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We study the phase-space correlation function for the Dirac vacuum in the presence of simple field
configurations. Our formalism rests on the Wigner transform of the Dirac-Heisenberg correlation
function of the Dirac field coupled to the electromagnetic field. A self-consistent set of equations
obeyed by the 16 components of the phase-space correlation function and by the electric and magnetic
field is derived. Our approach is manifestly gauge invariant. A closed system of integro-differential
equations is obtained neglecting the quantum fluctuations of the electromagnetic field as should be
appropriate for strong fields. These equations are an extension of the Vlasov equations used in the
description of plasma. Our first applications address the production of particles in strong external
fields. We set a framework for the inclusion of the back reaction of produced particles and for the
description of the local changes of the vacuum state.

I. INTRODUCTION

The structure of the QCD vacuum has been considered
an important element for the understanding of strong-
interaction physics [1]. The electroweak vacuum Higgs
field is believed to be the origin of all elementary-particle
masses [2]. The QED vacuum in strong fields has been
explored both theoretically and experimentally in heavy-
ion collisions and there is a significant discrepancy be-
tween the observed particle spectra and the theoretical
predictions [3]. All this calls for a renewed effort to de-
velop a systematic framework to describe the structure of
the vacuum in a manner which would be to a large degree
independent of perturbative quantum field theory. De-
spite its historical name, the vacuum state is not empty;
it is populated with myriads of virtual particles which en-
dow it with a rich structure. The standard, perturbative
formulation of quantum field theory deemphasizes this
fact by treating the vacuum as just the simplest possible
reference state: the one with the lowest possible energy
and with all the relevant symmetry properties. All the
remaining state vectors that are introduced to model real
physical situations are defined relative to this unique ref-
erence state by building excitations on top of the ground
state. This pragmatic approach enables one to calculate
effectively the elements of the S matrix with the help of
appropriate Feynman diagrams without ever paying at-
tention to the problem of the internal structure of the
vacuum and to its time evolution.

In our opinion, in order to obtain an effective descrip-
tion of the local vacuum structure and its time evolu-
tion, we should use a single time parameter. This will
enable us to treat the QED vacuum as a genuine dy-
namical system with its fully prescribed dynamics, its
conservation laws, and a whole new category of phys-
ical phenomena that take place in the phase space of
virtual particles. There is an obvious drawback that
the correlation functions will not be manifestly covari-
ant, although the theory will remain relativistically in-
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variant. On the other hand, we will gain by introducing
a more intuitive picture of the vacuum. In particular,
we can introduce the phase-space description with its
transparent interpretation. As the main tool we shall
use an analog of the Wigner function [4] for the QED
vacuum: the Fourier transform with respect to the dif-
ference of the coordinates of the Dirac-Heisenberg den-
sity matrix. This density matrix, or as we would say
today the vacuum expectation value of the product of
two field operators, was introduced already in 1934 by
Dirac [5] and has been used extensively by Heisenberg
[6] and by Heisenberg and Euler [7] in their study of the
polarization phenomena in the Dirac vacuum. The spa-
tial Fourier transform of the Dirac-Heisenberg density
matrix is a (time-dependent) matrix-valued function of
position and momentum. This function is capable of de-
scribing many features of the Dirac vacuum in quantum
electrodynamics. Since we have combined the ideas of
Dirac, Heisenberg, and Wigner, we shall call this object
the Dirac-Heisenberg-Wigner (DHW) function.

In this paper we develop the formalism for the phase-
space description of the Dirac vacuum in an approxima-
tion suitable for strong fields and apply it to several sim-
ple cases, setting the stage for future more complex ap-
plications. Our formalism has been developed to serve
a dual purpose. On the one hand, it gives the descrip-
tion of the field-theoretic vacuum for spin-% particles in
terms of phase-space concepts that are easier to visualize
and understand. On the other hand, it offers a chance to
perform the calculations that, within the standard for-
mulation, required cumbersome summations over an in-
finite set of intermediate states. The realization of both
these aims is made possible by our choice of the one-time
Wigner function. This function has a much simpler, more
direct interpretation and it also enables one to study the
time evolution in a more direct way as compared to the
Feynman propagator formalism.

