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Discretized light-cone quantization: Formalism for quantum electrodynamics
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A general nonperturbative method for solving quantum field theories in three space and one time di-
mensions, discretized light-cone quantization, is outlined and applied to quantum electrodynamics. This
numerical method is frame independent and can be formulated such that ultraviolet regularization is in-
dependent of the momentum-space discretization. In this paper we discuss the construction of the light-
cone Fock basis, ultraviolet regularization, infrared regularization, and the renormalization techniques
required for solving QED as a light-cone Hamiltonian theory.

I. INTRODUCTION

Perhaps the most outstanding problem in quantum
field theory is to compute the bound-state spectrum and
the relativistic wave functions of hadrons at strong cou-
pling. In quantum chromodynamics one needs a practi-
cal computational method which not only determines the
hadronic and exotic spectra, but also can provide nonper-
turbative hadronic matrix elements of the operator-
product expansion, weak decay amplitudes, structure
functions, and distribution amplitudes. In general, the
computation of hadronic scattering amplitudes requires
knowledge of the bound-state wave functions at arbitrary
four-momentum. Lattice gauge theory has provided im-
portant tools for analyzing the lowest hadronic states of
quantum chromodynamics (QCD), but detailed wave-
function information has been very difTicult to obtain.

Even in the case of Abelian quantum electrodynamics,
very little is known about the nature of the bound-state
solutions in the large-a, strong-coupling, domain. The
Bethe-Salpeter formalism has been the central method for
analyzing hydrogenic atoms in quantum electrodynamics
(QED), providing a completely covariant procedure for
obtaining bound-state solutions. However, calculations
using this method are extremely complex and appear to
be intractable much beyond the ladder approximation. It
also appears impractical to extend this method to systems
with more than a few constituent particles.

The most intuitive approach for solving relativistic
bound-state problems would be to solve the Hamiltonian
eigenvalue problem for field theories

for the particle's mass M and wave function ~ib). Here,
one imagines that ~g) is an expansion in multiparticle
occupation-number Fock states and that the operators H
and P are second-quantized Heisenberg picture opera-
tors. Unfortunately, this method, as described by
Tamm and Dancoff [1], is severely complicated by its
noncovariance and the necessity to first understand its

complicated vacuum eigensolution over all space and
time. The presence of the square-root operator also
presents severe mathematical difticulties. Even if these
problems could be solved, the eigensolution is only deter-
mined in its rest system; determining the boosted wave
function is as complicated as diagonalizing H itself. For-
tunately, "light-cone" quantization offers an elegant ave-
nue of escape. The square-root operator does not appear
in light-cone formalism, and as we will see explicitly in
Sec. II, the structure of the vacuum does not play an im-
portant role in QED since there is no spontaneous
creation of massive fermions in the light-cone quantized
vacuum.

There are, in fact, many reasons to quantize relativistic
field theories at light-cone time. Dirac [2], in 1949,
showed that a maximum number of Poincare generators
become independent of the dynamics in the "front-form"
formulation, including the required Lorentz boosts. In
fact, unlike the traditional equal-time Hamiltonian for-
malism, quantization of the light cone can be formulated
without reference to the choice of a -specific Lorentz
frame; the eigensolutions of the light-cone Hamiltonian
thus describe bound states of arbitrary four-momentum,
allowing the computation of scattering amplitudes and
other dynamical quantities. However, the most remark-
able feature of this formalism for (3+1)-dimensional
QED (QED3+, ) is the simplicity of the light-cone vacu-
um. The vacuum state of the free Hamiltonian is the vac-
uum eigenstate of the total light-cone Hamiltonian. The
Fock expansion constructed on this vacuum state pro-
vides a complete relativistic many-particle basis for di-
agonalizing the full theory.

In this paper we will quantize quantum electrodynam-
ics on the light cone in a discretized form which allows
practical numerical solutions for obtaining its spectrum
and wave functions at arbitrary coupling strength a.
Hopefully, these techniques will be applicable to non-
Abelian gauge theories, including quantum chromo-
dynamics in physical space time. In this paper, we dis-
cuss the ultraviolet and infrared regularization of the
theory which renders it finite. In addition to
momentum-space regularization, we also discuss a co-
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variant approximately gauge-invariant particle number
truncation of the Fock basis which is useful both for
computational purposes and physical approximations. In
this method, "discretized light-cone quantization"
(DLCQ) [3], ultraviolet and infrared regularizations are
kept independent of the discretization procedure and are
identical to that of the continuum theory. One thus ob-
tains a finite discrete representation of the gauge theory
which is faithful to the continuum theory and is com-
pletely independent of the choice of Lorentz frame. Re-
cently, Wilson et al. have developed a complimentary
method, the light-front Tamm-Dancoff' approach [4,5]
which uses a fixed-number Fock basis to truncate the
theory. Wilson has also emphasized the potential advan-
tages of using a gaussian basis similar to that used in
many-electron molecular systems for relativistic many-
body light-cone problems rather than the plane-wave
basis used here [5]. A discussion of the numerical
methods which can be used to solve the DLCQ system
and initial results for the positronium spectrum in
QED3+ &

at moderate values of a will be given in Ref. [6].
The possibility of quantizing on the light cone was first

discovered by Dirac [2]. The striking advantages of this
formalism for gauge theory have been realized by a num-
ber of authors, including Klauder, Leutwyler, and Streit
[7], Kogut and Soper [8], Rohrlich [9], Leutwyler [10],
Casher [11], Chang, Root, and Yan [12], Lepage and
Brodsky [13], Brodsky and Ju [14], Lepage, Brodsky,
Huang, and Mackenzie [15], and McCartor [16].
Leutwyler recognized the utility of defining quark wave
functions on the light cone to give an unambiguous
meaning to concepts used in the parton model. Casher
gave the first construction of the light-cone Hamiltonian
for non-Abelian gauge theory and gave an overview of
important considerations in light-cone quantization.
Chang, Root, and Yan demonstrated the equivalence of
light-cone quantization with standard covariant Feynman
analysis.

There has also been important work on light-cone
quantization by Franke [17—19], Karmanov [20,21], and
Pervushin [22]. The notation used in this paper is given
in Table I. A comparison of light-cone quantization with
equal-time quantization is shown in Table II.

The question of whether boundary conditions can be
consistently set in light-cone quantization has been dis-
cussed by McCartor [23] and Lenz [24]. They have also
shown that, for massive theories, the energy and momen-
tum derived using light-cone quantization are not only
conserved, but also are equivalent to the energy and
momentum one would normally write down in an equal-

TABLE I. Definitions in light-cone quantization.

Variables

Covariant notation

Metric

Dot product

Mass-shell condition

&=light-cone time=x =x +x+ 0 3

x = light-cone position =x —x '

xj ={x',x )

A"=(A+, A, Aj)
0 2 0 0
2 0 0 0'g"'= 0 0 —

& 0
0 0 0 —1

x y =x"g„y = —'(x+y +x y+ ) —x&.y&

P+P =Pj+M

Derivative
a+ =2a-,

a-= a;=a = a
Bx

a =2V, a'= —a;

Underscore notation x =(x,x, ), k =(k,kj )

k -x = -k x —ki.x~j +

time theory.
The approach that we use in this paper is closely relat-

ed to the light-cone Fock methods used in Ref. [13] in the
analysis of exclusive processes in QCD. The renormaliza-
tion of light-cone wave functions and the calculation of
physical observables in the light-cone framework is also
discussed in that paper. The analysis of light-cone per-
turbation theory rules for QED in the light-cone gauge
used here is similar to that given in Ref. [25]. A number
of other applications of QCD in light-cone quantization
are reviewed in Ref. [26].

A mathematically similar but conceptually different
approach to light-cone quantization is the "infinite-
momentum-frame" formalism. This method involves ob-
serving the system in a frame moving past the laboratory
close to the speed of light. The first developments were
given by Weinberg [27]. Although light-cone quantiza-
tion is similar to infinite-momentum-frame quantization,
it differs since no reference frame is chosen for calcula-
tions, and it is thus manifestly Lorentz covariant. The
only aspect that "moves at the speed of light" is the
quantization surface. Other works in infinite-
momentum-frame physics include Drell, Levy, and Yan
[28], Susskind and Frye [29], Bjorken, Kogut, and Soper
[30], and Brodsky, Roskies, and Suaya [31]. This last
reference presents the infinite-momentum-frame pertur-

TABLE II. A comparison of light-cone and equal-time quantization.

Instant form Front form

Hamiltonian

Conserved quantities
Momenta
Bound-state equation
Vacuum (QED)

H =+P +m'+ V

E,P
OO (P (OO
HP=EP

Complicated

Pj+m
p = +vp+

P,p, pj
P+ &0

(P+P —P', )P=M~g
"Trivial"
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bation theory rules for QED in the Feynman gauge, cal-
culates one-loop radiative corrections, and demonstrates
renormalizability.

In order to capitalize on the features of light-cone
quantization, Pauli and Brodsky [3] developed the
method of discretized light-cone quantization and applied
it to solving for the mass spectrum and wave functions of
Yukawa theory PgP, in one space and one time dimen-
sions. This success leads to further applications includ-
ing QED, +& and the Schwinger model by Eller, Pauli,
and Brodsky [32] P theory in 1+1 dimensions by Harin-
dranath and Vary [33], and QCD, +, for Nc =2, 3, and 4
by Hornbostel, Brodsky, and Pauli [34]. Burkardt [35]
has used related light-cone integral equation methods to
obtain the hadron spectrum in QCD, +, as well as to
study European Muon Collaboration (EMC)-like effects
in nuclear structure functions in that theory. More re-
cently, Burkardt and Busch [36] have studied fiavor-
breaking effects in the Gottfried sum rule in QCD&+ &. In
each of these applications, the mass spectrum and wave
functions were successfully obtained, and all results agree
with previous analytical and numerical work, where they
were available. Recently, Hiller [37] has used DLCQ and
the Lanczos algorithm for matrix diagonalization method
to compute the annihilation cross section, structure func-
tions, and form factors in a (1+1)-dimensional Yukawa
theory.

