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Calculation of the pion decay constant in the framework of the Bethe-Salpeter equation
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We elaborate on the calculation of the pion decay constant f in the context of QCD and in the limit
of purely spontaneous chiral-symmetry breaking. We use the expressions given by relativistic bound-
state theory which require the simultaneous solution of the Schwinger-Dyson equation and of the
Bethe-Salpeter equation developed to first order in the pion momentum. The equations are solved by nu-

merical iteration in the Landau gauge and in the ladder approximation, but without any further approxi-
mations. We use a model for the gluon propagator with ultraviolet behavior determined by
renormalization-group considerations and discuss its influence on the determination of f . We analyze
approximations that have been used in the literature for the calculation of f and discuss their limita-
tions.

1. INTRODUCTION

The calculation of the vr meson decay constant f in-
volves a variety of fundamental theoretical issues such as
spontaneous and explicit chiral-symmetry breaking, the
infrared and ultraviolet behavior of the effective quark-
gluon coupling, and of the solutions of the Schwinger-
Dyson (SD) and Bethe-Salpeter (BS) equations. This ap-
plies not only to quantum chromodynamics (QCD) but
also to higher symmetry theories such as technicolor.

The relativistically covariant calculations of f and
analogous decay constants found in the literature are
based on, or related to, the Jackiw-Johnson sum rule [1]
for dynamical symmetry breaking, which expressed f in
terms of properties of the fermion propagator and of the
axial-vector current. In the case in which chiral symme-
try is spontaneously broken, Pagels and Stokar (PS) ob-
tained [2] from the sum rule a widely used [3,4] approxi-
mate formula for f which requires just the knowledge of
the quark propagator S '(q)=/A(q ) B(q ). The —PS
approximation scheme sets A (q ) = 1 and therefore their
formula depends exclusively on the function B (q ),
which can be obtained from the SD equation for the
quark propagator.

The assumption A =1 turns out to be correct only
when the gluon-fermion-fermion vertex appearing in the
Landau-gauge SD equation is taken to be the bare vertex,
that is, in the ladder approximation, and only when the
gluon propagator is the free one. If instead the free gluon
propagator is realistically replaced by the effective one,
that is, if the QCD coupling a, is allowed to run as a
function of momentum according to renormalization-
group analysis, then the assumption A =1 is incorrect.
One further approximation leading to the PS expression
for f is the use of the amputated, or vertex, BS pion
wave function evaluated just to zeroth order in the pion
momentum.

The purpose of the present work is to improve on pre-
vious calculations by treating the Landau-gauge SD equa-

tion without making the assumption 2 = 1 and by solv-
ing the BS equation to the order needed for an accurate
calculation of f . At the same time we probe the run-
ning coupling a, (q ) by testing the eff'ect of its low-
momentum behavior on the numerical evaluation off

In Sec. II we give an exact expression for f which can
be derived directly from the relativistic bound-state for-
malism developed by Nishijima and Mandelstam [5].
This is an alternative to the sum-rule derivation [1] and it
expresses f„in terms of the BS pion wave function evalu-
ated to first order in the pion momentum. The Nambu-
Goldstone-boson wave-function existence is directly re-
lated to the existence of a broken-chiral-symmetry solu-
tion [6] to the SD equation which we discuss in Sec. III.
We do not attempt here to go beyond the ladder approxi-
mation for two reasons. First, we want to be able to com-
pare our results with those of the PS approximation.
Second, there is not, to our knowledge, a quantitatively
reliable treatment of the nonperturbative quark-quark-
gluon vertex applicable simultaneously to the SD and BS
equations [7]. In Sec. IV we give the necessary details re-
lated to the Bethe-Salpeter equation for a massless pseu-
dosc alar.

