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The spontaneous generation of a parity-even mass for fermions in three dimensions is analyzed by us-

ing effective Lagrangians and the renormalization group. To leading order in e, an expansion about 4—e
dimensions predicts the spontaneous generation of mass for two or more flavors of four-component fer-
mions.

I. INTRODUCTION

The spontaneous generation of fermion mass is of fun-
damental significance for @CD and theories of tech-
nicolor. One of the oldest concepts in the generation of
fermion mass is that of a "critical coupling. " In their
model of chiral-symmetry breaking via four-fermion cou-
plings, Nambu and Jona-Lasino [1] showed that chiral-
symmetry breaking only occurs when the four-fermion
coupling exceeds a certain threshold. A critical coupling
is also seen in theories of fermions coupled to gauge
fields, when the Schwinger-Dyson equations are solved
approximately by the summation of rainbow-type dia-
grams [2].

In QCD the concept of a critical coupling for chiral-
symmetry breaking is a bit murky, for by dimensional
transmuation the coupling constant turns into a mass
scale anyway. I suggest that while a critical coupling is
seen in the models of Refs. [1] and [2], it is not universal,
and may not be characteristic of theories of fermions cou-
pled to gauge fields. Indeed, if one hopes to produce the
bare quark and lepton masses by means of some hidden
gauge symmetry, then it cannot be so: for the same
mechanism to produce scales that range in magnitude
from the up to the top-quark masses, it must apply over a
wide range of coupling.

The problem can be studied in three [3] as well as in
four dimensions. Consider a gauge theory in three di-
mensions coupled to massless fermions. The only dimen-
sionful parameter is the fine-structure constant a, so any
mass which is generated dynamically must be proportion-
al to n. In these theories the effective, dimensionless cou-
pling constant is 1/X: at small X the theory is in strong
coupling, but at large N the theory is in a regime of weak
coupling.

Because there is no y& matrix in 2+1 dimensions,
there is no true chiral symmetry, and the global sym-
metries are entirely those of flavor. For % flavors of
massless, complex, four-component fermions, the global
fiavor symmetry is U(2N) [4]. One difference from four
dimensions is the role of parity. In three dimensions both

gauge fields and fermions have mass terms which are odd
under parity [3];for fermions the parity-odd mass is sym-
metric under U(2N). Fermions can also have a parity-
even mass, but it reduces the U(2N) symmetry to
U(N) XU(N). Thus in three dimensions I can consider a
theory which is always parity symmetric, with no parity-
odd masses for either the fermion or the gauge field. The
fermion is then given a bare, parity-even mass. As this
bare mass is turned to zero, the dynamics then deter-
mines whether or not mass is generated spontaneously,
with the concomitant breaking of the U(2N)-fiavor sym-
metry.

In Ref. [5] I argued that a (parity-even) mass is spon-
taneously generated at large N in Abelian gauge theories,
with the dynamical mass exponentially small in 1/X.
Further studies appeared to confirm this [6—8]. The pat-
tern of fiavor-symmetry breaking, from U(2N) to
U(N) XU(N), accords with general arguments by Vafa
and Witten [9] and by Polychronakos [10]. These general
arguments, however, only state that if flavor-symmetry
breaking occurs, then it must be in this manner, which is
the maximal breaking of U(2N) possible; they do not
guarantee that the U(2N) symmetry must break.

That the dynamics does not always favor the spontane-
ous generation of mass was argued by Appelquist, Nash,
and Wijewardhana [11,12). They approximated the full
Schwinger-Dyson equations by summing a class of
rainbow-type diagrams. Under this approximation they
find that flavor-symmetry breaking only occurs when
X ~ 3. In essence, Appelquist, Nash, and Wijewardhana
find that in terms of the coupling 1/N, there is a critical
coupling for spontaneous mass generation.

The Schwinger-Dyson equations have also been studied
by Pennington et al. [13]. In particular, Pennington and
Walsh attempt to solve the Schwinger-Dyson equations
by going beyond the summation of rainbow diagrams, in-
corporating nontrival wave-function and vertex renor-
malization. This alters the form of the Schwinger-Dyson
equations into a form in which mass is spontaneously
generated for all N ) 1.