The initial successes of DLCQ provide the hope that
one can use this method for solving 3+1 theories. The
application to higher dimensions is much more involved
due to the need to introduce ultraviolet and infrared re-
gulators, and invoke a renormalization scheme consistent
with gauge invariance and Lorentz invariance. This is in
addition to the work involved implementing two extra di-
mensions with their added degrees of freedom. In this
paper, we will present the application of DLCQ to
(3+ 1)-dimensional QED.

The basic background for light-cone quantization and
DLCQ is shown in Refs. [3], [32], and Secs. 2 and 3 of
Ref. [38]. The light-cone Hamiltonian for (3+ 1)-
dimensional QED is given in Sec. II, ultraviolet regulari-
zation in Sec. III, and infrared regularization in Sec. IV.

Section III also introduces a method for maintaining
gauge invariance of the ultraviolet regulator, at least for
tree-level fermion-fermion scattering. It is important to
maintain gauge invariance and the Lorentz boost sym-
metries when truncating the Fock space. A method for
preserving these symmetries while truncating the Fock-
space basis is presented in Sec. V. Renormalization in
this truncated space is discussed in Sec. IV. The ques-
tion of self-induced inertias and the equivalence of Feyn-
man rules and light-cone perturbation theory results for
one-loop mass counterterms is also presented in Sec. VI.
A number of mathematical details are given in the vari-
ous appendices.

II. LIGHT-CONK QUANTIZATION OF QKD

The derivation of the light-cone Hamiltonian HI c
from the (3+ 1)-dimensional QED Lagrangian,

,'F„F"——gerI'P A—„, (2.1)

can be carried out in the light-cone gauge
+ A =0 using the standard methods of canoni-

cal quantization with (anti)periodic boundary conditions.
The procedure and notation closely follow the quantiza-
tion of QCD in one space and one time dimension. See
Ref. [34]. Details of this derivation for QED~3+, ~

are
given in Sec. IV of Ref. [38]. In a general frame, we
write

Hf c+PJ
P P+

so that the eigenvalues of Hzc give the invariant-mass
spectrum M . The result after using the classical equa-
tions of motion to eliminate the dependent fields f and

, imposing canonical commutation relations on the
independent fields P+ and A~, and finally discretizing
these two fields by expanding in plane waves and impos-
ing boundary conditions is

H~c =Ho+H, +H

flip nonflip & 2 ~instphot + ~instferm
(2.2)

K

gpss

2

+A, a~ a~ ++-K
s, n

2
n ~n.

+m, (b,~„b, „+d,t„d, „), (2.3)

Km, 1

s p, m, n

(3)+~2s,p~s, m —s, n ~n+p, m n m
+H.c.
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~nonfliP =g
2

1/2

2X X
s p, m, n l

(3)
2s,p~s, m ~s, n ~n+p, m ~2s

Px nz
+H. c.

(3) j.
+2s,p s, m ds, n ~n+p, m +2s

Pz n~ +H. c.
n

a —2s,p s, m s, n~n+p m~ —2s
pg mg +H. c.
p pg

(3) gJ Pl
2s,p ~s, m —s, n ~n+ m, p ~2s +H'

g, (3)+ —2s,p s, m —s, n ~n +m, p ~—2s
pz Illy

+H. c.I (2.5)

X
s, t k, l, m, n

d, „d, &d—, d, „5k+, +„,'[k —mI ——l+n]

b, kd, —(b, d, „5'k'+( m+, [k + llm +n]

+b, k d, (b, d, „5'k'+ ( m+ „[k—ml —l +n]

+d,tkd, &d, b, „5'& I+ +„[k—mIl+n]+H c.
+b, kb, &b, d, „5~ '&+ +„[k mI l +—n]+H. c.),

K 1

(3)a2spa2s, qbsmbs, n5,p+m, q+n Ip nIq —m

+a~
2s,p a —2s, q ds—, m ds, n 5p +m, q + n I l2 +m

I 'V + n ]

(3)—a 2, p a2, q d, m d, „5p+m q+ „tp n I q
—m ]-

, „5p+ +„[p—mI —q+n]+H. c.

a2s&a2s qb—, d, „5p q+ +„Ip nIq+m ]+—H. c.

+a2spa2 qb d „5p q+ +„Ip mIq+n]+H c.

a —2s pa2, qbsmbs n 5mp+q+ [P + n
I

—
q +m ] +H. c.

d, „5' 'p+q+„Ip+n —q+m J+H. c. ) . (2.7)

Vs;p is the spin-flip amplitude for a (anti) fermion to (absorb) emit a photon and V„,„s;p is the no-spin-flip amplitude for
this process. The familiar three-point Dirac QED vertex is just the sum of these two amplitudes. Two other types of
vertices appear in light-cone quantization: a four-point instantaneous photon exchange, V;„,tph t and a four-point in-

stantaneous fermion exchange, V;„„f„.These are just the graphs needed to reproduce the usual covariant Feynman
S-matrix results for scattering amplitudes. An example of this for Me(lier scattering (e e ~e e ) is shown in Ap-
pendix A. One can think of the instantaneous photon exchange graph in light-cone gauge as being analogous to the
Coulomb exchange graph in Coulomb gauge. All the interactions conserve k+ and k~, as they must, and are shown
schematically in Fig. 1.

In the above expression for HLC, g is the coupling constant, 2I.j is the size of the transverse box, A, is an artificial
photon mass which is ultimately set equal to zero and, as will be explained shortly, K is related to the value of P+. The
expression has also been normal-ordered to remove vacuum values and self-induced inertias (more on these in Sec. VI).
The integers p, q, m, n, . . . are allowed to take on the values
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p', q', k', l', m', n'=0, 1,+2, . . . , i =1,2,
p, q =2,4, 6, . . . ,

r

2, 4, 6, . . . [periodic boundary condition (BC)],
k, l, m, n= '

1,3, 5, . . . (antiperiodic BC) .

(2.8)

[n!m] and In!m] were first defined in Ref. [32]. A
modified version using a method suggested by Hamer [39]
based on the form of the Lagrangian, Eq. (2.1), leads to

1 6„, n, m&0,
n

[n!m]= x, n and m =0,
0, otherwise,

0
0 1 1

X(t)= — 1, y(l)= —
()1 '

2 0
0

—1 . 1&i(t)= —(I, t), ei(l)= —(1,—i),
2

' ' ' v'2

(2.10)

1—5„, n, m&0,n, mi'

0, n or m=0.

(2.9) and the fermion and photon fields have discrete momenta
in the x and x', i =1,2, directions due to the boundary
conditions

photons:

k'=, p'=0, +1,+2, . . . ,

Details can be found in Sec. IV and Appendix B of Ref.
[38]. Since the gauge-invariant cutoff introduced in Sec.
III eliminates all occurrences of [0!0],the value of the un-

known constant K can be set equal to zero.
The free fermion and photon spinors are [40]

fermions:

Ln &

p =2,4, 6, . . . ,

n'=0, +1,+2, . . . ,

(2.11)

Diagram 1

Vtiip

2, 4, 6, . . . (periodic BC),
1,3, 5, . . . (antiperiodic BC) .

Diagram 4

Diagram 7
f

Diagram 10

~nonflip

!
Vtnst. photon

We have chosen periodic boundary conditions for the
photon field A~ in the x and x~ directions, and periodic
boundary conditions for the fermion field g+ in the xi
directions. g+ may have periodic or antiperiodic bound-

ary conditions in the x direction. In the rest of this pa-
per, antiperiodic conditions will be used. Note that only
positive k+ are allowed. This is because the mass-shell
condition

Diagram 13 14 15 16

k~+m
k k+ (2.12)

Diagram 17f~ 18 19

~inst. terrnion

!

Diagram 20 21

FIG. 1. Light-cone diagrams for QED interactions.

only allows for k+ and k both positive or both nega-
tive. As one does in equal-time considerations, the modes
with negative energy (in our case, negative k ) are
redefined to be antiparticles (the photon is its own an-
tiparticle). The result is that, in light-cone quantization,
one only has states with both positive k+ and positive
k

The above expression for HLC is still incomplete due to
the need to include fermion mass renormalization coun-
terterms (see Sec. VI). We also note that HLc is indepen-
dent of the longitudinal box size L. This last result arises
because I' is proportional to 1/L and I' is proportion-
al to L.
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Other conserved quantities in the theory include the
charge [41], light-cone momentum, and transverse
momentum. The expressions for these in light-cone
quantum mechanics after normal ordering to remove vac-
uum values are

=g + le+e &+@,+, — le+e y &+

(2.17)

Q =g g (b,~„b, „—d,t„d, „),
s, n

A,,p

P'= gk

k+a&~az~+ g k+(b, „b,„+dt„d,„),
s, n

'a&~a& ~+ g k'(b, „b, „+d,„d, „) .
s, n

(2.13)

The last two equations are just statements of k+ and k~
momentum conservation: P+ is just the sum of the indi-
vidual k+'s and P~ is just the sum of the individual kj s.
These expressions are especially simple, and since they
are already diagonal, the wave function lg & can immedi-
ately be chosen as an eigenstate of them. For conveni-
ence we can choose P+ =2m, and P~=Oj corresponding
to the positronium center of mass and obtain

so that &e+e pig&=g, +, — (x, kz, k). The labeling of
the parton momenta for the positronium e+e y Fock
state is shown explicitly in Fig. 2. The sum is over all
Fock states

l
n & with constituent momenta x,. and k~. In

general, all Fock states are needed to describe the bound
system; we will discuss the errors introduced by a trunca-
tion later. The Fock states are eigenstates of P+, P~, and
Ho. The kz; and x; are internal relative coordinates and
are independent of the total momentum. The formalism
is thus independent of the choice of reference frame. For
calculational convenience, one can make the choice
Pg =Og for which

spaz az + g n(bt„b, „+dt„d,„)
P j n:k,+,k~; &

=0~ nk, +,k~, &, (2.18)

s, n k~, +m,
Ho n:k,+,k~, &

= $ n:k;, k~, & .

'gp'a& a& + gn'(b, „b,„+d,„d,„) lg&=OIQ&
A, ,p s, n

p', n'=0, +1,+2, . . . .