Our numerical results are presented in Sec. V, where
we also elaborate on our modeling of the low- and
intermediate-momentum behavior of the gluon propaga-
tor. The calculations involve the solution of coupled in-
tegral SD equations and subsequently of coupled BS
equations. In both cases the kernel involves the run-
ning coupling a, ((q —k ) ), which in most previous treat-
ments of the SD equation has been expressed in the ap-
proximation where a, ((q —k ) ) is replaced by
8(k —

q )a, (k )+0(q —k )a, (q ). This approximation
has been criticized as quantitatively unreliable [8]. We
have instead used the procedure of solving the integral
SD equation by numerical iteration after integrating over
polar angles [9], a procedure which we extend here to the
solution of the BS equation. We performed the calcula-
tions for a variety of choices of parameters and for
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several approximations, including the PS approximation
to the BS equation. Our calculations indicate that the
major contribution to f comes from values of a, (q ) at
energies below a few GeV and that the PS approximation
behaves poorly for any of the models discussed here. We
summarize our results in Sec. VI.

II. THE PION DECAY CONSTANT

d'q
y„y f i''(p q)

2 " (27r)
(2.2)

In the absence of isospin breaking, the decay constant
J„for a m. meson of momentum p„ is given by

ij.p„n"= (0~ a„(0)~~'(i ) ), (2.1)

where A „'(x)=q (x )y„y s —,
' r'q(x ) is the axial-vector

current. A summation over color quark indices is under-
stood.

The matrix element in Eq. (2.1) can be more explicitly
expressed in terms of a qq bound-state wave function
ri;, (p, x —y) =&;,(I IQN, )(1I&2)r ri(p, x —y), where i j
are color indices, X, is the number of colors, and
i)(p, x —y) is the properly normalized solution of the
Bethe-Salpeter equation for a pseudoscalar singlet of
momentum p. It follows that [5]

QN,if.J„= — Trly„y n(J o)]P

III. SCHWINGER-DYSON EQUATION IN QCD

In order to find the solutions to the Bethe-Salpeter
equation one needs to have a compatible expression for
the quark propagator, as explained in the Introduction.
Therefore, we discuss first the Schwinger-Dyson equation
for the quark propagator in the ladder approximation.
Since we do not consider in this article the consequences
of Aavor breaking we do not need any internal symmetry
indices on the propagator, which we write as

S '(q)=/A(q )
—B(q ) . (3.1)

In the Landau gauge the gluon propagator can be ex-
pressed as

k„kG„(k)=— g — " G(k~) .
k

(3.2)

d4k
XG((k —q) )

(27r )
(3.3)

We can also write two separate but coupled integral equa-
tions for the functions A and B defined by Eq. (3.1).
After a rotation to Euclidean variables, introducing a
mass scale parameter A and dimensionless variables

With no explicit quark mass term in the QCD Lagrang-
ian the SD equation is

(k —q)„(k —q)S '(q)=g i f—y„S(k)y, g„—
(k —q)

4(J»q) =ysWo+yd4i+ys4S. q A+ys[C' P']6, (2.3)

where g(p, q) is the Fourier transform of g(p, x —y).
The pion bound-state function can be expressed in

terms of scalar functions g, as
(q —k)

A

A
(3.4)

B(q )=x +y —2&xy cos0, B(x)=

where charge-conjugation invariance requires that the
f, 's be even functions of p q. In terms of these functions
we can write

1/2
N, d4q

iJ „f.= 4f [J„Wi(p, q)+ q„J q A(i q)1
2 (2' )

(2.4)

the equations read

(3.5a)

(3.5b)

B(x)=—f K, (x,y)y dy,
2 B(y)

y& '(y)+B'(y)

A (x)=1+ f K, (x,y)y dy .
2 A(y)

3vrx o y/2(y)+B2(y)

If the pseudoscalar meson is massless and if we assume
that g, and fz can be expanded in a power series in p q
under the integral then we have the exact, and deceptive-
ly simple, expression

. x, '"
f = i—4 0 + 0 q

(2m. )

f [4$,(O, q) —
q g~(O, q)]q dq16~'

(2.6)

