi) = —= (Ii —1) bhi ( ) .
(PI )

(4.10)

Substituting —p'(pI) from Eq. (4.1O) into Eq. (4.8), we
obtain

K—2
—c/25 (4.11)

It is known that at p = pI pz, the I& factor is much
larger than 1 and closer to 2 for most values of kinematic
variables. Therefore, the right-hand side of Eq. (4.11) is
very small and is of order of A. As a result, p p& is forced
to be of order of A; a p& is always large and not very
sensitive to the specific values of the kinematic variables.

We conclude from Eq. (4.8) that p'(pI) has to be ex-
tremely small in order to have p p& of order py which
is of order of p~. This case can happen only when
zT = 2pz/~s is very large. For the interesting kine-
matic region where zT is small, the optimization scheme
may result in a very large value of o, When o., is so
large, we would feel uncomfortable without checking the
size of the next-order corrections at the same a, .

Equation (4.8) shows that to understand why p &t is
forced to be small is equivalent to knowing the value of
P'(PI)

The exact value of p'(pI ) certainly depends on pI and
all kinematic variables (e.g. , pT, y), and it is directly
related to the observed I~ factor, but it does not depend
explicitly on the value of p. In terms of p'(pI ), we rewrite
Eq. (4.2) as

Edo. P= a(p)op „„1+a(p) bin —p'(py) ),d p PJ

(4.9)

V. SUMMARY AND PROSPECTS

FIG. 21. Sketch of the behavior of the cross section as a
function of a(p). The dashed line represents the Born-level
cross section, and the solid line the cross section including
next- to-leading-order contribu tions.

Several issues were examined in this paper, all con-
cerned with the applicability and reliability of perturba-
tive @CD calculations of prompt-photon production at
collider energies. Q"e began by distinguishing ca,lcula-
tions of the inclusive prompt-photon cross section from
those of the isolated prompt-photon cross section. It is
the isolated cross section that is most readily determined
experimentally at collider energies. In principle, the in-
clusive cross section is better defined theoretically. How-
ever, as discussed in our earlier paper [3] and developed
in more detail here, the constraint of photon isolation can
be incorporated consistently in the short-distance pertur-
bative calculation, and theoretically reliable expressions
can be derived for isolated photon cross sections.
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Important sources of practical uncertainty are present
for both the inclusive and the isolated cases since cross
sections depend to a greater or lesser extent on the follow-

ing unknowns: the nonperturbative long-distance pho-
ton fragmentation functions, the gluon parton densities,
and the renormalization, factorization, and fragmenta-
tion scales (p, tsI, and p~). The data provide correlated
information on the three unknowns. If the oft-stated goal
is the determination of the gluon density, then it is neces-
sary first to somehow constrain the other two unknowns.

An important advantage of photon isolation is that
isolation significantly reduces the contribution from pho-
ton fragmentation processes. (These are a generaliza-
tion of what have been often termed "bremsstrahlung"
contributions. ) Moreover, what remains of the fragmen-
tation contribution is the contribution of D(z) at large
z, z ) 1/1+ e, where theoretical constraints are most re-
liable. Thus, there is reason to think that isolated photon
data at collider energies, with their significantly reduced
sensitivity to fragmentation eA'ects, will eventually satisfy
their promise of determining the gluon density. Further
detailed investigation of fragmentation models must be
undertaken before a firm conclusion can be delivered.

The remaining uncertainty, that of scale dependence,
is more problematic. As we showed by explicit calcu-
lation, the variation of the next-to-leading-order cross
section when p = pg is varied over the limited range
of 0.5 pT & p ( 2pT is as great as the variation asso-
ciated with changes in the gluon density. In Sec. IVC
we examined schemes proposed for fixing the choice of
scale. Optimized scales can lead to significant increases
in cross section but at the expense of reductions in p or
pI to values we would consider unacceptably small. Such
small values point theoretically to the need to examine
and possibly resume a series in n, In(pl jls).

The issue of the increased sensitivity of cross sections
to p for relatively small values of p7/+s is not unique
to prompt-photon production. A similar situation oc-
curs for heavy flavor production when the ratio of the
quark mass m& to +s becomes small; e.g. , bottom quark
production at collider energies [23]. As the ratio pT/+s
in prompt-photon production decreases, or as mz/+s for
heavy flavor production decreases, higher-order processes
controlled by t-channel gluon exchange grow in impor-
tance relative to the lowest-order fermion-exchange dia-
grams (Fig. 1). The diff'erent asymptotic behaviors result
in increased sensitivity to p at small pT j+s. Collider
data at ~s = 1.8 TeV and pT ( 50 GeV appear to fall
in this domain.

As will be noted, there are systematic discrepancies
between the theoretical curves and the data in Fig. 10.
The data appear to fall more steeply as a function of pT,
and theory tends to fall below the data in magnitude in
the small p7 region. Since the data include an isolation
cut whereas the theory curves in Fig. 10 do not, the dis-
crepancies would be greater if an isolation cut were made
on the theory. We believe the discrepancies are indica-
tive of two eA'ects. First, and the more important, in
the small pT region at collider energies, z7 = 2pT/+s is
small. This is the "seniihard" iegion where lnxT can be
large and higher-order contributions can be very impor-
tant. In recent work on heavy flavor production, Collins
and Ellis [24] have addressed an analogous case for small
z = mz/+s. They show that large logarithms associ-
ated with t-channel gluon exchange can be resummed,
and they obtain substantial increases in the cross section
at small z. We believe a similar situation will be true at
small zT for prompt-photon production since t-channel
gluon diagrams are present in higher order in this case
also.

A better understanding of the fragmentation contribu-
tion should also lead to improved agreement with data.
Photons from the hard-scattering diagrams tend to have
a relatively shallow pz distribution whereas those from
fragment;ation fall more steeply in pT owing to the be-
havior of D(z) and the 1/z factor in Eq. (2.1). There is
no absolute separation between these two contributions
since diferent choices of pF correspond to different par-
titions. A decrease of p~ would increase the relative size
of the short-distance contribution at small p~.

The importance of fragmentation contributions argues
for substantial theoretical work to improve our present
level of understanding and to constrain models of frag-
mentation functions. Explicit expressions must be de-
rived to account for the resummation of t-channel gluon-
exchange eKects at small z~. In future work, efficient
numerical programs must also be devised to include iso-
lation restrictions in a fully accurate and consistent fash-
ion.
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