From now on, only those expansion states satisfying these
equations need be considered. In the first expression, the
integer K is defined to be the eigenvalue P+ times L /~:

(2.15)

(2.14)
p =2,4, 6, . . . , n =1,3, 5, . . . (antiperiodic BC),

Because we are working with a discrete representation,
the light-cone bound-state equation

H„lm & =M'lm & (2.19)

For our case of positronium, the matrix equation is

(2.20)

e+e

can be converted into a matrix equation for the eigenval-
ues M and eigenvectors P„by projecting out the nth
component:

g ( nHlLclm&g (x, , k~;, A, , )=M g„(x„,k~;, A,;) .

In Refs. [3] and [32], K is called the "harmonic resolu-
tion. "

Finally observe that, because of k+ momentum conser-
vation and the positivity of k+, there are no interactions
involving spontaneous creation or annihilation of a fer-
mion pair and a photon from the vacuum. Because of
this fact, the Pock-state vacuum (the state with no parti-
cles) is an eigenstate of the light-cone Hamiltonian with
mass zero:

k ji+mi2 2

e e

(2.21)

a„,lo&=olo& . (2.16)

This immensely simplifies solving for bound states be-
cause it removes the need to constantly recalculate the
vacuum.

We now focus on the positronium bound-state prob-
lem. As in normal quantization we can apply the
creation operators on the vacuum to create a complete
light-cone Fock basis. The eigensolutions for the bound
states will have the form

p+

FIG. 2. Decomposition of positronium into Fock states.
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Here, H LC has been split into an interacting piece V and
a noninteracting piece Ho=+, (ki,. +m,. /x;). m; is the
mass of the ith constituent particle. For the case of posi-
tronium, it is either the fermion mass or the photon mass.
Diagonalization of this equation can now be done on a
computer (after implementing ultraviolet and infrared re-
gulators) to reveal the complete spectrum of positronium
states and multiparticle scattering states with the same
quantum numbers, along with their corresponding wave-
function expansion coefficients g„. Solving the field
theory has now been reduced to obtaining the solution to
this fairly simple equation.

In summary, the discretized light-cone quantization
procedure is straightforward. The light-cone Hamiltoni-
an is derived from the Lagrangian by a procedure very
similar to standard canonical quantization. The commut-
ing operators, the light-cone momentum P+ =E~/L,
transverse momentum P~, and light-cone Hamiltonian
HLc are constructed by expanding in Fock states and are
simultaneously diagonalized. The expressions for P+ and
P~ are already diagonal if one expands in plane waves.
The system is discretized by requiring periodic or an-
tiperiodic boundary conditions in the light-cone spatial
dimensions, and the system is quantized by imposing
canonical commutation relations between the indepen-
dent fields and their canonical momenta. The bound-
state equation Hie~/) =M ~g) is diagonalized to obtain
the invariant-mass spectrum and wave functions. Both of
these quantities are independent of L. To recover the
continuum theory, one lets E and L~ approach infinity
(this is equivalent to letting L,Li ~ oo ).

(ki+m )/x of the particles of each Fock state in a
bound state to be less than a cutoff value A (see Ref.
I:13]):

k2, +m,2

(3.1)

gk, P—
1

p+

(ki;+x;Pi) +m;

x,p+

k~,. +m; —M

P~+M
P +

(3.2)

The left-hand side of this equation is just the invariant-
mass (for a single-particle state, the invariant mass is the
rest mass) squared of the Fock state, M =P+P Pi2-
It is also the value of the light-cone Hamiltonian at zero
coupling. Thus, the global cutoff for the bound-state
problem simply requires the invariant-mass squared of
the individual Fock states to be less than A . For a
scattering amplitude, the global cutoff limits the
difference between the invariant mass of the initial and
intermediate states. This regulator is invariant under the
class of light-cone Lorentz transformations: rotations
around the z direction, transverse boosts, and boosts in
the z direction [42]. It should be emphasized that the
variables k~, and x; are relative internal coordinates, in-
dependent of the total momentum P+ and P~ of the
bound state. The physical momentum of the particle in
any given Lorentz frame is p~, =k~; +x,-P~ and
p+ =x,p+.

Each Pock state is off the light-core energy shell by the
amount

III. COVARj:ANT ULTRAVIOLET REGULATOR

Before continuing, a method of regulating the k~ Pock
space and other ultraviolet divergences is necessary. The
Fock space is naturally finite in k+ because the total k+
is just the sum of the individual, constituent k+'s. Com-
bining the fact that all the individual k+'s are positive,
nonzero integers with the fact that there are only a finite
number of ways of summing a set of positive, nonzero in-
tegers to form a given positive number demonstrates
finiteness of the k+ space. As an example, a Fock state
with one electron and two photons with K =9 can have
the following quantum numbers (antiperiodic boundary
conditions):

One sees immediately that the ultraviolet truncation
given in Eq. (3.1) removes Fock states not by particle
number but because they are far off shell. This is a
reasonable procedure because far-off-shell states give only
a small contribution to a physical wave function. It is
known from general considerations [43] that the proba-
bility for high far-off-shell fluctuations of the renormal-
ized wave function in a renormalizable theory are power-
law suppressed, so that one expects convergence of all

physical quantities as long as A is taken larger than all
relevant mass scales of the problem. In fact, one sees
from Eqs. (2.20) and (2.21) that a typical wave function in

QED will have the form

Fock state
Electron
Photon 1

Photon 2

4
3
2
4

which tends to vanish as

(3.3)

In contrast with k +, the Fock space is naturally
infinite in kz because k~ can take values that are positive
or negative. An ultraviolet regulator must therefore be
introduced.

%"e will discuss several possibilities for the frame-
independent ultraviolet truncation of the light-cone Fock
state. In the first method, which we refer to as the "glo-
bal cutoff, "we restrict the sum of the light-cone energies

(3.4)

In principle, one must make A infinite to recover the
full theory. In practice, one can take moderate values of
the cutoff and study the convergence of the spectrum and
physical quantities as a function of A. In fact, since the
binding energy is the relevant scale, it is more useful, in
practice, to only restrict the kinetic part of the off-shell
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energy. We thus define the "kinetic cutoff"

—min g ~A (3.5)

where the minimum is taken over all allowed kinematic
configurations. By using the kinetic cutoff, states with
high-momentum constituents are cut off, but fermion pair
states which play an important role in Compton ampli-
tudes are not preferentially excluded.

Cutting off the photon's momentum kz is clearly not
compatible with gauge invariance because the various
graphs involved in photon exchange are cut ofF in a
different way. That is, one can imagine a situation in
Manlier scattering (e e ~e e ), for example, in which
the exchange of a real, physical photon is cut off (the
relevant Fock state is the e e y intermediate state) but
the exchange of an instantaneous photon is not (there is
no intermediate state in this graph). We can avoid this
problem with gauge invariance by considering the instan-
taneous photon in the instananeous photon-exchange
graph to have quantum numbers as if it were a real pho-
ton. One then cuts it off in a manner similar to the
Fock-state cutoff for a real intermediate state. That is,
one requires

k~;+m; ~A (3.6)

where the sum is over the individual particles in the Fock
state plus the instantaneous photon. A similar procedure
is taken for the instantaneous fermion interaction so the
correct Feynman S-matrix amplitudes are restored in this
sector also. As a concrete example, consider the graphs
involved in Mdller scattering shown in Fig. 3. Assume
k& is larger than k3+. In the first graph, the photon's
momenta are fixed by momentum conservation, and the
three-particle intermediate state is cut off by

2 +m 2 k 2 +m 2
q

2

+ + (A
X3 X2 Xq

(3.7)

, +m' k„+m,' q,'+ + ~A
X3 X2 Xq

(3.8)

With this requirement, whenever the instantaneous
photon-exchange graph occurs, a corresponding graph
with the exchange of a real, intermediate photon occurs

In the second graph, one assigns momenta to the instan-
taneous photon, q+=k&+ —k3+, q~=k&~ —k3J and then
requires

k +m
A (3.9)

With this restriction, the Fock space is rendered finite,
the ultraviolet regulation is invariant under the light-cone
Lorentz transformations, and for two-particle scattering,
the Born amplitudes are gauge invariant and are con-
sistent with the Feynman form up to the cutoff. We also
note that this regulation procedure is continuum regula-
tor: the cutoff condition is not changed by discretization.

In principle, the global or kinetic cutoff can be used as
the sole ultraviolet regulator needed to define the renor-
malized theory. However, these regulators have the
disadvantage that, at finite A, the renormalization con-
stants will depend on the kinematics of the "spectator"
particles in the Fock state, rather than just the particles
participating in the UV-divergent self-energy and vertex
subgraphs. However, one still has the option of introduc-
ing further UV regulation such as massive Pauli-Villars
particles [44] or massive supersymmetric partners to pro-
duce counterterms which render these subgraphs finite.
We illustrate this method in Appendix C. Alternatively,
one can also directly regulate the matrix elements of the
interaction Hamiltonian such that [45] ( n

~ Hi c ~
m ) =0 if

imam

k +m.ll

iCn

k +m.
~A

When using any of these "local" cutoffs, the mass coun-
terterms can be defined independently of the bound-state
wave function, as in the standard treatment of the Lamb
shift in @ED [46]. The counterterms at a specific renor-
malization scale are chosen so that one obtains the physi-
cal values of the electron mass and photon mass when
solving the light-cone equation of motion in the respec-
tive quantum number sector [47].

because both graphs are now cutoff in exactly the same
way. As shown in Appendix A, the sum of the graphs is
simply the gauge-invariant Feynman rules answer, I/qF.
Thus, we see that this method maintains gauge invariance
of the ultraviolet cutoff for two-particle scattering at the
tree level. It is not clear if this conclusion can be carried
over to loop diagrams [44].

Similarly, to reproduce the form of the Feynman am-
plitude, we also adopt the same procedure for instantane-
ous fermions: the instantaneous graph is only retained if
the corresponding propagating fermion graph contributes
in the truncated theory.