The flavor symmetries of three-dimensional fermions
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can be transcribed onto the lattice [14]. Results from
strong-coupling expansions [15], Monte Carlo simula-
tions [16—18], and variational calculations [19] all seem
to indicate that for a single Aavor, N = 1, the Aavor sym-
metry is spontaneously broken. Monte Carlo simulations
with larger values of X have been carried out by Dagotto,
Kocic, and Kogut [17]: in agreement with Appelquist,
Nash, and Wijewardhana, they only find Aavor-symmetry
breaking for X ~ 3.

In this paper I study the spontaneous generation of fer-
mion mass in three dimensions through the renormaliza-
tion group. This method is complementary to studies of
the Schwinger-Dyson equations [5—8, 11—13] and on the
lattice [14—19]. In Sec. II, I construct an efFective La-
grangian for the U(2N)-flavor symmetry. While my in-
terest is principally in a parity-even mass, the analysis en-
compasses a parity-odd mass term as well. For a theory
which is parity even, I show that the dynamics near a
second-order phase transition is controlled by an e6'ective
theory constructed from an adjoint field in SU(2N).

In Sec. III, I use the techniques of the renormalization
group. Typically, one expects that as the bare mass is
tuned to zero there is a point of second-order phase tran-
sition. This assumes, though, that there exists an in-
frared stable fixed point in the appropriate universality
class. If there is no such infrared stable fixed point, then
even as the bare mass is tuned to zero, fluctuations gen-
erate a nonzero mass [20]. The renormalization-group
flows for an adjoint SU(2N) field are analyzed by an ex-
pansion about 4 —e dimensions [21]. To leading order in
e, calculation of the P functions shows that there is no in-
frared stable fixed point for N) v'5/2. Assuming that
this result holds down to e= 1 implies that a mass gap is
dynamically generated for two or more flavors. In other
words, mass is generated even at large X, where the
effective coupling constant 1/N is small.

The renormalization-group analysis makes no predic-
tion as to how large this mass is. In Sec. IV, I discuss [5]
why in QED at large N it must be very small, exponential
in 1/N.

II. EFFECTIVE LAGRANGIAN
FOR FLAVOR SYMMETRIES

The simplest way of constructing three-dimensional
fermions is by the obvious reduction from four dimen-
sions. The fermion Lagrangian is

In two-component form the y„'s and the 4, 's can be
chosen as

(2)

where the o "'s are the Pauli matrices, p = 1,2, 3. Then (1)
becomes

N =D cr" R.ecognizing that the overall sign of the fer-P
mion Lagrangian is irrelevant, Ripping the overall sign of
the Lagrangian for the f&+, fields gives

+f 0(+12N ™Q2N4 Q2N = +iN
—1N

(4)

In (4) g is promoted to a 2N component vector in flavor
space; the mass I enters through the flavor matrix Q2+.
In this form it is evident that for massless fermions,
m =0, the global flavor symmetry is U(2N); with a mass
m, the symmetry reduces to U(N) XU(N). It is also pos-
sible to add another mass to (4), m, ddt 12&A; as this mass
term is proportional to the unit matrix in flavor space, it
does not spoil the U(2N) symmetry.

Under parity inversion [3] the kinetic term for a fer-
mion is invariant, but the mass for a single flavor changes
sign, P, g, + @,P, . T—hu—s the U(2N)-symmetric mass
term m, ddt 12+/ is odd under parity. The U(N) XU(N)-
symmetric mass term mgQ2&f can be defined to be pari-
ty even. Since it is a discrete symmetry, combine parity
inversion with the interchange of g,~Pz+, . This
changes Q2& ~—

Qz&, and compensates for the change
of sign from parity inversion. In other words, for an even
number of flavors a parity-even mass is constructed by
pairing up fermions with equal masses of opposite sign.