We see from Eq. (2.5) that to calculate f we need the
pion wave function only to first order in p. In the follow-
ing sections we undertake its calculation. For complete-
ness we give the equation for f obtained after rotation
to Euclidean variables (qo ~iq4) and angular integration:

X.
'"

2

The kernels Ki(x,y) and K2(x,y) involve integrations
over a four-dimensional polar angle 0 and their expres-
sions are given in the Appendix. Equation (3.5a) admits a
solution B(x)=0 which corresponds to a situation in
which there is no spontaneous breaking of global chiral
symmetry. The physically interesting case is, instead,
when B (x)%0. In this case Goldstone's theorem predicts
the existence of massless bosons. We will discuss the de-
tails of the solutions to Eqs. (3.5) in Sec. V.

IV. BOUND-STATE BETHE-SALPETER EQUATIONS

It has been known for a long time [6] that the BS equa-
tion predicts a massless pseudoscalar particle when
solved in conjunction with the SD equation, both in the
ladder approximation. In this approximation we have,
for the BS function P(p, q) of Sec. II,
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S '(q+-,'p)4(p q)S '(q —
—,'p}

d4k—i Jy„f(p, k)y„G„(k —q)
(2m)

Since the kernel y„ y G„(k —q) does not depend on
the eigenvalue p, the normalization of the wave function
is given by

Tr p, q S ' q+ —,'p p, qS '
q

——'p
(2m )" BPp

Pp q}=S '(q+ ,'p-w(p q)S '(q ,—'p—},

which satisfies the equation

g(p, q)= i—ry S(k+ —,'p)g(p, k)

d4k
XS(k ——'p )yr G„(k—

q )
(2m )

This equation has a zero-momentum solution

(4.4)

(4.5)

+S '(q+ —,'p )g(p, q} '(q —
—,'p )

g(0, q)=y5NB(q ) . (4.6)

Xd'q =2p„, (4.2)

y~NB(q )

[ ' A '( ') —B'( ') ]
&(O, q)=y~60(O, q) = (4.3)

where N is a normalization factor. Obviously, this solu-
tion is not adequate for the evaluation of f as given by
Eq. (2.6), since one needs there the terms of g(p, q) which
are linear in p.

Alternatively, one can consider the vertex BS function

where g(p, q ) =ygb —(p, q)y0
We can verify easily that if the SD equation (3.5a) has a

nonzero solution B(q ) then the BS equation (4.1) has,
for vanishing four-momentum p, a solution of the form

P(p, q)=ysg0(O, q)+y bg(q)+O((p q) ), (4.7)

where $0(O, q) is given by Eq. (4.3) and

~4(p, q)=P4 (O, q)+—4 q4 (O, q)+IV,P]4 (o, q) (4.8}

Using Eqs. (4.6) and (4.4) one can then obtain approxi-
mate expressions for g, (O, q) and $2(O, q) and use Eq.
(2.6) to calculate f . The further approximation of set-
ting A (q )=1 in the SD equation yields, as discussed in
the next section, the extensively used PS expression for

It is clear that the approach outlined above misses
some terms linear in p in the description of g(p, q), and
consequently the expression for f will be Qawed. There-
fore we undertake here the development of accurate,
order-p expressions for g, (p, q) and gz(p, q).

To first order in p we have from Eq. (2.3)

Keeping just terms of order p in the BS equation (4.1) we obtain the inhomogeneous integral equation which determines

1it0(0, q)
bg(p, q)=IPBA +2' q(BA' —AB')+ —,'[P, g]A ] 2 2 2

q A —B

d4k
+[y~S(q)y~] i Jy„hg(k)y G„„(k—q) S(q) .