We have now completed the ultraviolet regularization
of light-cone theory. All Fock states are cut off by re-
quiring the invariant mass squared to be less than A:

k2

k3

k4

k3k)

k2 ~ kq
+ + + + +

q = k&
—k3= k4- k2

qJ = k) J
—k3J 4J 2J

+ + + + +
q =-k) —k3=k4 —k2

qJ
-=k) J

—k3J = k4J—

FIG. 3. Light-cone perturbation theory graphs contributing
to Mufller scattering. k,+ is assumed to be larger than k 3+.

IV. COVARIANT INFRARED REGULATOR

There are a number of potential sources of infrared
singularities and divergences in light-cone quantized
QED. These are (I) singularities in Ho and the three-
point interactions from fermions with x =0 (k + =0),
(2) singularities at x =0 and divergences near x =0 from
photons in Ho and the three-point interactions, (3) the
singularity from the exchange of an instantaneous fer-
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mion at x =0, and (4) the singularity at x =0 and the
divergence near x =0 from the exchange of an instan-
taneous photon.

The singularity described in item (1) can be removed by
requiring antiperiodic boundary conditions for the fer-
mions in the x direction. Similarly, the singularity in
item (3) is removed if the fermions obey antiperiodic
boundary conditions and the photons periodic boundary
conditions because the momentum exchange will never be
zero. Recall that the instantaneous fermion interac-
ion is proportional to 1/q+, where q =koutgoing photon—k+

incoming fermion
The singularity arising from photons with x =0 [point

(2)] is eliminated by the cutoff described in the previous
section if qi&0& because the invariant mass squared of
such a photon would be greater than any finite A . That
is,

way of removing the point x =0 when q~ =0~ is to imag-
ine that the photon has a small mass A, . Then x =0
would be eliminated for all q~ by the ultraviolet cutoff,
Eq. (3.1).

The infrared cutoff is only necessary for numerical
reasons when one uses a discrete measure. In the contin-
uum, the spectrum and wave function of positronium has
no infrared divergence. The numerical problem is illus-
trated in Fig. 4, which shows the divergent behavior of
the lowest-energy level in a variational calculation as K is
increased if one does not use an infrared cutoff. Details
of this calculation are described in Ref. [38]. An explana-
tion for this behavior is that the integral that must be
reproduced to obtain the ground-state energy level

(4.4)

has an integrand that diverges like

qg
&A (4.1)

1

x (qi+m, ) —qi
(4.5)

for q+ =0. The case of q~=O~ is dealt with below. The
singularity from instantaneous photons at x =0 [point
(4)] and qi&0i is eliminated because instantaneous pho-
tons are treated for purposes of the cutoff as if they were
real photons. As a result, they are also eliminated be-
cause

2

&A (4.2)

where q+ and q~ are assigned to the instantaneous pho-
ton according to momentum conservation as explained in
Sec. III. Again, the situation for q~:Oy is described
below.

If periodic boundary conditions had been chosen for
the fermions instead of antiperiodic conditions, the singu-
larities at x =0 for real and instantaneous fermions
would be eliminated by the same reasoning as for real and
instaneous photons.

The divergence as x approaches 0 for real and instan-
taneous photons is removed by invoking an infrared
cutoff:

2

E .
x

(4.6)

for small x, q~. Of course, the integral itself is still finite.
In the continuum, the points near x =0, q~ =0~ are a set
of measure zero and give a finite contribution to the in-
tegral. Unfortunately, in the discrete case, any one Fock
state has a finite measure since there are only a finite
number of Fock states. Each (e+e y) Fock state con-
tributes one point to the sum, Eq. (4.4). As a result, the
Fock states with photon x near zero and q~=O~ give a
contribution proportional to 1/x —K. Thus, photons
with q~=0~ must be removed by an infrared cutoff such
as Eq. (4.3) to keep the sum Eq. (4.4) finite as K ~~.

Another way to eliminate this difficulty is to add and
subtract an appropriate term in the Hamiltonian which
removes the discretized infrared divergence and replaces
this term at small q~ and x by the appropriate continuum
value. This method will be discussed in detail in Ref. [6].

In summary, an infrared regulator is included by re-
quiring that all photons, real and instantaneous, have in-
variant mass squared greater that e:

2
q~

(4.3)
x

All states with real photons not satisfying this condition
and all instantaneous photon interactions not meeting
this criterion are removed. Once again, q+ and q~ for a
real Fock-state photon are taken to be their actual values;
q+ and qz for an instantaneous photon are assigned ac-
cording to momentum conservation as if it were a real
photon.

Note that if e is chosen to be any value smaller than
(7r/Li ) but greater than 0, then the only effect of the in-
frared cutoff is to remove photons with q&=0~. Since the
effect of the cutoff is identical for all e less than (~/Li ),
one may as well take the limit e—+0 right away. Since the
point q&=0~ has now been removed, the problem of the
x =0 singularity for real and instantaneous photons with
zero qz described above has been taken care of. Another
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!
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FIG. 4. Comparison of ground state energy with (Y) and
without (N) infrared cuto6'.
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This Lorentz-invariant (tree level), gauge-invariant regu-
lator ensures that all infrared divergences are well defined
and cancel in a charge-zero system such as positronium.
The numerical demonstration for this last state is given in
Ref. [6]. Since the only effect of the cutoff is to remove
photons with q~=O~ for any 0(e((rr/L ), the limit
e—+0 can be taken immediately. Also note that this in-
frared regulator is a continuum condition: the cutoff re-
quirement is unaffected by discretization.

V. TRUNCATED FOCK SPACE

The basic problem for solving QED3+, using DLCQ
has now been given: The light-cone Hamiltonian and
bound-state equation are given in Sec. II, ultraviolet reg-
ularization is described in Sec. III, and infrared regulari-
zation in Sec. IV. There are several problems which still
need to be confronted.

One must choose a consistent scheme for truncating
the Fock space in order to have a system with finite num-
ber of degrees of freedom. In the case of one space and
one-time theories, the parameter K automatically pro-
vides this truncation. In the case of physical theories in
three space and one time, the covariant global and kinetic
cutoffs defined in Sec. III provide a physically motivated
cutoff. Unlike the Tamm-Dancoff [1] truncation, there is
no a priori fixed limit on the number of particles in this
scheme. Such a Fock-space truncation also provides a
continuum regularization for renormalization. Unlike
lattice gauge theories, this cutoff can be performed in-
dependent of the discretization. Ideally one should use
ultraviolet regulators such as dimensional regularization
in d k~ or a generalized Pauli-Villars scheme [25]. The
Fock-space truncation of the regulated theory then has
only a mild effect at higher A .

However, a more fundamental problem is that, as of
yet, no nonperturbative prescription is available for re-
normalization to all orders in closed form. This problem
needs to be answered before the full QED3+, light-cone
Hamiltonian can be systematically diagonalized. An ex-
ample of the construction of a nonperturbative counter-
term is presented in the next section.

A simple nontrivial approximation to QED3+, which
retains its all-orders nonperturbative features is the
Tamm-Dancoff [1] truncation to just two classes of Fock
states on the light cone. To be specific, for the
charge=zero sector, the Fock space will be limited to
just (e+, e ) and (e+,e,y). For the charge-one sector,
the only Fock states will be (e ) and (e,y). The num-
ber of interactions effectively allowed in this truncated
Fock space is very much reduced from the full set shown
in Fig. 1. All graphs involving pair creation are
effectively removed because the truncated Fock space
does not allow for extra fermion pairs (diagrams 3, 6, 9,
ll, 12, 17, 18, and 19). Diagrams 14, 16, 20, and 21 are
effectively removed because they involve two photons in
flight. Finally, diagram 10 is eliminated when it occurs in
the presence of a spectator photon because such a situa-
tion also has two photons in Aight. Taking all these re-
movals into account, the only diagrams that need be con-
sidered are 1, 2, 4, 5, 10, 13, and 15.

Two issues are of concern regarding renormalization.
First is the question of the self-induced inertias that ap-
pear in the theory if one does not normal order the light-
cone Hamiltonian. The second is whether the light-cone
perturbation theory results for the one-loop radiative
corrections agree with the usual Feynman S matrix
answers. Let us investigate the first question.

If one begins with a Hamiltonian that is not normal or-
dered and proceeds to normal order, one finds extra
terms arising from interchanging operators in the instan-
taneous photon and instantaneous fermion interactions.
These terms have been referred to in Refs. [3] and [32] as
"self-induced inertias" and have been the source of much
discussion concerning their role in light-cone physics. In
QED3+ &, these extra terms take the form

2(x
2 ~a&I~&,I~~

=1J = g ({p—m lp
—m J

—{p+mlp+m ])
m

for the photon and

g b, „b, „(I„+X„)+d,„d, „(I„+M„)
s, n

I„=—,
' g ([n —min —m] —[n +min +m]),

K„=—,
' g —{n —qln —

q I,1

M„=—,
' g —{n +qln +q ],1

q

(6.1)

(6.2)

Limiting the Pock space may bring gauge invariance
into question. However, we have carefully made sure
that every time an intermediate state with real photons is
removed, the corresponding intermediate state with in-
stantaneous photons is also removed. This restores gauge
invariance because photons are thus removed from the
theory in gauge-invariant sets. For example, the interac-
tion e+e —+y —+e+e is removed from consideration
because the intermediate state with one real photon has
been eliminated. To restore gauge invariance, we have
been careful to drop diagram 9 which involves the same
process, but through an instantaneous photon.