Wigner-type transforms of the vacuum expectation
values have been used in the past to formulate a kinetic
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theory of quantum scattering theory [8, 9], in quantum
electrodynamics [10,11] and also in quantum chromody-
namics [12]. The main difference between the present
paper and those earlier works is that, in accordance with
the original idea of Wigner, we use the one-time distribu-
tion function; i.e., we do not perform the Fourier trans-
formation with respect to the time variable. The four-
dimensional Fourier transformation does have the advan-
tage that it secures explicit relativistic covariance but, at
the same time, it renders the interpretation of the Wigner
function obtained in this manner quite obscure. The sit-
uation here is quite similar to that found in the study of
the Bethe-Salpeter equation which is also fully relativis-
tic, but one is yet to discover a clear, physical interpreta-
tion of the Bethe-Salpeter two-body wave function. Our
three-dimensional approach enables us to assign phase-
space distributions to quantum states defined at a given
time and give these distributions a transparent interpre-
tation. It turns out that the lack of explicit relativistic
invariance does not hamper our ability to perform effec-
tive calculations and even such tasks as renormalization
can be presented in a new light.

There are some similarities between our work and the
program that is being pursued by Cooper, Mottola, and
their collaborators [13-15], who have developed a self-
consistent solution of the initial-value problem in QED.
The differences between these two approaches are, how-
ever, substantial. In the Cooper-Mottola program the
charged particles are N species of scalar bosons, the self-
consistency is achieved by evaluating the time evolution
of the field operator of charged particles, and the exten-
sion to spatially inhomogeneous fields has not been im-
plemented. However, their formalism based on the two-
point Wightman function does allow for such an exten-
sion. In our approach the charged particles are spin—-.i;
fermions, the field operators are completely eliminated
and replaced by the DHW function, and the spatial de-
pendence is fully included in our evolution equations.

Our paper is organized as follows. In Sec. II we de-
rive the basic evolution equations for the DHW func-
tion coupled in a self-consistent manner to the Maxwell
equations. In Sec. III we study the conservation laws
for this system and discuss the physical meaning of var-
ious quantities introduced in our description. Examples
of solutions of the equations for the DHW function are
exhibited in Sec. IV. In particular, we study the pair cre-
ation phenomena for homogeneous, time-dependent elec-
tric fields. In Sec.V we describe the renormalization of
the parameters characterizing the vacuum.

II. THE DHW FUNCTION FOR THE DIRAC
FIELD AND ITS TIME EVOLUTION

As our starting point we shall use the standard field
equations of quantum electrodynamics in the Heisenberg-
Pauli (temporal) gauge [16]. This is the most convenient
choice for the study of the time evolution since in this
gauge the covariant time derivative in the presence of
the electromagnetic field does not contain the potential
term (Ao = 0). The equations for the Dirac and Maxwell
field operators are
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0¥ = [a - (—iV — eA) + Bm]¥(x, 1), (1)
—i0, 0t = Wl(r, )[a- iV — eA) + Bm], (2)
B =-VxE, (3)
V-B=0, (4)
8 eoE =V x p3'B — %[\PT,a\I'] + Jext, (5)
VB = Z[¥, U] + poxe. (6)

We have set here # = 1 = ¢, but later in some formulas
we shall reinsert these constants to identify quantum ef-
fects. In order to cover the general case we have assumed
that the charge density and the current density are made
of two terms. The first term represents the contribution
from the quantized Dirac field and the second represents
possible additional, external sources of the electromag-
netic field. In the second pair of Maxwell equations, we
have identified the D and H fields with the oE and u; ' B
fields. At a later stage the distinction between these two
pairs (D, H) and (E, B) will enable us to treat the prob-
lems of vacuum polarization in a more penetrating man-
ner.

In principle we can introduce two different objects from
which we can build the components of the DHW function:

Cap = (@Wa(r1, 1) Th(r2,1)|@)
j:(@[\II},(rz,t)\Ila(rl,t)|<I’), (7)

where we have chosen for definiteness the expectation
value in a pure state ®, but an arbitrary, mixed state
could also be considered. In this paper, we shall be pri-
marily interested in the study of the states that are close
to the vacuum state, but our dynamical equations will
be valid in a general case.

Owing to canonical commutation relations, C* in (7)
gives the delta function 84,6(ry — r2). Thus, only C~
carries nontrivial information about the system. We
shall define, therefore, the DHW function for the Dirac
field in terms of the commutator of the field operators.
This commutator is odd under charge conjugation, which
means that in the absence of external sources particles
and antiparticles make the same contributions (except
for the difference in sign) to the DHW function. In the
presence of the electromagnetic field we should modify
the definition of the DHW function in order to make it
gauge invariant. The appropriate modification has been
already introduced by Dirac [5] and Heisenberg [6] in the
form of the exponent of the line integral of the vector po-
tential. Other modifications leading to gauge-invariant
objects are also possible, but the line integral is unique
since only in this case the argument p of the Wigner
function can be interpreted as an eigenvalue of the ki-
netic momentum (£/7)V — eA of the particle [17].