(2vr )
(4.9}

In this expression A = A (q ) and B =B(q ) and the prime means the derivative with respect to q .
Once the propagator functions A and B are calculated by solving the SD equations (3.5a) and (3.5b), the component

$0(O, q) of the pion wave function is determined by Eq. (4.3). Subsequently, Eq. (4.9) can be projected into three coupled
linear integral equations for the functions g;(O, q). More conveniently, going to Euclidean variables and introducing di-
mensionless quantities defined by

x —= 2, B (x)—: , ga(x) =N A/0(O, q) =-q B(q ) ) B(x)
[xA (x)+B (x)]

p, (x):N'A p, (O, q), —g (x)—:N 'A gz(O, q), y3(x) =N 'A 113(O,q),
and with the notation D =xA +B,we have for the y, (x) the set of equations

(4.10)

y0AB
X$

B xA
( )

4ABx—
( ) (4.11a)

A 'B —AB'
+2 +0 D

—2A
(4.11b)
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2D
ABI

(
)+(xA' 8—')I

( )X
D2

(4.11c)

In these equations I, (x), I2(x), and I3(x) are integrals involving combinations of the functions y„gz, and y3, and their
expressions are given in the Appendix. Keeping just the inhomogeneous terms on the right-hand side of the equations
corresponds to the approximation discussed above involving the function g(O, q) of Eq. (4.6). We shall see in the next
section that the terms containing the integrals produce large changes in the values of y„y2, y3 and consequently off .

To complete the calculation of the BS wave function we need the normalization factor N of Eq. (4.3). With the use of
Eqs. (4.2), (4.7), (4.8), and (4.10) it is determined by the Euclidean integral relationship

A J x dx [go[A +x'(A') +x(8') —2xAA' —288' —x2AA" —xBB"]
16~ o

—2yoy)( AB' BA '—)x +4yoy, AB +2x goy2( AB' BA '—
)
—xyoy2AB —6xyoy3A (4.12)

A relationship between the BS wave-function normali-
zation factor N and f can be obtained [1] from the
axial-vector Ward identity

p„I „'(q+p, q)= ,'r'[S —'(q+p)y +y 5 '(q)] . (4.13)

N=+2N, f (4.14)

The limit p ~0 is nonzero if 8 (q)WO, that is, if there is
spontaneous chiral-symmetry breaking. In such a case
the presence of the massless Nambu-Goldstone boson in-
duces a pole at p =0 in the axial-vector vertex, and from
Eqs. (2.1), (4.3), and (4.13) it follows that

gauge [14] and by theoretical and lattice calculations in
the axial gauge [15]. These objections do not necessarily
apply to the form G (k ) =5 (k), a regularized alternative
to the behavior 1/k, which may still be indicative of
confinement [16].

In view of the above we will consider for our numerical
calculations two models for G(k ) which display its
asymptotic ultraviolet behavior and which exemplify two
different types of infrared behavior:

16
G, (k') =(2~)'—'fi'(k)+3" 3k in(xo+k /AgcD)

(5.2a)

V. NUMERICAL RESULTS

A. Gluon propagator model

Gz(k )=(2') — e '+
3 p 3k ln(xo+k /AqcD)

(5.2b)

The calculation off as given by Eq. (2.6) and its com-
parison with the PS or other approximations requires the
specification of the gluon propagator function G(q ).
The ultraviolet asymptotic behavior of G(k ) is known
from renormalization group analysis to be

k 3k ln( k /AgcD )
(5.1)

where d = 12/(33 2n), n is the—number of quark fiavors,
which we set to six for our calculations, A&cD is the QCD
scale parameter, and we have just kept the one-loop
asymptotic expression for a, (k ). The asymptotic form
(5.1) appears to be compatible with experiment for A&cD
about =200 MeV and for q larger than a few GeV [10],
an assumption which we will make here. Very little is
known, theoretically or experimentally, about the low-
momentum behavior of G(k ). An infrared behavior
G(k ) =1/k, presumably leading to confinement, has
been assumed [11]or obtained from approximate calcula-
tions in covariant [12] and axial gauges [13]. Such behav-
ior, however, makes the SD and BS equations highly
singular. On the other hand, the 1/k infrared behavior
has been contested by lattice calculations in the Landau