It should be emphasized that although the Fock space
is limited, the analysis remains nonperturbative because
the allowed Fock states can be iterated as many times as
one wishes. In particular, keeping only (e+e, e+e y)
is similar to the ladder approximation in Bethe-Salpeter
methods, which is an all-orders calculation. Since this
approximation has been solved in Bethe-Salpeter formal-
ism for the spectrum of positronium, diagonalizing the
light-cone QED Hamiltonian in this truncated Fock
space must also reproduce the positronium spectrum. It
is shown in Ref. [6] that the Bohr spectrum and the
hyperfine splitting of positronium (actually, the muonium
spectrum, since the annihilation channel has been re-
moved) at large a-0. 3 are correctly reproduced to lead-
ing order in e.
VI. RENORMALIZATION: SEI.F-INDUCED INERTIAS

AND MASS COUNTKRTKRMS
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for the fermion. Remember that, for fermion antiperiod-
ic boundary conditions and photon periodic conditions,

p, q =2,4, 6, . . . , m, n =1,3, 5, . . . . (6.3)

The question then arises: Should the self-induced iner-
tias remain in the theory or should they be removed?
Simply starting with a normal-ordered Hamiltonian elim-
inates these inertias. A satisfactory answer for the trun-
cated Fock space we are considering is that they are not
needed; i.e., they are replaced by the mass counterterms
below. In the case of the fermion, this counterterm hap-
pens to have the same continuum limit as the original
self-induced inertia in the limit A —+ ao. The correct pro-

cedures for all A that properly renormalizes the fermion
mass in the truncated Fock space requires mass counter-
terms equal to the one-loop light-cone perturbation
theory mass counterterms. It should be noted that this
result, which will be detailed below, only holds in the
truncated space (e+e, e+e y) or (e,e y).

In our truncated Pock space, the full set of proper
one-loop radiative corrections is shown in Fig. 5 (improp-
er graphs do not need to be renormalized). Again, there
is no vacuum polarization because the Fock space does
not allow an extra fermion pair to be created. Mass
counterterms are needed to cancel these self-mass dia-
grams. The discretized counterterms are

~~LC
Il, Ag 2

2
n' q, — n, +q'pf +", q, —+n,

2n(n —q) n f q2 n

2

n q~
——nj +q pf+n(n —q)p

2

(6.4)

gH (2) ——
N =2 n, fly

2

' ' n q~
——n~ +q pf+n(n —q)pr

nI ~
2

1+—g
''n2

q~
——n~

n —
q

2

+q pf + n (n —q)pr

(6.5)

where
2

m, I.i
2

XI.)
2

4 7

n =1,3, 5, . . . (antiperiodic BC),
=2,4, 6, e ~ ~

n', q'=0, +1,+2, . . . .

(6.6)

FIG. 5. One-loop LCPT radiative corrections to fermion
line.

(n, n~) are the quantum numbers for the incoming fer-
mion and A, is a fake photon mass that is ultimately set
equal to zero. The sum is over 2~q ~n —1 and must
satisfy both the ultraviolet and infrared cutoffs:

q~+p (n~ —q~) +pf 1 AL~ m~+p
Y + (

n —
q E m, „m

2 2
qi+p,

q K
The sum in the first equation is over the quantum num-
bers (m, mj) of all the spectator particles (i.e., particles
that go from the initial to final state without an interac-
tion). The derivation of these results is given in Appen-
dix B. Note that, when one uses the Fock-space trunca-
tion as a regulator, one must take into account the una-
voidable dependence on the spectator kinematics for any
finite cutoK

Inclusion of these mass counterterms and diagonalizing
the space (e,e y) reproduces the real electron mass to
be one to 12 significant figures on an IBM 3090 running
64-bit (double precision) real variables and thus verifies
that this is indeed the correct fermion mass renormaliza-
tion prescription. The numerical results are discussed
further in Sec. VII. If self-induced inertias are retained,
the mass counterterm is modified to include self-induced
inertias. This just cancels the original inertias and di-
agonalizing again reproduces the real electron mass
= 1.000. . .m, .
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Let us now return to the second question posed at the
beginning of this section. The equivalence of the mass
counterterms derived from the usual covariant Feynman
theory and light-cone perturbation theory is discussed in
Appendix C. It is shown there that the infinite-
momentum-frame time-ordered perturbation theory
(TOPT„) and Feynman rules results for the one-loop fer-
mion self-energy in Feynman gauge are identical if one is
careful to do the x integral first and interchange limit and
integral only when allowed in the TOFT calculation. If
one takes the limit first, one obtains the non-Z graph as
the complete answer, which agrees with the usual light-
cone perturbation theory (LCPT) answer for the one-loop
fermion self-energy, but disagrees with the Feynman
answer. The discrepancy is found in a nonzero contribu-
tion from the Z graph in TOFT near x =0. The LCPT
and Feynman rules answers for the one-loop fermion
self-energy agree if an extra piece equal to the TOPT Z
graph is added to the diagonal part of the light-cone
Hamiltonian. This has to be done since the Z-graph con-
tribution to the fermion self-energy is not obtained from
the off-diagonal matrix elements of the light-cone Hamil-
tonian. However, since this piece is a self-energy, it is
canceled when one includes the corresponding mass
counterterm.

In practice, the extra piece from the Z graph can thus
be ignored. It should be emphasized that, in the above
deliberations, I, is only included as an infrared regulator
and is at the end taken to be zero. The conclusions do
not carry over to theories with a true massive photon.

This completes the discussion of electron mass renor-
malization. Because of the absence of pair creation, there
is no renormalization arising from vacuum polarization
in the truncated Fock-space consideration. This leaves
just electron wave-function renormalization, which is
equivalent to simply stating that the real electron's wave
function is normalized. The probability of finding the
bare Fock electron inside the real electron is given by the
expansion coefficient P for the single-electron Fock

e

state shown in Eq. (2.17). This coefficient is just the
wave-function renormalization constant QZ2.

To summarize, there is no photon wave-function renor-
malization (charge renormalization) in the truncated
Fock space (e+e, e+e y) or (e,e,y). Electron
wave-function renorrnalization is automatic because the
real electron's wave function is normalized. If one is
careful about the behavior near the end points, x =0, 1,
the one-loop self-mass corrections in TOPT and LCPT
agree with the answer from S-matrix analysis. Mass re-
normalization is then done by inserting mass counter-
terms into HLC that exactly cancel the one-loop self-mass
contributions. If one decides to keep the "self-induced
inertias, " these are also canceled by mass counterterms.
Since the self-mass end-point corrections and self-induced
inertias are just canceled anyway, what one effectively
does is start with a normal-ordered Hamiltonian (i.e.,
without self-induced inertias) and inserts the mass coun-
terterms given in Eqs. (6.4) and (6.5). Once again, this
prescription is valid only in the truncated Fock space of
one additional photon. If higher Fock states are includ-

ed, a more general method is necessary which may, in
fact, include the self-induced inertias in a crucial way.

Since only elementary particles require renormaliza-
tion, no further renormalization needs to be done. That
is, there is no positronium mass or wave-function renor-
malization. The full light-cone Hamiltonian given by
Eqs. (2.2) —(2.7) plus mass counterterms given by Eqs.
(6.4) and (6.5) is now ready to be diagonalized.

VII. DIAGONAI. IZATION: CHARGE-ONE SPACE

The prescription for diagonalizing the QED light-cone
bound-state equation (2.20) is then the following. HLC is
equal to Ho +H

&
+H2+ H„&f, where Ho, H, , and H2

were given in Eqs. (2.2) —(2.7) and H, ff is the mass coun-
terterms given in Eqs. (6.4) and (6.5). The Pock space is
generated by keeping all Fock states that satisfy

k~;+m; ~A (7.1)

and have photons that satisfy

2
qj

(7.2)

In principle, the true continuum theory is recovered by
taking the limits K,L~, A~~ and @~0. Recall from
Sec. IV that the results are identical for any choice of e
less than (m/Li); therefo. re, one is allowed to take the
limit e—+0 immediately. In this paper, the Fock space is
limited for various reasons discussed in Sec. V to just
(e,e,y) for charge one and (e+e,e+e, y) for
charge zero.

Diagonalizing the light-cone Hamiltonian in the
charge-one space of (e,e,y) for any value of a, K, Li,
A, and e reproduces

M =1.000. . .m (7.4)

for the ground state. Remember that, as pointed out in
Sec. V, in this truncated Fock-space consideration, dia-
grarn 14 must be dropped from the full set of light-cone
diagrams in Fig. 1. The accuracy of this result is only
limited by machine precision. On an IBM 3090 running
64-bit real variables, this is 12 places behind the decimal
point. This result demonstrates numerically that fermion
mass renormalization is being done correctly in the trun-
cated space (e,e y) because the physical mass of the
fermion (i.e., the ground-state mass M) is reproduced.

One also obtains the fermion's structure function by
summing the ground-state wave function over all modes
with a fixed x:

These two cutoff conditions are also applied to the instan-
taneous fermion and photon interactions with the instan-
taneous particles treated as if they were real particles.
Diagonalizing gives the full mass spectrum of states and
their corresponding wave functions as a Fock-state ex-
pansion:

(7.3)
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f (~)=
n, k&, A, , fixed x

(7.5)

A typical structure function for 0.=0.3 is shown in Fig.
6. As expected, the structure function is peaked at x =1
and has a characteristic long radiative tail.

VIII. SUMMARY

Discretized light-cone quantization has been presented
as a fully relativistic discrete representation of quantum
field theories and has been demonstrated to work, in prin-
ciple, for quantum electrodynamics in three space and
one time dimensions. Covariant (tree-level), gauge-
invariant ultraviolet and infrared regularization were
presented in Secs. III and IV and a complete renormal-
ization scheme in the truncated Fock space of (e,e y)
or (e+e, e+e y) was outlined in Sec. VI. The numeri-
cal check of the renormalization method is the demon-
stration that the electron's bare mass is equal to its physi-
cal mass using diagonalization. This is presented in Sec.
VII.

Most of the positronium spectrum is contained in this
truncated Fock space: The Bohr levels, L, .S coupling,
the hyperfine interaction, and the part of the Lamb shift
from the fermion self-energy diagram are all included
(the results obtained in this truncated Pock space will ac-
tually be for muonium because the annihilation potential
is not present).

A possible method of extending this procedure to in-
clude the Fock state with two photons, (e+e yy), is to
include mass counterterms for the fermion self-mass dia-
grams with two photons in Aight. A subset of these are
shown in Fig. 7. Including this Pock state with two pho-
tons should reproduce the full Lamb shift excluding the
Uehling term for vacuum polarization. The Uehling
term can be included by further extending the Fock state
to include (e+e e+e ). This extension can be imple-
mented by introducing photon-mass counterterms for the
graphs in Fig. 8. As explained in Appendices D and E of
Ref. [38], photon-mass counterterms are necessary be-
cause we are using a nonsubtractive ultraviolet regulari-
zation scheme. A test of whether this is done correctly is
to check that the ground state has M =0. This would

1.0

0.6—
I

Q)

0.4—

0.2

FIG. 7. Some fermion mass counterterms needed to include
the (e e yy) Fock state.

verify that the bare photon mass remains equal to the
physical photon mass. Including this extra Fock state
also puts back the annihilation potential needed to calcu-
late true positronium levels.