To construct an effective Lagrangian for Aavor symme-
try I form the scalar field N from fermion bilinears:

(5)

i,j= 1, . . . , 2X. By its definition the 4 field is Hermitian,
4 can be decomposed into a traceless part and

its trace:

&f„= y [q, (&+iii)yg q~+g(& rii)/~+a ], (3)
a=1

g (%,y"D„'0, +m%' 4, ) .
a=1

12N
tr(C ), y=tr(C ) .2X (6)

I take N flavors of four-component spinors 4, each with
mass m. The fermions are coupled to the gauge field A„
through the covariant derivative D =8 +ie A . I as-P P P'
sume that the fermions lie in a complex representation of
the local gauge group, such as for a U(1) gauge group.
(The case of real representations is discussed at the end of
Sec. III.) Implicitly I assume Euclidean space-time. In
three dimensions only two component spinors are re-
quired by the Euclidean group, so (1) can be simplified.

Consider a global U(2N) rotation of the fermion field,

/~ i(jUe
'

(7)

where U is an element of SU(2N), and e' the phase for
the U(1) of fermion number. Under this transformation,

P~U PU, (8)

The overall U(1) of fermion number does not affect either
field: only SU(2N) matters. Under SU(2N), P transforms
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as an adjoint field, while y is a scalar. Both the P and y
fields are odd under parity inversion.

It is worth contrasting the transformation properties of
these fields with their counterpart in four dimensions.
Because of the y5 matrix in four dimensions, the Euclide-
an group distinguishes between left- and right-handed
fermions. Classically, the global symmetry group for N
fiavors of ferinions is UI (N)XU~(N). The field which
replaces 4 is +~=fr g)t', because left- and right-handed
fields are distinct, the +4 field is not Hermitian. Under a
Ul (N) X Uz (N) rotation, the N4 fields transform as

4&&~e ULN~Uii. The U(1) phase is the rotation
i(, 8~ —0~ )

for axial fermion number, which is broken quantum
mechanically by the axial anomaly; as in three dimen-
sions, the rotation for total fermion number drops out
from the transformation of 44.

For any number of dimensions the effective Lagrangian
is constructed by writing down all terms consonant with
the global symmetries. In four dimensions there is only
one invariant field N4, there is no separate y field, since
tr(@4) is not an invariant. The number of invariant terms
in the efFective Lagrangian is very limited by the
UL (N) XUz (N) symmetry. There is one mass term,
tr(@~44), no cubic couplings, and only two quartic cou-
plings, [tr(C&4~44)] and tr (@44&4) .

In three dimensions, up to quartic order the most gen-
eral effective Lagrangian invariant under SU(2N) is

jeff —,'tr(B„Q) + —,'(B~) + —,'m tr(P )+ —,'mug

+H, tr(p )+H,y tr(P')+H g'+G [«(0')]
+G~tr($4)+ 63' tr(P )+64' tr(P )+G~y . (9)

The effective Lagrangian has many more terms in three
dimensions than in four. First of all, because tr(@)=y is
invariant under SU(2N), there are two independent fields,

P and y. Second, because the P is a Hermitian field, more
couplings of P with itself are allowed, as well as its cou-
plings with y. These include cubic couplings, and new
quartic couplings.

For small N there are even more couplings than those
of (9). A determinantal coupling

scribes an underlying theory which is parity symmetric,
such as (1). I assume that parity is not spontaneously
broken, so the vacuum is parity symmetric; this assump-
tion agrees with dynamical studies [7] and general argu-
ments [9,10]. Since the y field is parity odd, (y) =0.
The P field can acquire a vacuum expectation value, but
only if (P) -Q2& (up to global rotations). Because each
and every term in the fundamental Lagrangian is sym-
metric under parity, we can require the same for the
effective Lagrangian. As P and y are odd under parity,
this implies that all cubic terms in the effective Lagrang-
ian vanish: H, =H2 =H3 =0. For N =3 and N =4, the
determinantal terms also vanish, E =0. There is no re-
striction on the quartic terms.