With the inclusion of the line integral, the definition
of the DHW function reads
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Woa(r,p,t) =~} [ dsexp(~ip )
X <<I>

The matrix Wg is by construction Hermitian and hence,
when expanded into a complete set of 4 x 4 Hermitian
matrices, will yield 16 real coefficient functions. We shall
choose as the basis for this expansion the set of matrices
introduced originally by Dirac. The 16 matrices of this
set are built as (external) products from two sets, (1,0°)
and (1, p), of 2 x 2 Pauli matrices (including the unit
matrix for completeness). The matrices o describe the
spin degree of freedom whereas the matrices p act on the
particle-antiparticle degrees of freedom. The correspon-
dence between the matrices built from the p’s and o’s
and the standard v matrices runs as follows:

—1/2

1/)T(1a P1, P2, pS)Uk,plakyPZkasijkp(‘}a'k)"/))
. B 9
"/)(7()’ i7075; Y5, 1; _i757k1 ‘Yks —i707ka i‘y")lb,
where 5 = 7%yy%y® and 79 = v, (i # J).

The expansion of the DHW function into the basis set
of matrices will be written in the form

<<I>‘E(r,t)exp (ie / de - A(E, t)) [W(ry, 1), ¥ (r2,0)] |<1>>

— (B|E(x, 1)] <<1>

B(r, ) exp (ze / de¢ - A(€, t)) [¥(r1, 1), \Iﬁ(rz,t)l

S

— (2|B(r, 1)|®)

This is an approximation of the Hartree type, in which
the quantum fluctuations of the electromagnetic field are
neglected. We believe that for fields that slowly vary with
time this approximation is appropriate in the strong field
regime, even when the fields have large spatial gradients.
In view of the gauge invariance of our formulation, this
approximation may be called the mean-field-strength ap-
proximation or the mean-EB approzimation. Note that
we are disregarding only the quantum correlations be-
tween the electric and magnetic fields and the Dirac field
while keeping the potential in the line integral inside the
original matrix element.

In the mean-EB approximation the equations for W,z
in the matrix form read

D:W = —%D {pro, W} — %[Pw - P + pame, W],
(13)
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> (8)

W(r,p,t)— <f0+ZP:fz+0 go+Zp.0 gz)a

i=1
(10)

where all the expansion coefficients f and g are dimen-
sionless functions of r,p, and ¢. To simplify the nota-
tion, we have suppressed the matrix indices o and 3. It
can be seen from the correspondence table (9) that the
functions fy, f3 and g1, g2 transform as scalars and vec-
tors, whereas the functions f1, f2 and go, g3 transform as
pseudoscalars and pseudovectors.

The time derivative of the DHW function can be ex-
pressed, with the help of the field equations (1) and (2),
in terms of the DHW function itself and two new expec-
tation values involving an additional electric or magnetic
field operator. At this point we shall make the only ap-
prozimation that is needed to derive our self-consistent
set of equations: we replace the expectation value of the
following products of field operators by the corresponding
products of expectation values: i.e.,

[

exp (ze/ dé - A(E, t)) [W(rs, 1), \pf(rz,t)]| > (11)

e AED)) ¥, ¥ ol|e) . (12

® [exp (

where D;, D, and P are the following nonlocal operators:

1/2
Dt=6t+6/ d/\E(r+z/\8p,t)8p
-1/2

2
=0; + €eE(r,t) - 8p — %‘(V - 8,)’E(r,t) - 8, + -+,

(14)

1/2
D=V+e/ dAB(r +i)d,,t) x B,
~1/2

2
=V +eB(r,t) x 8, — -e{;—(v - 8,)B(r,t) x 8p + - - -,

(15)
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1/2
P:p—ie/ dAAB(r +i28,,t) x 3,
-1/2

eh

E(V-@,,)B(r,t) X8p+..., (16)
where the ellipses involve still higher derivatives of the
fields E and B. For slowly varying fields the terms con-
taining the field derivatives are small; the smallness pa-
rameter being equal to the ratio of the Compton radius to
the length parameter characterizing the spatial variation
of the electromagnetic field. If all the terms containing
the derivatives of the electromagnetic field are dropped,
the nonlocal operators D;, D, and P reduce to their local
form:

Dt = Bt + eE(r,t) . 3P, (17)
D=V +eB(r,t) x 8,, (18)
P =p. (19)

This local approximation may also be viewed as a classi-
cal limit, since the disregarded terms involve increasing
powers of the Planck’s constant. For spatially homoge-
neous fields the local form (19) is exact; no quantum cor-
rections appear in the operators D;, D, and P. However,
in contradistinction to the case of nonrelativistic wave
mechanics, the evolution equations for the components
of the DHW function in homogeneous electromagnetic
fields do contain the Planck’s constant and, as we shall
show, are capable of describing such characteristic quan-
tum phenomena as the pair production.