The method of DLCQ has a number of important posi-
tive attributes.

(l) The technique is straightforward, nonperturbative,
fully relativistic, and can be applied to quantum field
theories in general, the most obvious candidate being
quantum chromodynamics. Even the truncated Fock-
space analysis is nonperturbative since the Fock states
that are allowed are iterated an infinite number of times.

(2) Because of the positivity of P+, there are no in-
teractions in the theory that create massive particles out
of the vacuum. As a result, in theories without zero
modes, the vacuum structure is simple: the perturbative
vacuum, which is the Fock-state vacuum, is also the true
vacuum, the eigenstate of HLc with M =0. An il-
luminating analysis of the inhuence of zero modes in
QED, +, has been given by Werner, Heinzl, and Krusche
[48,49]. They show that, although it is correct to impose
the gauge condition A + =0 on the particle sector of the
Fock space, one must allow for 2+%0 if k =0. Allow-
ing for this degree of freedom, one obtains a series of to-
pological 8 vacua on the light cone which reproduce the
known features of the massless Schwinger model includ-
ing a nonzero chiral condensate. However, the e6'ect of
the infrared zero-mode quanta decouples from the phys-
ics of zero-charge bound states, so that the physical spec-
trum in one space, one time gauge theories is independent
of the choice of vacuum. The freedom in having a
nonzero value for 3+ at k+=0 can also be understood
by using the gauge 8+ A + -k+ A + =0 [24].

(3) Diagonalization has the potential of giving the full
spectrum of bound states and scattering states along with
their respective wave functions. Unlike equal time theory
[50], the structure functions and distribution amplitudes
needed in calculations of high-energy scattering processes
can be obtained directly from the light-cone wave func-
tions.

(4) The fermions are treated in a natural way. There
are no fermion determinants or fermion doubling.

E ~- !

0 0.2 0.4 0.6 0.8
Z

N=2

FIG. 6. Fermion structure function from diagonalization.
a=0.3, E =17,I.& =101/m„A=2. 3m, .

FIG. 8. Photon-mass counterterms needed to include the
(e+e e+e ) Fock state.
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(5) An A + =0 gauge, there are only two physical pho-
ton polarizations.

After the validation of the DLCQ method to QED3+„
the natural extension will be to QCD, particularly for
heavy-quark systems. Unlike the situation for QED, it is
anticipated that zero-mode quanta will be important for
understanding the light-cone vacuum for QCD in physi-
cal space time. In particular, the non-Abelian four-point
interaction term

approach is shown to be identical to that derived from
light-cone perturbation theory. The rules for LCPT are
given in Appendix B in Ref. [14] and Appendix A in Ref.
[25] and can be derived from the light-cone Hamiltonian
HLC given in Eqs. (2.2) —(2.7).

The diagrams that must be considered in LCPT are
given in Fig. 9 with light-cone time x+ Bowing from left
to right and momenta assigned as shown. Using P+ and
P~ momentum conservation, q and q' are

HLC= —
—,'g~ Jd'x Tr([A", A'][A„, A ]) (8.1)

q+=t+ —
I. +=k —k+

i f f i

—1~, 1~

plays a unique and an essential role, since H;„, ~0) can be
nonzero if one includes zero-mode gluons in the Fock
space. Thus, the true light-cone vacuum ~Q) is not
necessarily identical to the perturbative vacuum ~0). In
fact, the zero-mode excitations of HI produce a color-
singlet gluon condensate (Q~G„,G"'~Q)WO of the type
postulated in the QCD sum-rule analyses [51]. The eff'ect

of such condensates will be to introduce "soft" insertions
into the quark and gluon propagators and their efFective
masses m (p ), and to modify the perturbative interac-
tions at large distances. Thus, unlike the one space, one
time theory, the zero-mode gluon excitations do afFect the
color-singlet bound states. The DLCQ method will have

to be extended to include the possibility of zero-mode
contributions in QCD3+, . On the other hand, such zero-

mode corrections to vacuum cannot appear in Abelian

QED3+, as long as a nonzero fermion mass appears in

the free Hamiltonian.
The DLCQ method clearly as many advantages for

solving nonperturbative problems in field theory. Many
technical problems have been solved on how to regulate
and renormalize gauge the Hamiltonian form of gauge
theories quantized on the light cone. The true test of this
procedure will be in the numerical applications. Results
for the spectrum and bound-state wave functions for po-
sitronium at large a are given in Ref. [6]. Initial applica-
tions of DLCQ to QCD3+, at low Fock class number
have recently been made by Kaluza [52] and by Hollen-
berg et al. [53] in addition to our efforts.

q,'+~'
q +

(Al)

qP — P

Note that the photon's four-momentum q is on mass
shell. Remember that P is not necessarily conserved, so

q Wl, —lf Wkf —k; (A2)

Tf,"=e u(lf)y„u(l;)u(kf)y u(k, )
( +)2

Tf, '=e'0(q+ )u (lf )y„u(l, )u (kf )y,u (k; )

x .+ n"q +~ q"

1

q+(l; —lf )
—q+q +i@

(A3)

Tf;'=e 0( —q+)u(lf )y u(l;)u(kf )y,u(k;)

gq +gq
g

Using the LCPT rules found in Ref. [14] or [25] and per-
forming the sum over photon polarizations, gives the fol-

lowing for the three LCPT graphs:
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x 1
—q+(k, —kf ) —q+q +ie

where q"=(0,2, 0j). Note that Tf, 'diverges like I/(. q+)
for small q+. The sum of these three amplitudes is

APPENDIX A

In this appendix the tree-level Mgfller scattering ampli-
tude (e e —+e e ) derived using Feynman s S-matrix

FIG. 9. Three graphs that occur in LCPT for tree-level
Mufller scattering.
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,z~ ~ n"n + p+n"q+nq"
f' P ~

( +)2 +

A„=u(lf)y u(l;), B,=u(kf)y u(k;),

8(q+ ) 8( —q+ )

q+(I; —If ) —q+q +ie —q+(k; —kf ) —q q +ie
'

(A4)

Writing out the components p, v=+, —,1,2 explicitly, one finds, after some algebra,

+
)

rI"ri g"q '+ rl'q"
P ~

( +)2 +
1

q+(I, —lf ) —q+q +ie

=A„B + + + [rI"(I;—If) +g (I lf)"] .8(q+) 1

q+ q+(I, lf—) q+—q +ie
This expression can be summed with a similar expression for the 8( —

q ) term to give

(A5)

Tf; =e u(lf)y u(l, )u(kf )y„u(k;)

8(q+) 8( —q+)
q+(I; —lf ) qi A—'—+i,e q+(kf —k, ) —q,' A'—+i,e

g"(I;—I )'+rI'(I, —I )"
+8(q+)

q q (I; If ) ——qi A+—ie,

rl" ( kf —k, )'+ rI'( kf —k, )" 1+8( —q+) + q+(kf —k, ) —qi k+—i e. (A6)

This result is valid for on- or off-shell electrons and does
not assume P momentum conservation. Note that this
final expression for Tf; diverges only like 1/q+ for small
q+. The leading 1/(q+ ) behavior from T',"is apparent-
ly canceled by a similar singularity from Tf; ' and Tf; '.

The Feynman answer can be obtained by first enforcing
four-momentum conservation (i.e., k; + I, =kf + If ),

Tf; =e u(lf )y„u(l;)u(kf )y„u(k;)

I

and then requiring the electrons to be on shell [i.e.,
u ( If )(E' Ef ) (ul; ) = u ( kf )(E; —E& )u ( k; ) = =0]:

ILL V

Tf, = eu(lf)y„u—(l, )u(kf)y u(k;)
qFR

—A, +is
(A8)

il"(I; —I ) +q'(I; —I )i'
x —gp+ ' f ' f (A7)

qgR is defined to be I/' Ifl" =kfl—" kt' T—he la.st answer is
recognized as the familiar answer for Me(lier scattering
using Feynman rules. Note that the above analysis only
holds for small k. The conclusions should not be carried
over to finite X theories.

APPENDIX 8

The calculation of various self-mass diagrams is given in this appendix. The first to be considered is the familiar one-
loop fermion self-mass diagram shown in Fig. 10. The various momenta are

x p +I
p = xP, ,xpgxP

(ki+ypi) +A,
k) = gP,

yP
, kg+gpj

[ —ki+(x —y)pi] +m,
(x y)I', — , —ki+(x —y)pi

The LCPT amplitude for this process is
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[ —ki+(x —y)pi] +m,
(x y)—P

Tf, = —f dy f d ki . , N=u(p)lu(k 2)u(k 2)f*u(p),1

16ITI P 0 y(x —y) D+ie'
x pi+m, (ki+ypi) +A,D=

xP yP

(82)

The rules for LCPT QED are derived in Appendix 8 in Ref. [14] and Appendix A
in Ref. [25]. The photon spin sum can be done by using the relation

ve pv+
P V+ V P

(83)

which holds for the spinors given in Eq. (2.10) with II =(0,2,0i). Doing the numerator algebra and simplifying the
denominator produces the desired answer

(x ki+y m, )+ [x ki+x(x —y)A. ]
X (84)

8~' x ki+y mz+A, x(x y) —ie—

5„.is a 5 function between the incoming and outgoing fermion spins. Note that, as expected from Lorentz invariance,
this answer is independent of pi. If one changes variables to z =y/x, one also finds that the answer is independent of P
and x. Since Tf; evidently does not depend on any of the quantum numbers of the incoming fermion, Tf; can be con-
sidered to be a pure mass renormalization.