B. The quark propagator

For any given choice of G(k ) the coupled integral
Eqs. (3.5a) and (3.5b) for the propagator functions A and
8 were solved numerically by simultaneous iterations
which converged typically after about 100 iterations. In
order to obtain solutions A (x) and 8 (x) for sufficient1y
large values of x, the integration variable y in Eqs. (5.2a)
and (5.2b) was expressed as y =e', with z taking values in
the interval —10 to 10 with a step hz =0.025. The itera-
tions were started with trial functions A (y) = Ao, a con-
stant, and 8(y)=m[(y+xo)ln(xo+y)] '. We verified
that the iterative solution of the equations was unique in-
dependently of the choices of the values Ao and 8 (0) in
the zeroth-order trial functions. The large-x behavior of
this unique solution was found to be A (x)~1 and
8 (x)~ S 1/x, in agreement with the asymptotic behav-
ior of the regular solution found in the operator-
product-expansion analysis and corresponding to the oc-
currence of spontaneous symmetry breaking. We found
that for the cases discussed below the low-x behavior of
A (x) and 8 (x) is dominated by the infrared term in the
gluon propagator, Eqs. (5.2a) and (5.2b). In Figs. 1 and 2
we display A (x) and 8 (x) for several cases.
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FIG. 1. Plot of 8 (x ) for three difterent cases: (i)
G(k ) =G&(k ), Eq. (5.2a) (solid curve); (ii) neglecting the
second term in G&(k ) (long dashed curve); (iii) G(k )=G2(k ),
Eq. (5.2b) (short dashed curve).

FIG. 3. The dimensionless Bethe-Salpeter wave function
g&(x), defined in Eq. (4.10), for the exact solution (solid curve)
and for the first approximation discussed in Sec. VC (dashed
curve). The second approximation was found to be the same as
the exact result within the accuracy of the figure. The curves
correspond to the model G(k )=G&(k ), Eq. (5.2a).

C. Solutions to the Bethe-Salpeter equations
and calculation of f

The complete set of BS equations (4.11) was solved nu-
merically by iteration starting with the inhornogeneous
terms as input. As in the case of the SD equation the ac-
curacy required at any point was

&ppp
The process con-

verged more rapidly, typically after about 30 iterations.
Figures 3 —5 show graphs for g, (x), gz(x), and y3(x).
Once the g s were found, f was calculated by using
Eqs. (2.6) and (4.10). The normalization factor N was
computed according to Eq. (4.12), and we used agreement
with Eq. (4.14) as a further test of our numerical results.

We chose for our calculations values A&cD=230 MeV
and xo=2, and subsequently determined the rest of the
parameters in G(q ) by requiring that f =93 MeV. We
obtained 7) =920 MeV when using G, of Eq. (5.2a). For
Gz of Eq. (5.2b) we chose a value ko =380 MeV and ob-
tained p=600 MeV. The values of these parameters
varied just a few percent when xo varied between 1.4 and
100 and when A&co varied between 150 and 400 MeV.
In all cases the expression (4.14), derived from the axial
Ward identity, was satisfied within 2 to 3%.

In order to test the role of the ultraviolet part of the
gluon propagator in the evaluation of f, we performed
the calculation by keeping only the second term in the ex-

A
-10 X2

2.0—
1.5—

I 5 —-

1.0
In X

I

10 20

FIG. 2. Plot of A (x ) for three diA'erent cases: (i)
G(k ) =G l (k ), Eq. (5.2a) (solid curve); (ii) neglecting the
second term in G, ( k ) (long dashed curve); (iii) G ( k ) = 62 ( k ),
Eq. (5.2b) (short-dashed curve).