By comparing the coefficients that multiply the same
matrices, we obtain a set of differential equations for the
functions f and g. The equations for the expectation val-
ues of the electric and magnetic field are obtained by sim-
ply taking the expectation values of the operator Maxwell
equations (3)—(6).

The full set of equations for the 16 components of the
DHW function describing the Dirac field and 6 functions
describing the electromagnetic field has the form

Di:fo+cD-g;, =0, ) (20)
m02
th1+CD‘go='_2 B fZa (21)
c mec?
Dif2 +2—P-g3 =2—f1, (22)
h h
Difs = 25P 8, =0, (23)
Dtg0+Df1—2%P>< g, =0, (24)
c me?
D:g, + Dfo — 2-ﬁP X 8o = —2ng’ (25)
c mc?
D:g; +D x g5 + 23 Pfs =281, (26)

Digs — D Xg2—2-§Pf2 =0, (27)
8B =-V xE, (28)
V-B=0, (29)
0, 6E =V x pug'B —j, (30)
V- &FE = p. (31)

The charge density and the current density are ex-
pressed in the following way by the components of the
DHW function:

p(r,t) =e /dﬁfo(r,p,t) ~+ pext(r, 1), (32)

ety =e f dp g, (5,01 8) + Joxs (1, 1), (33)

where dp = (27h)~3d3p. The equations satisfied by
the coefficient functions f and g exhibit a remarkable
symmetric structure, somewhat similar to that of the
Maxwell equations, which may serve as a partial justifi-
cation for our choice of the parametrization of the DHW
function.

The set of coupled, nonlinear integro-differential equa-
tions (20)—(27) and (28)-(31) will form the basis for
our discussion of the self-consistent time evolution of
the quantum electrodynamic state under the assump-
tion that the electromagnetic field is macroscopic, slowly
varying in space and time. Complicated as these equa-
tions may seem, they are still by far simpler than the
infinite set of Dyson-Schwinger equations for all the prop-
agators that fully describes all quantum electrodynamic
phenomena without any approximations. No exact so-
lutions of the Dyson-Schwinger have ever been found,
whereas for our equations we do obtain various nonper-
turbative, analytic and numerical solutions.

III. INTERPRETATION OF THE DHW
FUNCTION

A. Conservation laws

In order to gain a better understanding of the physical
meaning of various components of the DHW function,
we shall now express in terms of these components all
the conservation laws that are valid for our theory in the
absence of external sources. The conservation laws can
be expressed either in the integral form or in the form of
continuity equations (continuity equation for the energy-
momentum tensor for this theory has been already noted
by Heisenberg [6]). Here we shall write down only the
simpler, integral forms of the conservation laws.

The most fundamental and also the simplest of the
conservation laws is the total charge conservation

dQ
e 0, (34)
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Q= e/dI‘ folx,p,0), (35)

where dI" is the volume element of the phase space, dI' =
di dp = (2mh)~3 d3r d3p.

Total energy F, momentum P, and angular momen-
tum M of the system are also conserved;

dE
= =0 (36)

E = /dr [ep - gi(r,p,t) + mCZfB(rzpvt)]

+1 / dr [eoB2(x, ) + 3 "B (x,1)], (37)

dP

a =0

(38)

P= /d[‘ pfo(r,p,t) + /df [eoE(r,t) x B(r,1)],
(39)

(40)

M = /d[‘[r x pfo(r,p,t) + -ggo(l',l):t)]

+ /dfr X [eoE(r,t) x B(r,?)]. (41)
Relativistic invariance of the theory requires that the
time derivative of the first moment of the energy distribu-
tion is equal to the total momentum. The corresponding
equation is indeed satisfied in our theory:

dN

N= /dI‘r [ep - gi(x,p,t) + mc2f3(r,p,t)]

+%/dfr [eoE?(x,t) + pg ' B(r,t)] — t P. (43)

Finally, there is a conservation law that results from
the unitarity of the time evolution of the Dirac field. It
is an analog of the conservation of the scalar product
of two Wigner functions obeying the same equation in
nonrelativistic quantum mechanics:

(44)

