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A gauge-invariant basis in terms of electric field strength is given. Explicitly, for SU(2) Yang-Mills
theory in 3+1 dimensions, it is shown that the gauge-invariant basis states are given by ‘“‘dreibeins.”
The Hamiltonian quantum dynamics on this basis is shown to be manifestly local and rotational invari-

ant.

Understanding nonperturbative aspects of non-Abelian
gauge theories is a long pursued subject. Confinement
due to topological degrees of freedom such as monopoles,
dynamical Higgs mechanism, chiral-symmetry breaking,
etc. [1], are widely believed to be nonperturbative proper-
ties of non-Abelian gauge theories. In the standard La-
grangian or the Hamiltonian formulation we define the
theory along with so-called unphysical degrees of free-
dom, i.e., gauge degrees of freedom. This renders further
analysis tedious and sometimes raises questions of validi-
ty. In the Hamiltonian formulation, Gribov [2] tried to
remove the redundant degrees of freedom in the Coulomb
gauge and found that it is not possible to do so for all
coupling constants. Others have tried it in the Lagrang-
ian formalism and encountered similar difficulties. In ra-
dial gauges [3] it is found that a complete gauge fixing
can be achieved and thus true physical degrees of free-
dom can be elucidated; however, the dynamics is nonlo-
cal and needs regularizations which are not aesthetically
pleasing. The situation is quite different in Weinberg-
Salam theory where we have an explicit Higgs field and a
complete gauge fixing is possible and useful, namely the ’t
Hooft unitary gauge. Indeed the low-energy physics be-
comes transparent in this gauge. ’t Hooft [4] attempted
to achieve similar ends for pure non-Abelian gauge
theories.

Mandelstam [S] suggested that the natural gauge-
invariant objects of interest are Wilson loops and in prin-
ciple we can rewrite the dynamics in terms of these ob-
jects, which therefore will yield a nonlocal theory. Re-
cently [6] on the lattice, non-Abelian gauge theory has
been reformulated as a local theory of local gauge-
invariant objects. Here we will show that in the continu-
um also the Hamiltonian quantum dynamics on explicit
gauge-invariant states is manifestly local and rotational
invariant. To begin with, we first work with SU(2)
Yang-Mills theory in 3+ 1 dimensions given by the Ham-
iltonian
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H= [d T[E,.<x)12+ 4g2[Fij(x)]2 , (1)
where
F(x)=0; Af(x)—3; A!(x)+e A} Af, (2)

g is the coupling constant, and the canonical conjugates
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Ef and A} are the electric field strength and the gauge
vector potential satisfying equal-time local commutation
algebra. The physical states of the theory satisfy the
first-class, Gauss-law constraint

Ex)+eAX(x)EFf(x)=0. 3)

The left-hand side is the infinitesimal gauge transforma-
tion generator.

For the unconstrained system a complete basis is that
of electric field strengths E{(x ). Consider the metric

gij(x)EE,f'(x )E;’(x) . 4)

It is a gauge-invariant, positive, symmetric metric with
six degrees of freedom per space point, which are exactly
the physical degrees of freedom we expect. g;;(x) cannot
form a complete physical basis since there is another
gauge-invariant object

detE = —317eabCE;’(x VE®(x )E{ (x e (5)

with (detE)?>=detg. The sign of detE cannot be
recovered from g;;. Indeed from (4), E/ is almost the
square root of g;;. By choosing a gauge choice that E; is
symmetric matrix with space and color indices or
equivalently the gauge choice

6°=1e, EP=0 ©)

we can define the “unique” square root of g;; which forms

a complete basis for physical states. To begin with, the

electric field strength has nine degrees of freedom and (6)

removes three gauge degrees of freedom per space point.
Making the following general decomposition

Ef(x)=ef(x)+e€,,6%x) ,

7
AFX)=7x )+ €A ),

where ef(x) and 7{(x) are symmetric matrices. In the
gauge (6), g;;=e/e/. In this gauge the color index is
identified with the space index. If we make a global or lo-
cal (if gravity is also coupled to the gauge fields) spatial
rotation then we simultaneously have to make a rotation
in the color space to be in the same gauge as (6) and thus
we note that e(x ) transforms as a proper covariant rota-
tion symmetric tensor. A complete gauge-invariant basis
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is given by ‘““dreibeins” ef(x ).

In the gauge (6) we can rewrite the quantum dynamics
using Dirac brackets corresponding to the constraints (3)
and (6). Equivalently we can solve for A%(x) using (3)
and (7) and then impose (6). We find

1

ab
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1(tre)—e (D Fef) , ®

AXx)=

where
(ﬁi )bcEaisbc_'_gbdcﬂ.d

i

Thus we find the gauge-invariant quantum dynamics is
defined by

H=[d %ie,-z(x)-}-é[ﬂ‘}(x)]z , ©)
where Fj(x) given by (2) with
be
AXX)=7Ux)+ €igp ?Ei?] (D-e) (10)
and the local equal-time commutation algebra
[ef(x),m5(») 1er=1(5,;86+858)8%(x —y) . (11

The above quantum dynamics is manifestly rotational in-
variant and local. By eliminating the Gauss-law con-
straint we have now obtained a nonpolynomial Hamil-
tonian. In this formulation ef(x) are equivalent to
gauge-invariant variables; however, 77(x) are not neces-
sarily so, just as in the canonical formulation Ef(x) is co-
variant but 4/(x) is not covariant under gauge transfor-
mation.

Addition of matter fields to the dynamics can be en-
visaged easily; (10) will be modified to
be

AXX)=7%x)+ € [(Die;))—pl°, (12)

tre —e

where p€ is the matter charge density.

Exactly the same procedure can be followed for SU(2)
in 2+ 1 dimensions and the results are identical to the
case as before except that all indices take values i,a =1,2.

Our analysis for SU(2) is simple since the local gauge
algebra of SU(2) and the space O(3) are isomorphic. For
SU(3) this simplicity is lost. The metric g;;(x) given by
(4) for SU(3) group does not exhaust all the gauge-
invariant degrees of freedom. To proceed further, we
have to classify all independent ways of embedding local-
ly O(3) algebra in SU(3). This discussion is postponed to
a later publication.

It is evident from the above analysis that we can refor-
mulate the dynamics on another choice of basis corre-
sponding to gauges such as €;,;, 47(x)=0 or 9; 4/(x)=0.
In either case we will have nonlocal interactions in the
Hamiltonian and perhaps its associated Gribov ambigui-
ties. These ambiguities are evidently consequences of
wrong choice of gauges as opposed to inherent difficulties
of the theory.

A similar analysis can also be done even for U(1) local
gauge theories. Owing to the fact that Gauss’s law
9;E; —p=0 does not involve the vector potential, we are
naturally led to use the Coulomb gauge with its nonlocal
charge density interactions. It is surprising that in this
respect the non-Abelian Gauss’s law yields a local quan-
tum dynamics.

Finally we remark that much further work is necessary
to understand the dynamical consequences of this theory.
In this reformulation even the weak coupling expansion
is nontrivial. It shall be discussed in a later communica-
tion. A similar analysis as here can be envisaged for
quantum gravity formulated as complexified SU(2) gauge
theory [7].
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