The quantities actually discretized are x,y, pi=xpi, and ki=ki+ypi or —ki+(x —y)pi. The choice between these

last two is irrelevant. Rewriting T&,. in terms of these quantities gives
2

2 g 3'

gI „x(x —y) ' x
Tf, = S„, g, x—f"dy fd'k,8~'

+y m, + x ki ——pi +x(x —y)A,

(85)

x ki ——pi +y m, +A, x(x y) —ie—

This answer is discretized by replacing

ITn i TTqi =2 2x= —,y=, pi=, ki=, fdy= —g, fd kJ
q

(86)

where ITn /L and ITn /L& are the P+ and Pi of the incoming fermion, respectively, and q =2,4, 6, A fa««of 1/x
is also necessary because, in the continuum, factors of I /&x from external wave functions are conventionally associat-
ed with the wave functions themselves; whereas, in the discretized case, the factors of I/&x are absorbed in«P
These steps give the result

2'
Tf, = —5„.K

Liqq,

1 q 2 n q
2

n qi ——ni +q p + qi ——ni
2n (n —q) n f 2

n qi ——ni +q pf+n (n q)pT—
(87)

where Pf =(mLi/m. ) and PI =(ALi/IT) . The photon mass, A, , has been set equal to zero in the numerator in this last

expression.
Ultraviolet and infrared regulators are implemented by requiring that the intermediate state in Fig. 10 satis6es

(ki+ypi) +A,
E', (88)

mi+p
spec

which, in terms of the discrete variables given above, reads

qi +P (ni qi) +Pf— I ALi+
q n —

q K
qi+p 1

q
-K (89)

Here, p, is equal to (m;Li/IT) . The sum is over any spectator particles that might occur during the process. The
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correct mass counterterm that should be inserted in H„c to ensure that the fermion's bare mass is equal to its physical
mass is the negative of Eq. (87), where the sum is over q'=0, +1,+2, . . . and q =2,4, 6, . . . , n —1 that satisfy Eq. (89).

The next self-mass diagram to consider is shown in Fig. 11. The momenta are assigned to be

X Pi+tlZ
p = xP, ,xpgxP

(ki+ypi) +A,
k( = yP,

yP
, k~+yp~

[ —ki+(x —y)pi] +m,
k2 = (x —y)P, , —ki+(x —y)pix —yP (810)

(li+zpi) +A,
zP, , Ig+zpg

zP

[—li+(x —z)pi] +m,
l2 = (x —z)P, x —z P , —li+(x —z)pi

J dyd. fd k,d'I,

and the answer in LCPT is

11 g
2xP

~= u (p )k'(&, )u (&, )~ (&, )/(&, )*y+E'(k, )u (k, )~ (k, )/(k, )'ii (p),
(811)

X Pg+Vle
X

xp +m
X

(ki+ypi) +A,

(I, +zp, )'+A, '

[ —ki+(x —y)p~] +m,
+lE

x —y

[ —li+(x —z)pi] +m,
+lE

X Z

The numerator algebra is done by using the photon spin sum relation Eq. (83), applying symmetric integration to elimi-
nate various terms proportional to k' and i' (upon simplification, the denominator turns out to only involve ki and li ),
and making use of the spinor properties shown in Appendix D. The answer for the numerator

X =8pm,"y n„, , (812)

turns out to only have a contribution from the spin-Hip interaction of HLC. The complete answer is then

2 2

8m. O x ki+y m, +A, x(x y) ie— — (813)

Again, changing variables to z =y /x demonstrates that this result is independent of x, P, and pi and is therefore a pure
mass renormalization.

Next, consider the case of X one-loop fermion self-mass pieces all connected by instantaneous fermions shown in Fig.
12. As above, momenta are assigned and the LCPT answer is written down for Tf, . The numerator and denominator
are both factorizable, giving an answer of

2

T(,N) g d d 2k
gn x 0 y (m2/x) —(ki+A, )/y —(ki+m, )/(x y)+ie—

(2)
Tfi (814)

k, Q,

k2
k2

FIG. 10. One-loop fermion self-mass.
FICx. 11. One-loop fermion self-mass diagrams joined by in-

stantaneous fermion.
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where Tf,. ' is the answer for the diagram in Fig. 11. Using

N=2

N —2 1

1 —x (815)

and substituting in Eq. (813) for Tf; ' yields

2

g~3 0 x kf+y m, +A, x(x y)—ie—
Tf, =5„

2

(816)

8~ o x k~+y m, +A, x(x y) ie— —

as the amplitude for the process shown in Fig. 13. Similar to above, this result is discretized by rewriting in terms of x,
y, pj =xp~, and kI =k~+ypj and making the substitutions in Eqs. (86) to give

2
CX

n [qj (ql—n)n~] +q pf+n(n q)p—

' ' n q~
——n~ +q pf + n (n —q)p

(817)

This answer is subject to the same regularization conditions as above, Eq. (89). The mass counterterm necessary in
HLC is the negative of Eq. (817) subject to the conditions, Eq (89).. A combination of the mass counterterms, Eqs. (87)
and (817), provides the full mass renormalization needed in the truncated Fock space (e,e y) or (e+e,e+e y).

APPENDIX C

The equivalence of answers derived using Feynman's
S-matrix analysis and using infinite-momentum-frame
time-ordered perturbation theory is demonstrated in this
appendix for the one-loop fermion self-energy diagram in
Feynman gauge. Since it is believed that light-cone per-
turbation theory and TOPT are mathematically
equivalent, this demonstration makes the equivalence of
LCPT and Feynman rules results for one-loop radiative
corrections plausible. The analysis for the fermion self-
energy is done in Feynman gauge for convenience,
though the analysis should be similar in light-cone gauge
in the limit A, —+0.

First, the Feynman rules answer for the fermion self-
energy graph shown in Fig. 14 is described briefly. We
start with the familiar result

u (p)l "(p —k+ m, )y„a (p)
(2~)~ [(p k) m, +i e](k —

A, +—ie)—
A factor of —i has been included to facilitate comparison
with TOPT . Doing the numerator algebra, combining
denominators, changing variables to q"=—-k"—xp", and

eliminating terms proportional to q" by symmetric in-
tegration gives

ig 2
r 4m, (1+x)

, fd'qf dx
(2m ) 0 (q a+i e)—

a =m, x +X (1—x) .
(C2)

The 5 function is between the spin of the incoming and
outgoing fermion. Doing the q integral by contour in-
tegration and then the q integral by standard methods
results in

This answer diverges like lnq~ for large q~; it is therefore
necessary to introduce a regulator such as subtracting a
Pauli-Villars contribution.

Now consider the same process in TOP T . The
TOPT rules for QED in Feynman gauge are given in
Ref. [31]. Two graphs need to be considered, the usual
time ordering and the Z graph. These are pictured in
Fig. 15. Momenta are assigned to the various legs of the
usual time-ordering contribution:

2m, (1+x)
Tf. =5 ~ dx d q8~' qj +x m, +A, (1 x) ie— —

(C3)

k2 k3 kN

FICx. 12. N one-loop fermion self-mass pieces chained by
1V —1 instantaneous fermions.

FIG. 13. Sum of N chained one-loop fermion self-mass dia-
grams.
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k)

p-k

FIG. 14. One-loop fermion self-energy.
FIG. 15. One-loop fermion self-energy contributions in

time-ordered perturbation theory. The right graph is typically
referred to as the Z graph.

p =(E,Oi, P),
k, =(E„ki,xP),
k2 = [E2, —kj, (1 x)P—],
E =QP +m, ,

E, =+x P +Aj,

E =Q(1—x) P +m

g2 k2+g2 ~ 2 k2+ 2

(C4)

2

Tp= 3P f dx fd k~ —(g~+),
4(2m) —~ E)E2 D+ie

N = u (p)/u (k2 )u (k2 )E'"u (p),
D =E —Ei —E2 .

(C5)

A Pauli-Villars contribution has been subtracted for ul-
traviolet regularization. The TOPT answer is gotten by
letting P approach infinity, and the numerator is evalu-
ated with the help of the relation

(C6)

The time-ordered perturbation theory answer for this
graph is which holds in Feynman gauge. This gives the result

2

T/, =lim 5„ . f dx f d k [I(A,,P) I(A, P)],—
8m

(C7)

I(A, ,P) = 1 Ql+(m, /P) Q(1 —x) +(m~/P) (1 —x)—2(—m, /P)2

Qx (Aj/P) Q(1 x) +(mj/P) —Ql+(m, /P) Qx +(—A~/P) Q(1—x) +—(m /P) +is

for the usual time ordering in TOPT;„&. Note that all the square roots are assumed to be positiUe.

The usual procedure is then to take the limit P~ 00 inside the integral to simplify I(A, ,P). This is valid as long as

one is not near the points x =0, 1,-which are singular for P= ~. It is necessary to do a more detailed analysis near
these two points. The integral is split into three regions: x & 0, 0 & x & 1, x & 1.