In our case, this conservation law takes on the form of the
conservation of the scalar product of two 16-dimensional
vectors built from two sets of functions f and g, both
satisfying Eqs. (20)—(27) with the same electromagnetic
field. When these two vectors are taken to be the same,
we obtain the conservation of the norm,

d 3 3
= /4T <f3+2f,~2+g§+zgf>=0- (45)

i=1 i=1

ad; /dF Wi(r,p,t) Wa(r,p,t) = 0.
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The easiest method to prove all the conservation laws
listed above is to derive them first in the local approxi-
mation, for slowly varying fields, and then observe that
they are also valid without this simplifying assumption,
because all the additional terms in the evolution equa-
tions for the functions f and g involve higher derivatives
with respect to p. Therefore, the contributions to con-
served quantities due to the nonlocal terms will always
vanish upon the integration over p.

B. The classical limit

In order to obtain the classical limit of the evolution
equations (20)—(31) we observe first that the following
ansatz will yield a solution of all these equations,

fo=0, fi=0, fr=0, fs="L,
; ’ (46)
80 =0, gl:P(—E‘_)' g82=0, g3=0,
P
provided the function f obeys the equation
D:f + cD - P(f/E,) = 0. (47)

In the local limit (19), when all the quantum corrections
to the derivatives D; and D and to the operator P are
dropped, the equation (47) for f reduces to the relativis-
tic Vlasov equation of plasma theory:

Of+v-Vi+e(E4+vxB) -9,f=0,

where the velocity vector v is related to the kinetic mo-
mentum by the relativistic formula v = p/E,.

We would like to point out that in the classical limit the
one-time Wigner function leads directly to the classical ki-
netic equation in contrast with the situation for the four-
dimensional (nonlocal in time) Wigner function. Even
though our evolution equations are similar in form to the
set of equations for the four-dimensional Wigner func-
tion obtained by Vasak, Gyulassy, and Elze [11], there is
an essential difference between the two sets of equations.
Namely, their equations are subject to 16 constraint con-
ditions, while in our case no constraints are present. This
difference is due to the fact that from the very beginning
the one-time Wigner function describes particles on the
mass shell while for the four-dimensional Wigner function
the projection to the mass shell is achieved only with the
help of the constraint conditions. As a result, the clas-
sical kinetic equation for the four-dimensional Wigner
function contains an additional term p - E9/8po which
should be eliminated with the help of the constraint con-
ditions.

The fact that for slowly varying fields our equations for
the components of the DHW function can be solved by
the classical distribution function in phase space obeying
the Vlasov equation shows that our formulation conve-
niently bridges the quantum and the classical modes of
description. This does not mean, of course, that every
classical distribution function can be obtained as an ex-
pectation value (8) of Dirac field operators. We know
very well that even in nonrelativistic quantum mechan-

(48)
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ics not every distribution function can be obtained as a
Wigner transform of some wave function or a mixture of
such transforms. The easiest way to guarantee that the
distribution function is an admissible one, is to solve the
initial-value problem with the initial condition represent-
ing a genuine quantum state.

C. The meaning of the f and g functions

The correspondence table (9), the conservation laws,
and also the time-evolution equations enable us to estab-
lish the physical meaning of various components of the
DHW function.

(1) (fo, g1) - The functions fo and g; determine the
charge density and the current density in the phase space.
It is worth noting that Eq. (20) is the phase-space conti-
nuity equation for these two quantities.

(i1) (f3) . The function f3 determines the mass density.

(iii) (go) . In the expression for the angular momentum
we can clearly distinguish the orbital part and the spin
part. This enables us to identify g, as the spin density.

(iv) (g3) . The difference between the function gz and
go is the same as between the mass density and the charge
density; the antiparticles contribute with the opposite
sign. Therefore, the function gz determines the magnetic

J

!

—iG(r,t;r',t') = <0°“t

)

exists only when the external field does not produce par-
ticles. Only then we can identify the in vacuum state and
the out vacuum state,

[0™) = [0°¥) = |0), (50)

and the transition matrix element becomes equal to the
vacuum expectation value in the definition of the DHW
function. Next, we have to take the symmetric limit ¢ —
t’ in order to obtain the commutator. Finally, we perform
the Fourier transformation with respect to the difference
of the space coordinates to obtain

Wep(r,p,t) = %/dssexp(——ip-s)G(r+s/2,t,r—s/2,t).

(51)
This formula will be used in the next section to find the
DHW function in a static magnetic field.

IV. SIMPLE SOLUTIONS OF THE EQUATIONS
FOR THE DHW FUNCTION

A. The free vacuum solution

Before we turn to the properties of the DHW function
in the presence of electromagnetic fields we will write

exp (ie /l: ‘ d{“A,‘(f)) T(¥(r,t)P(x', 1))
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moment density.