FIG. 4. The dimensionless Bethe-Salpeter wave
function —10'g2(x), where g&(x) is defined in Eq. (4.10), for the
exact solution (solid curve), for the first approximation (long
dashed curve), and for the second approximation (short dashed
curve). G(k )=Gl(k ).
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-10 X3

0.2—

dropped all integrals in Eqs. (4.11). The values off cal-
culated this way were 30% too small. A second approxi-
mation was to drop the logarithmic ultraviolet part from
the integrals in Eqs. (4.11). In this case the value of f
was only 5 to 10' smaller than the value calculated with
the full solution and the relationship (4.14) was satisfied
within 5 to 10%%uo. This result is consistent with our com-
ment above on the weak infIuence of the ultraviolet in the
calculation off .

0.1—

I
)

~

10
I

I
I

I
I

I

20 30 40
I

50

FICx. 5. The dimensionless Bethe-Salpeter wave function
—10 y3(x), where g3(x) is defined in Eq. (4.10), for the exact
solution (solid curve), for the first approximation (long dashed
curve), and for the second approximation (short dashed curve).
G(k )=G, (k ).

pressions (5.2a) and (5.2b) for G(k ), and we obtained
f = 11 MeV, indicating that the main contribution to f
comes from G (k ) at energies below a few GeV if the
present phenomenological analysis is correct [10].

To obtain the PS approximation we set A =1 in the
SD equation (3.5a) and kept just the first term on the
right-hand side of the BS equations (4.11). The value of
f calculated this way was about three times larger than
the value obtained with the full solution for any of the
models for G (k ).

We also studied the effect of two other approximations
to the BS equations. In the first approximation we

VI. CONCLUSIONS

We have given here the basic expressions for the calcu-
lation of the decay constant f in the limit of purely
spontaneously broken-chiral symmetry, together with an
accurate procedure for its numerical evaluation. The for-
malism is only limited by the ladder approximation and it
requires the knowledge of the gluon propagator function
G(k ), whose ultraviolet asymptotic behavior we take to
be given by renormalization group considerations. Our
calculations put on a stronger quantitative basis some
previous estimations [2,9, 17] that the value of f is dom-
inated by the low-energy behavior of G (k ), presumably
[10]below a few GeV.

We have also discussed the effects on the calculation of
f of some approximations to the solutions of the SD
and/or BS equations. In particular, we have found that
the widely used PS approximation seriously overestimat-
ed the value off in all the models we considered.
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APPENDIX

The kernels appearing in the SD equations (5.2a) and (5.2b) are given by the expressions

&i(x,y)=
2 f G(x,y, cosO)sin OdO,

16~'

2(&xy cosO —y)(x —v'xy cosO)
&2 x,y =

z xy cosO+ G x,y, cosO sin OdO,
16m o (x +y —2&xy cosO)

where

G(x,y, cosO)=A G(k —q) ),
q, k Euclidean. The integrals appearing in the BS equations (5.5a) —(5.5c) are of the forms

(A lb)

(A lc)

Ii(x) = — f yi(y% i(x,y)y dy+ f [ —2yi(y)&3(x, y)+(3y+x )y&(y)&3(x,y) —4&xy y2(y)&&(x, y)]y'dy,3' 0 9m o

(A2a)

I2(x)= — f [[8yK3(x,y) —6Ei(x,y)]pi(y)+[9Ki(x, y) —(12y+10x)IC3(x,y)+16&xyIC&(x, y)]yy~(y)]y dy,9+x o

(A2b)
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QO

I3(x) f X3(y)K5(x y)y dy
3& 0

(A2c)

The kernels K, (x,y) and K2(x,y) are the same ones appearing in Eqs. (Ala) and (Alb). The remaining kernels are given
by the expressions

(x +y)cos8+2y ——y sin 82 2

3

K( )
' ' sin8d8,16' o x+y —2&xy cos8

3 f ~ G(x,y, cos8)
16~ 0 x+y —2&xy cos8

1/2

K5(x,y)= f16~'
6 (x,y, cos8)

sin OdO .
x +y —2V xy cos8

(A3a)

(A3b)

(A3c)
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