(1) In the first region,

E~P[l+ —,'(m/P) ], E,~ xP[1+ 2(kj/xP) ],——

and

E2~(1 x)P [1+—,
' [m~/(1 —x—)P] ]

as P~ ~. I(A, ,P) approaches

—,'(1 —x)(m, /P )+—,'[m f/(1 x)P ]—2(m, /P—2)

x(1—x) 2x
—+ 0,P~ oo

which is nonsingular. Therefore, taking the limit before doing the x integration is allowed gives the result

Z',"=0 .fi

(2) In this region,

EARP[1+ ,'(m/P) ],—E,~xP [1+,'(A~/xP) ], —

E2~(1 x)P [1+—,'[m~/(1 ——x)P] ],
and

(C9)
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(1—x)m, + [(k f +m, ) /(1 —x) ]—4m,I (A.,P)~ x(1 x) m, —[(kj+A, )/x] —[(kf+m, )/(I —x)]+ie
1 (1—x) m, +kj+m, —4m, (1—x)

1 —x x(1—x)m, —(1—x)(k~+1, ) —x(ki+m, )+is (C10)

as p~ ~. I (g, p) has a singularity near x =1. The integral for region (2) is split again into two parts:

2

T&P= lim lim 6„ f ' dx+ f dx fd'kj[I(~, p) I—«P)] .
e~oo P~oo 8~ . 0 1 —e

(C 1 1)

(a) in the region () & x & 1 —e, we are away from the singularity so the limit P ~ 00 can be taken inside the integral to
produce the answer

(1—x)m, + [(k|+m, )/(1 —x)]—4m,

8m o x (1 x) m, —[(k f +A, )/x] —[(k j +m, )/(1 —x)]+i@

(b) The nonsingular part of I (A, ,P) is expanded in powers of (1—x) to give the form

1
OO

I(A,,P)= g A„(A,,P)(1—x)"
Q(1 x) +(m—i/P) n =o

for I (A, ,P). The contribution to Tf, is then

—(A, ~A) . (C12)

(C13)

2
1

00

Tf; '= lim lim 5„ f dx f d k~ g [A„(A,,P) —A„(A,P)](1—x)" .
Q(1 x) +(mj—/P) =o

(C14)

2'
p~~ m&

(C15)

The final answer as P —+ ~ is then

Since A, and A appear in I only as A, /P and A/P, it must
be that A„(A,P)—A„, (A, P) approaches zero at least like
1/P as P~ oo. One can expand A„ in powers of 1/P to
see this. As P~~, the mast divergent x integral is

dx
(1—x)

Q(1 —x) +(m~/P)

e+ "t/e +(m~/P)
Im, l/P

split into two pieces: one for 1&x &1+@ and one for
1+a &x & ~. In the first region, the nonsingular part of
I(A, ,P) is expanded in powers of (x —1), similar to Eq.
(C13). Again, we find that A„(A,, P) —A„(A,P)~1/P as
P~ ~ and that the x integrals diverge at most like lnP.
Thus, this region gives a zero contribution to Tf;. The
limit P~ ~ can be taken inside the x integral for
1+@&x & 00 since we are away from the singularity to
give

2
T~'. ]= »m~, g

fi ss'
e~O 8~

Z' '~ —lnp~O.2b
fi p

(3) Finally, in the third region, x ) 1,

(C16) X dx d k~
oo 2 1 1

1+@ x(1—x) x(1—x)

=0. (C18)

I(A.,P) 1

~-~ x(1—x) (C17)

which is singular near x =1. As above, the integral is

The contributions from the three x regions are now
summed to give the final answer for the usual time-
ordering, one-loop fermion self-energy diagram:

g~ ( 1 (1—x)m, +[(k~+m, )/(1 —x)]—4m2
Tfi ~ss' 3

dx d kq
8~ o x (1—x) m, —[(kj +1, )/x] —[(k j +m, )/(1 —x)]+i e

(2—2x —2x )m, —k~=5„3 dx d kj z 2 z
—(A,~A).8~' 1 —x k~2+x m, +(1 x)Ate— ,

— (C19)
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Note that this result diverges like A for large A. A term

k~+x m, +(1—x)A,1=
ki+x m, +(1—x)A,

(C20)

can be added to the erst term in the integrand and an
analogous term with A, replaced by A subtracted from the
second term to give

2 2m +A,
~fi ~ss' 3

dx d k
8~' k~+x m, +(1—x)A. —ie

(C21)

p =(E,Oi, P),
k, =(E„kj,—xP),

k2 = [E2—k~, —(1 x—)P],
E=QP +m, ,

E)=+x P +k~,

E2=+(1—x) P +mj

A, =k~+2
m2 —k2+ 2

me

(C22)

Now turn to the Z-graph contribution. A procedure
similar to the above for the usual time ordering is ap-
plied. The momenta are assigned to be

The TOPT result for the Z graph including Pauli-
Villars regularization is

Tf;= lim P f dx fd k~ . —(A, ~A),
~ 4(2m ) E&E2 D +i e

&(p )8'U(kp)u(k~)/u(p), (C23)

D= —E—E —E2

Doing the numerator algebra gives

2

Tf; = lim 5„ f dx fd kz[I(A, , P) I(A, P)], —
p~ ~ 8~3 —a)

(C24)

1 +1+(m, /P) Q(1 x) +(m~—/P) +(1—x)+2(m, /P)
I(A, ,P) =

Qx2+(A, /P)2 Q(1 x)2+(m~—/P) Ql+(m, /P) +Qx +(A~/P) +Q(1 x) +(m—q/P) &e—
Again, we find potential singularities in I(A, ,P) near x =0, 1. The integral is again split into three regions: x ) 1,
0&+ &1, x &0.

(1) For x ) 1, EARP[1+ —,'(m/P) ], E& ~xP[1+—,'(Az/xP) ], and E2~(x —1)PI1+—,'[mz/(I —x)P] ] as P +~ and—
—,'(x —1)(m, /P )+—,'[m~/(x —1)P ]—2(m, /P )

p-~ x(x —1) 2x
(C25)

which is nonsingular. The limit I'~ ~ can be taken inside to give

(2) In the second region,

(C26)

I(A, , P) 1 (C27)

which is singular near x =0. The integral is split into two pieces:

2

Tj';. '= lim lim 5„ f dx+ f dx fd kj[I(&,P) I(A, P)] ~

p~Q phoo 8~ . 0
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(a) The nonsingular part of I ( A.,P) is expanded in powers of x for the region 0 & x & e to give

1 oo

I(A, , P)= g A„(A,P)x" .
"t/x +(A.~/P) n =o

Focus specifically on the contribution of the term Ao to Tf;,
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(C29)

2

T~,
' = lim 5„3f d k~ Ao(A, , P)f0 Qx +(A /P)

—(A, —&A)

g2 e+ "t/e +(A~/P)= h 5„. 3 f ki Ao(A, , )
8m (A~ /P

—(A,~A) (C30)

and [13]. Of course, this rule continues to remain valid
for tree graphs.

Summing this result with that for the usual time-
ordering Equation (C21) yields an answer identical to the
Feynman rules answer, Eq. (C3), demonstrating the
equivalence of using TOPT and Feynman rules for the
one-loop fermion self-energy. The final answer in
TOPT is just the Feynman rules answer.

Summarizing, the usual time-ordering graph gives an
answer in TOPT that diverges like A and is equal to
the usual LCPT answer for the fermion self-energy.
There are no contributions to this graph from the regions
near x =0 or 1. The Z-graph contribution in TOPT
only has a contribution near x =0 and sums with the usu-
al time-ordering graph to give the familiar Feynman rules
answer. This final answer diverges like lnA because the
leading A divergence cancels. In order to reconcile the
LCPT and Feynman rules answers for the one-loop fer-
mion self-energy, an extra piece equal to the TOPT Z
graph must be added to the light-cone Hamiltonian and
the LCPT rules [54].

One final note: It should be noted that the method of
implementing a Pauli-Villars ultraviolet regulator in
Feynman gauge used above is not appropriate in light-
cone gauge unless a modification is made. The problem
in light-cone gauge is that the transverse degrees of free-
dom are mass dependent, but the longitudinal degree (i.e.,
the instantaneous interaction) is not. Consequently, the
Pauli-Villars counterterm has (up to a sign) exactly the
same instantaneous piece as the true photon, and (at least
at the tree level) a suppressed transverse piece for large
A. Therefore, the counterterm cancels the instantaneous
piece and leaves the transverse piece unmodified as
A~ac. The full answer at tree level would be just the
transverse interaction, which is incorrect and not gauge
invariant.

This problem can be remedied by introducing a
dynamical longitudinal photon with derivative coupling
proportional to the photon mass squared. However,
since the photon mass is usually here only as an infrared
regulator and is ultimately sent to zero, no consequences
of significance arise from the improper treatment of the
photon mass term in this work. Implementing a Pauli-
Villars regulator in light-cone gauge would, however, re-
quire the addition of heavy longitudinal photons [55].

As P~ ~, Ao(A, ,P) and Ao(A, P) both approach one and
the log approaches in(2'/~A, ~~). Using these relations,
we find

8~

g2 k~+A=5„ f d k~ln
16m ki+A,

(C31)

Analysis of the other terms A„, n =1,2, 3, . . . , reveals
that their contribution to Tf; all approach zero as
P —+ oo. So, the complete answer for the region 0&x &e
1s

T&,.'=5„. fd k~ln
16m k~+k

(C32)

(b) For e&x &1 the integrand is nonsingular, so the
limit can be taken inside the integral to give

1 1Z,'"=5„,g, f dx fd'k, ———=0.
8m

(C33)

(3) For x & 0, the results are similar to 0 & x & 1. There
is a singularity in I(A, , P) near x =0. Expanding I in
powers of —x for —e & x & 0 reveals a contribution iden-
tical to Eq. (C32) from the term Ao. All other contribu-
tions vanish as P —+oo. Summing contributions from
x ) 1, 0&x & 1, and x &0 gives the total result

g2 k~+A
Tf, =5„, f d k~ln

8m k~+A,
(C34)

for the Z-graph contribution to the one-loop fermion
self-energy diagram. This answer can be rewritten as

(C35)—(A, —+A).

Note that this answer disagrees with the Z-graph answer
using a naive application of the tree graph rule for in-
cluding backward moving particles given in Refs. [31]

fi ~ss' 3
dx d k~8~' k~+x m, +(1 x)AiE— . —
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APPENDIX D

A set of useful spinor properties is given in this appendix. See also [13].

u(k, s) . u(k, s') (s'~s)

u y"u

uy y u

uy y u

uy yu
uyy u

uy y+y'u

uyy y u

uy'y+y'u

2me

2k"
4m,
4m,

0

k +m e

k+
4(k'+ i e"k')
4(k '+i e"k')
2k+(5"+ie'~)

0
4(+k'+ ik')
4(+k' —ik )

2k+(+S'+ i S")
2k+(+5"—i5' )

4m, (+6"+i 5' )

4m, (+5"—i6' )

0

v(k, s)v {k, s') = —2m, 5„
v ( k, s)yI'v ( k,s') =2k "5„
v(k, s)u (k,s') =u(k, s)v(k, s') =0
u(k, s)(ypy y +y y y&)u(k, s')=v(k, s)(yI"y y +y y y")v(k, s')

={4g"k —4g" k +4g k")6„
v{k,s)yI'y y v(k', s')=u(k', s')y y y"u(k, s)

i,j =1,2, p, v, ca=0, 1,2, 3 or +, —,1,2
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