We are still left with a theory with two fields and five
quartic couplings [six for N=3, including the coupling
between g and det(P)]. Since y cannot acquire a vacuum
expectation value, the g mass term must be positive,
m z & 0. For the P field the critical point is determined by
the limit in which m

&
~0. Near such a critical point g is

simply a massive field which decouples over long dis-
tances. Thus about the critical point we can drop the g
field and consider simply the interactions of a inassless P
field with itself; the two quartic couplings are those pro-
portional to G, and G2 in (9).

III. THE e EXPANSION FOR
AN AD JOINT SU(2N) FIELD

I am led to analyze the critical behavior of the theory
with the bare Lagrangian

8 2 E'

ff 2tr(B„Q) + [gi [tr($2)]z+g2tr($4)]

I compute in 4—e dimensions at small e. Anticipating
the results at one-loop order, I redefine the overall nor-
malization of the coupling constants, exchanging 6, and
62 for g i and g2, p is a renormalization-group mass. For
simplicity, I change from the variable N to

Xd„=Kdet(p) (10) n=2N . (12)

is also invariant under SU(2N) [but not U(2N) ]. For
N =2 this is not an independent term, as it reduces to the
vectorlike coupling of (15) below. For N &3 it is an in-
dependent invariant of order N, and so must be included
for N=3 and N=4; additionally, when N=3 the cou-
pling y det(P) is allowed.

It is elementary to predict the phase transitions of (9).
There are two fundamental fields, and so there are transi-
tions in either the P or the y field. At a generic point of
phase transition, both (P) and (g) change. Without
further ado, since the effective Lagrangian contains terms
of cubic order the phase transition is of first order. The
only exception is the multicritical point at the border of
first-order transitions, where all cubic couplings vanish.
This case is treated in the next section.

Let Ine now assume that the effective Lagrangian de-

In (11) P is traceless, Hermitian matrix:

try=0, (13)

0;) =~20'(t')i) .

The indices i,j, . . . run from 1, . . . , n, while the indices
a, b, . . . run from 1, . . . , n —1; the t"s are matrices in
the fundamental representation of SU(n), normalized so
that tr( ' t') t=5"l2 Then.

Consequently, I can trade the n-by-n matrix p for its in-

dependent components P':
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The four-point function is given by

(@ 1 2@ 3 4@ 5 6@ 2 8)

=V(a, ,a2;a3, a4', as, a6;a7, a8 )

5= g g, V, (a„a2;a3,a4, a3, a6', a7, as),
s=1

(19)

%,1r= —,
' Itr(B 4I&) —(1/n)[tr(B„@)] ]

8~+ [g, [tr(@')] +g2tr(@ )+g3tr(4I&)tr(4')

+g4[tr(@)] tr(@ )+gz[tr(4I&)] ] . (16)

The couplings g3, g4, and g5 are not independent, but are
related to g, and g2 as

4 2 6

n

3
3gg

n

(17)

As a Hermitian field the P propagator is represented
graphically by two directed lines, with the arrows run-
ning in opposite directions. At tree level the propagator
for a field with momentum p is

((p 1 2( )@ 3 4( ))— 5 1 45 2 3 5 1 25 3 4

n p

The d'""s are the structure constants for the group
SU(n).

From (15) there are two simplifying limits which pro-
vide a check on the P function. First, for arbitrary n

when g2 =0 the theory reduces to an O(n —1) theory in
the vector representation, with coupling g1. There is a
further simplification when n =2. For the group SU(2)
the d'""s vanish, so that even for g2&0, (15) reduces to a
vector O(3) model with coupling gi+g2/2.

The clever way of coinputing the P function for SU(n)
would be to use the representation of (15). This requires
knowing how the product of four d' "s reduces to a sum
over products of two d' "s. As this reduction is un-
known to me, I take a more prosaic course and use the
representation of (11). While inelegant, it is easily au-
tomated.