(v) (f1, f2) . While a direct characterization of the
functions fi, fo in terms of classical concepts does not
seem to be possible, they can be given some meaning
with the use of the evolution equations for the DHW
function. Thus, according to Eq. (24), f1 determines the
rate of change of the helicity density p - go/|p|, while f,
plays a somewhat similar role for the magnetic moment.
The functions f; and f; are mutually coupled by the
Zitterbewegung oscillations as seen from Eqgs. (21) and
(22).

(vi) (g2) - A similar mutual coupling occurs for the
function gy in relation to the current density g;, as seen
from Egs. (25) and (26). We can also see from Eq. (23)
that the projection of the function gy in the direction
of momentum determines the rate of change of the mass
density fs3.

D. Connection between the DHW function
and the Feynman propagator

A direct relation between the DHW function and the
one-electron Feynman propagator G (defined with the
appropriate line integral),

Oin >

(49)

down the coefficient functions for the free-field vacuum.
These functions can be obtained from the vacuum expec-
tation values of the free Dirac field operators. The only
nonvanishing functions in this case are fz and g; and
they have the values

2m 2
f3e) = =% el®)=-F", (52)
where E, = \/m? + p2. Because of the cancellation of
the contributions from positive and negative values of p,
the net current in the free vacuum is zero. The functions
(52) form the simplest solution of Egs. (20)-(27), but
more complicated solutions can be obtained by solving
the initial-value problem starting with the free vacuum
solution.

The components fs and g; determine the energy den-
sity in the phase space [cf. Eq. (37)]. By subtracting the
free vacuum values (52) from the values of these compo-
nents obtained in the presence of material walls, we shall
obtain a convenient description of the Casimir effect. The
advantage of this approach is that if we postpone the in-
tegration over momenta until after the subtraction, we
will not encounter any infinities.
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B. Solution in a homogeneous magnetic field

Since pure magnetic fields do not produce pairs, we
can extract the DHW function for the homogeneous, con-
stant magnetic from the Feynman propagator, as shown
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in Eq. (51). The appropriate Feynman propagator has
been given by Tsai [18]. Only the components fi, f3, g1,
and g3 turn out to be different from zero and they can
be expressed as the integrals

2 o0
(flaf3$glyg3) = —ﬁ/ dk exp[—chmﬁ - tanh(KZB)pi/B]

x(p) tanh(k?B), m, p — py tanh®*(k?B), mtanh(x>B)B/|B]), (53)

where B = |[eB] and p|| and py are the components of the momentum vector in the direction of the B field and in the

direction perpendicular to the field, respectively, and my =

A /m2+ p“2. One can check by a direct substitution that

these expressions are a solution of Egs. (20)-(27). For a weak magnetic field they reduce to

(fl ) f37 glag3) ~ _( €p - B/ES) 2m/Ep + 5m(6B)2p:JZ_/4E;’ 2p/Ep
+5p (eB)*pl /AE; — 3p, (eB)*/2ES, meB/E3). (54)

C. Solutions in a homogeneous electric field

The simplest example that already includes pair pro-
duction is that of the homogeneous electric field. In this
case we cannot use the Feynman propagator to calculate
the DHW function since we need the expectation value
of the Dirac field operators and not the matrix element
between two (different) state vectors, [0") and |0°%t). In-
stead, we shall use our time evolution equations.

Because of the planar symmetry of the homogeneous
field, the full set of equations for the 16 components of
the DHW function can be reduced to a set of 3 ordi-
nary differential equations. In order to perform this re-
duction, we observe that only the components gy and
g2 couple to the vacuum components f3 and g; initially
present. Thus, we can seek the solution in the subspace
of 10-dimensional vectors Wio = (fs, o, g1, g2)- The
evolution equation in this subspace can be written as

(8 + eE - 8,) Wig + M(p) Wi = 0, (55)

where M denotes the following 10 x 10 submatrix of the
original 16 x 16 matrix:

0 0 0 —2p

0 0 —-2xp O

0-2xp 0 2m (56)
2p O —-2m 0

We may convert Eq. (55) into a set of ordinary differen-
tial equations by separating out the classical time evolu-
tion. This procedure is very similar to solving first-order
partial differential equations by the method of character-
istics. To this end we substitute for each component W?*

J

—m(n - p)
1 0

i
1F1—‘ )

Fi =
0 my E, nEﬁ—g(n-p)