Since P is traceless I take P=@—I„tr(C&)/n, and
rewrite (15) as

where

Vi(a i, a2, a3, a4', a5, a6,'a7, a8)

=
—,'(5 ' '5 ' '5 ' '5 ' '+5 permutations),

V3(a „a2',a3, a4', a 3,a6', a7, a 8 )

=
—,'(5 ' '5 ' '5 ' '5 ' '+7 permutations),

V4(a, , a2;a3, a4, a5, a6;a7, a8)

(20)

a)a4 a2a3 a5a6 a7a8=
—,'(5 ' '5 ' '5 ' '5 ' '+5 permutations),

V3(ai, a2, a3, a4, a5, a6,'a7, a8)=5 ' '5 ' 5 ' 5 ' '

For V, —V4, each term is a sum over permutations of the
different ways in which the isospin indices can be tied to-
gether. The different permutations are given explicitly by
Berg and Weisz [22]. While they studied a rather
different problem (computing the exact S matrix for elas-
tic two-body scattering in 1+ 1 dimensions), the isospin
decomposition of the four-point function is the same. In
terms of the notation of Berg and Weisz, the three terms
which contribute to V1 are B, G1, and G2', the six terms
for V2 are F1 through F4, H, and H2; the eight terms for
V3 are E, through E8; the six terms for V4, are C„C2,
and D1 through D4, and the one term for V5 is A.

To compute the P function at one-loop order I follow
the classic analysis of Brezin, Le Guillou, and Zinn-Justin
[21]. The momentum integrals are the same as for a vec-
tor theory, with the only complication arising for the iso-
spin indices. At one-loop order just the coupling-
constant renormalization affects the P function. The
wave-function renormalization was also computed, and
used to determine the anomalous dimension of the P field.
I do not present this result, since it does not affect any of
the conclusions.

At one-loop order the coupling-constant renormaliza-
tion is given by typing two four-point vertices together.
The combination which enters is

=
—,'(5 ' '5 ' '5 ' '5 ' '+2 permutations),

V2( i a2 3 4 5 6 a7 8)

b b =1
1 4

V(a „a2',a3, a4', b „b2;b3,b4)V(as, ab, a7, a8;b2, b, ;b4, b3 )+2 permutations

5= +5g, V, (a„a2;a3,a4, a„a6;a7 a8) .
s=1

(21)
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The propagator of (18) contains two terms; the second
1 2 3 4fi ' '5 ' '/n, does not contribute to (21) because each of

the vertices V is traceless in any pair of indices, and so
the trace term in the propagator can be dropped. The
three permutations on the left-hand side of (21) corre-
spond to the usual channels for tying two four-point
functions together. On the right-hand side, the 6g, are
five functions, each quadratic in g, and gz. There are
only two independent functions, 6gI and 6gz,' 6g3 6g4,
and 6g5 are related to these two functions through ex-
pressions identical in form to (17).

To evaluate (21) I used a program for index contrac-
tion written by Nason [23] for the symbolic manipulation
package MACSYMA. Although there are many equivalent
channels, V, through V~, because there are only two in-

dependent terms 6g &
and 6gz the redundancy can be used

as a check. The result is

n'+7, (2n' —3) + n'+3
6gi

3 g i+2
3

glg2+ P g2
n n

(n —9)
6g& =4g&g&+2 g~ .

are nonzero:

3( n —2 1n —108) +- 3( n —9)V 2—n + 18n + 81

35n +3$5n +567

3n(n —20n +9)+18n+—2n +18n +81
gp+ =

n' —35n'+ 315n '+ 567

(28)

It is also necessary to evaluate the slope of the p func-
tions about the fixed points. This is given by the stability
matrix co [21):

ap,
IJ

gg
(29)

The eigenvalues of co, which is a two-by-two matrix, are
evaluated at a given fixed point. If the real part of both
eigenvalues of ~ are negative, the fixed point is ultraviolet
stable; if the real parts are positive, it is infrared stable.

When e) 0 the fixed point at the origin 'g is ultra-
violet stable. To illustrate what happens in the infrared
limit, consider the stability matrix for the vectorlike fixed
point. When g I

=*g&" and gz =0,

n +7 g vec

In 4—e dimensions the momentum integral of the
one-loop diagram gives a numerical factor times 1/e; this
numerical factor I/(8' p, ') cancels against that in the
definition of the coupling constant in (15). The p func-
tions are then given by

2n —3, „„ 2(2n —3)
n(n +7)

cop i
—0,

(30)

Bg; +
Bin p)

(23)
(n —5)
(n +7)

the factor of —,
' multiplying 6g; is the symmetry factor

from the one-loop diagram. From (22) the p functions
are

P1(*gi *g2) =P2(*g1 'g»=o . (25)

In general, there are four fixed points to (24): there is the
origin *g

n +7 z 2n —3 n +3
Pi(g 1 8'2)= &gi+ g'i+

3 gig2+ 2 g26 3n 2n
(24)

n —9
P2(gl &g2 ) Eg2+ glg2+ g 23n

As discussed following (15), there are two limits in
which the P functions of (24) can be checked. When

g2 =0, p, is equal to the p function of an O(n —1) vector
theory with coupling g 1 [21]. Second when n =2,
pi+p2/2 equals the p function for an O(3) vector theory
with coupling g, +g~/2.

The fixed points of the theory are the couplings at
which both P functions vanish:

Since one of the os'-diagonal elements of co vanishes, its
eigenvalues are equal to the diagonal elements. The first
element co&& is always positive, but the second element cozen

is only positive for n (&5.
Thus when n (&5, to leading order in e the critical be-

havior of an adjoint SU(n) field is in the same universali-
ty class as an O(n —1) vector field.

For n )&5, the vectorlike fixed point is not infrared
stable, and if there is any infrared stable fixed point, it
must be either *g or *g . From (28), because of the
factor of + 2n +—18n +81, if n is too large both *g+
and *g are complex, and so unacceptable as fixed
points. This happens when n ) n, =3[(1+v'3)/2]'~ . In
the range n, ) n )&5, an evaluation of the stability ma-
trix shows that the infrared stable fixed point is g+.
Nevertheless, in this range of n the theory still does not
have a well-defined critical point. This is most easily seen
by considering the theory about n =&5. For n =&5+v,
to leading order in ~ for small a,

5 K+ ''' E.
32

Uv e Uv 0gz (26)

vec 6e vec

(n +7)
(27)

and two other fixed points *g*, at which both couplings

the vectorlike fixed point, 'gv", which is the fixed point
for an O(n —1) vector theory,

(31)

At n =&5, *g+ coincides with the vector fixed point
*gv". They difrer as ~ increases, but when ~ is nonzero
and positive, *g&+ is negative. It can be shown that gz+

is negative for all between &5 and n, . By (15), however,
the potential is bounded from below only if gz is positive.
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Thus for n, & n & &5, the theory does not have an in-
frared stable fixed point in the domain of stability.

The above analysis assumes that the fermions lie in a
complex representation of the local gauge group. If the
fermions lie in a real representation, then the global
fiavor symmetry is O(2N) for m =0, and O(N) XO(N)
when m+0 [9]. The effective theory is constructed from
a field 4 which is a real, symmetric N-by-N matrix; the
effective Lagrangian for the parity-even theory remains
that of (15), and involves just the part of @ with zero
trace. The P functions for O(2N) are surely different
than U(2N), but I expect that the results are similar:
there is no infrared stable fixed point for 1V larger than
some small value.

X= —m —ln
c m

e (33)

theory at finite temperature, does seem to correctly pre-
dict a first-order, fluctuation-induced phase transition
when the number of flavors exceeds the value given by
the e expansion (there it is N & v'2).

I close by reviewing the arguments of Ref. [5]. Consid-
er a gauge theory in three dimensions, coupled to N
Aavors of massless fermions. At large N the fine-
structure constant a=e X is of order 1. Introduce a
(parity-even) mass m, and assume that m «a. At one-
loop order, the fermion self-energy is

IV. CONCLUSIONS

From the preceding section, to leading order in e the
critical behavior of an adjoint SU(2N) field is well defined
only when

The constant c =8/ir, and is independent of the condi-
tion for gauge fixing. To look for a dynamically generat-
ed mass in the limit of zero bare mass, equate the self-
energy in (33) to m. This has two solutions: m =0 and

v'5N(
2

(32) N
m =o.' exp

C
(34)

(remember n =2N). For such N, the critical indices are
those of a vector field with symmetry O(4N —1). For
values of N & v'5/2, there is no infrared stable fixed point
at which the potential is bounded from below. As for
scalar electrodynamics in four dimensions, in this in-
stance there is a Auctuation-induced first-order phase
transition [20]. In other words, even if one tries to tune
the mass to zero, one is generated dynamically.