L
EP

o o3

[
of W in Eq. (55) the expression

Wi(p,t) = / d5 ' (po, 1) 6(p — p(polt)), (57)

where p(polt) is the solution of the classical equation of
motion in the homogeneous electric field,

dp(t) _
——d—t'— = eE(t), (58)

obeying the initial condition p(polt = 0) = po,

p(polt) = po+e /dt E(t). (59)

The time dependence of w is due to quantum effects
that come on top of the classical flow in phase space.
This flow has been taken care of by the time-dependent
shift of the argument of the § function. As a result of the
substitution (57), the derivative with respect to momen-
tum disappears and we are left with ordinary differential
equations for the new vector w. The price to be paid for
this simplification is that the matrix M (p) becomes time
dependent when the vector p is expressed in terms of its
initial value pq:

dyw' (o, t) + M (p(Polt))w’ (po,t) = 0. (60)

Since the functions w* depend not only on time but also
on the parameters pg, we shall continue to denote the
time derivative by the symbol 9;. We will seek that solu-
tion of Eq. (60) which at ¢t = 0 starts as the free vacuum.
It turns out that in this case the following set of only
three orthonormal vectors is sufficient to span the com-
plete space of solutions of the initial-value problem:

0
; 1 nxp
| S
F; = — 0 , (61)
mn
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where n is a unit vector chosen in the direction of the
electric field and m; = /m? + p? is the transverse mass
(with respect to the field direction). The solution of (60)
can be written in the form

w = —2(aoFé + a1F1i + azei)- (62)

The factor of (-2) has been separated out to have the
following unit-vector representation of the free vacuum
state:

(GOyalyQZ)vac = (1)070)' (63)

In order to obtain the equations for the three coefficient
functions a, we use the following relations for the vectors

F:

Mi(p)F} =0,

i j i 64
Mi(p)F] = —2E,F}, (64)
M;(p)Fg = 2E, F};

. my
n- 8, Fy = —-F7,

£

. m .
n-8,Fi = —E—ng, (65)

_ P
n-8,F; =0.

With the use of these relations, the equation (60) yields
the following three equations for the functions a:

Buao = £, (66)
P
Em
dray = — E; ao — 2E,asz, (67)
P
6ta2 = 2Ep(11, (68)
where £ = |eE| and p is a function of ¢ with its ini-

tial value pg treated as a parameter. In the derivation
of Eqs. (66)—(68) we have taken into account the depen-
dence of the vectors F' on time through p. To satisfy
the initial conditions, we set vector a at ¢ = 0 equal to
(63). As a result of the conservation law (45) the sum of
the squares of the a's is a constant of motion. Thus, the
time evolution of the vector (ao,a1,as) is a pure rota-
tion of a unit vector. This formal similarity between the
behavior of the Dirac particle in a homogeneous electric
field and the spin precession has been pointed out before
[19]. For large values of t, when E, is very large, the
component ag takes on a constant value and Eq. (66) for
ao decouples from the remaining two equations. Since
a; and a3 oscillate rapidly with frequency 2E,, all time
averages involve only the function ay. Smooth and oscil-
latory behaviors also characterize the dependence of the
coefficient ap, on one hand, and the coefficients a; and
az, on the other hand, when they are treated as functions
of the momentum component parallel to the electric field
(cf. Figs. 1, 2, and 3). The large variations of the coeffi-
cient ap at both ends are caused by the sudden switching
of the field. These transient effects do not influence the
average value of ag for large t. In Fig. 4 we show this
coefficient calculated for ¢ = 30. The only difference be-
tween this result and the one obtained for ¢ = 20 is a
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FIG. 1. The coefficient ap as a function of the component

of momentum parallel to the electric field for t = 20k/mc®.
The value 1 corresponds to free vacuum.

larger width of the trough, the depth and the shape of
the transients are exactly the same.

D. Pair production and the vacuum-persistence
probability

We shall show now that the solutions of Eqs.(66)—(68)
reproduce, in the limit when ¢ — oo, the well-known re-
sults [20] for the rate of pair production in a constant
electric field. As seen from Fig. 1, except for transient
effects at both ends, the homogeneous electric field pro-

0 10 20
Pu/m

FIG. 2.

The coefficient a; as a function of the component
of momentum parallel to the electric field for ¢t = 20k /mc?.
In view of very fast oscillations of this function for greater
values of p, the calculated points have not been connected.
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The coefficient a2 as a function of the component

FIG. 3.
of momentum parallel to the electric field for t = 20k/mc?,
shown as in Fig. 2.

duces a rectangular trough in the state occupancy of the
Dirac sea. The front of this trough, as seen from Figs. 1
and 4, is moving with constant velocity eE. The depth
of the trough (1 — a)/2 is a nonlinear function of the
electric field intensity. Figure 5 based on the numerical
solutions shows beyond any doubt that this dependence
is described by the exponential formula

(1—ap)/2=0(E - p”)H(p")exp(—rmﬁ_/S).