It is worth emphasizing that for N & v'5/2, the renor-
malization group does not predict that the phase transi-
tion is of second order; only what the universality class is
if it is of second order. In contrast, for N & V5/2, the re-
normalization group predicts that the transition is inesca-
pably of first order.

I compare these results to those of dynamical studies of
QED [5—8, 11—19]. First, all studies appear to agree that
there is symmetry breaking for a single Aavor N=1. This
in itself is surprising: it must be possible to find some
model with N=1 that exhibits a second-order; phase
transition as m ~0. Presumably continuum QED is not
such a model. But in lattice QED with a nonstandard ac-
tion it is possible to look for the critical point at the end
of a line of first-order transitions. Since an adjoint SU(2)
field is equivalent to an O(3) vector, (15), this critical
point must be in the universality class of an O(3) vector.

For more than a single flavor the dynamical studies
differ. From the Schwinger-Dyson equations, Appel-
quist, Nash, and Wijewardhana [11] find spontaneous
symmetry breaking only for N ~ 3; the numerical simula-
tions of Dagotto, Kocic, and Kogut [17] support this.
The analysis of Pennington er al. [13]supports symmetry
breaking for all N ~ 2. The renormalization-group
analysis here supports symmetry breaking whenever
%~2.

To be fair, it could be that extrapolating the
renormalization-group analysis from small e to e= 1 fails.
While certainly possible, I note that a similar analysis of
the chiral phase transition [24], for the four-dimensional

Because this solution is exponentially small at large N, it
satisfies that assumption of m « a that went into (33).

Contrary to my conclusions in Ref. [5], it is premature
to conclude from (33) that fiavor-symmetry breaking
occurs. Over mass scales as in (34), the effects of non-
trivial anomalous dimensions must also be included. For
example, up to terms of order 1/N the fermion wave-
function renormalization is Z(p) =1+(d/N)ln(p/a), for
some constant d, with p the momenta. For p -a, Z —1

up to corrections which are strictly of order 1/X, but for
p on the order of (34), the corrections to Z are of order
one. The correct manner in which to treat momenta on
the order of (34) would be to use the renormalization
group to resum Z(p)-(p/a) ~ . Thus even at large N,
to correctly compute (33) it is necessary to include not
just mass renormalization, but wave-function and vertex
renormalization as well. Since these calculations are con-
siderably more involved than those done to date, the
question of fiavor-symmetry breaking in QED at large N
remains open.

Nevertheless, it is safe to conclude that if symmetry
breaking occurs, then it must be over mass scales which
are exponentially small in 1/N: whatever the value of the
constant c in (34), it is of order one at large N, c & 0 (c =0
is no symmetry breaking). This is simply because over
mass scales which are any larger than (34), (33) is of order
1/N, and so cannot produce a dynamical m %0 by setting
m =X.

To return to the discussion of the Introduction, it is
perhaps misleading to claim that Aavor-symmetry break-
ing in QED at large N contradicts the concept of a criti-
cal coupling. The naive dimensionless coupling constant
is 1/iV, but for momenta p, a better measure is the "run-
ning" coupling, (1/N)ln(p/a). While both the naive and
the running coupling are of order 1/N for p -a, at mass
scales as in (34), the running coupling is of order one.
From another view, at infinite X the theory is surely just
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free, massless fields. But (34) does not contradict this, for
this scale is nonperturbative in 1iN, and vanishes
smoothly at N~ ~.

In closing, I suggest that we cannot presume to say

that we understand chiral-symmetry breaking in a theory
as cotnplicated as QCD in four dimensions, if we do not
even understand Qavor-symmetry breaking in a theory as
simple as QED in three dimensions.
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