This formula leads to the following value of the current
produced by the field:

(69)

1‘00 | T T T T T T T T T T T T
0.95 — —
& 0.90 — -
B .
0.85 |— —]
0’80 i 1 [ 1 1 1 1 l 1 | I J 1 1 1 1 l 1 ]
0 10 20 30
py/m
FIG. 4. The coefficient ao as a function of the component

of momentum parallel to the electric field for t = 30h/mc?.
It is seen that except for the width of the trough the shape is
the same as for ¢ = 20.
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j=e/ﬁﬂg1—g9

Et
= 4(2#)—3 /dsz_ /(; dp|| exp(——?rmﬁ_/g) p/EP'
(70)

Owing to the symmetry of the problem, only the compo-
nent of the current parallel to the field is different from
zero. From the form of the current we can determine the
number of pairs n(p, T) produced in time 7" per unit vol-
ume of phase space using the following relation for the
current density in phase space:

Jj=2evn(p,T). (71)

The factor of 2 arises because both the particle and the
antiparticle contribute to the current. By comparing the
formulas (70) and (71), we see that, apart from the factor
of (2m)3, the expression 1 — aq gives the density of pairs
in phase space:

1

n(p,T) = 4—0(8T - p”)0(p||)exp(—7rm2/|eE|).

= (72)

This expression is in full agreement with the formula for
the vacuum persistence probability [20]. All we have to
do to establish this connection is to take into account
the relation between the number of fermion pairs and

the vacuum persistence probability p,, given by Feynman
[21, 22]:

pu = [(0°|0)]% = exp (/dsr%g In[1 - n(p,t)]) .
(73)

1.0 T T

T TTTTT

0.8

0.6

(1-a,)/2

0.4

0.2

llllllllllllllllllllllll

Illl]llflllllllllll[llll

0‘0 ‘u:"l al o 1 1 1 11 lllll 1 1
1 10
eE/m?

FIG. 5. Comparison between the numerical solutions
(plotted as squares) of the differential equations for the coef-
ficient ao at the center of the trough in momentum space for
different values of the electric field with the analytical formula
exp(—mm?/|eE|) obtained by Schwinger (continuous line).

—
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After expanding the logarithm in the exponent, we can
perform all the integrations over p. The Gaussian inte-
gration over p, gives the factor of |eE|/n and the inte-
gration over p| gives the factor of T'|eE|. In this way,
the exponent in Eq. (73) reduces exactly to the famous
Schwinger expression:

o) 1 .
Py = exp (—VT%EZ Z _ﬁge—mrm /1eE| , (74)
n=1

where « is the fine-structure constant.

V. RENORMALIZATION

In the phase-space description of the Dirac theory the
ultraviolet divergences occur when the components of the
DHW function do not fall off sufficiently fast for large
momenta. The integration over p leads then to the well-
known, infinite charge renormalization. The (almost)
classical interpretation of the components of the DHW
function enables us to interpret the renormalization pro-
cedure in terms of easily understood concepts of the elec-
trodynamics in material media. We shall start from the
following two sets of expressions for the components of
the DHW function in a weak, static, slowly varying elec-
tric and magnetic field:

foz—Q;? (V.E_(P'V;’(?P'E)), (75)
f :-—Ei;p~B, (76)
f2 =0, (77)
f3=~%’f+§%p'<vw), (78)
go=~£§pr, (79)

g1:—2_p‘ ; (EVXB_—————(p'V)(pXB)

E, 2E3\ 3 E?
p p-(V x B)
———j@——) (80)
P
emE
82 = 'Eg—, (81)
emB
83 = — . (82)
B

These expressions can be derived in a systematic manner
from the set of integral equations for the DHW function
obtained by the adiabatic switching on of the field. This
will be done in a future publication. Here, it will suffice
to state that the expressions (75)-(82) are solutions of
our differential equations (20)-(27) without proving the
uniqueness. Upon substituting the expressions (75) and
(80) into the equations (32) and (33) and after performing
the angular integrations in momentum space, we obtain
the following expressions for the polarization charge ppol
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and for the polarization current jpo:

62 A pZ p2
a=—75 | di(1-2=) v.E,
pool = =735 | ”Es( 3E3) V-E, (83

. e2 A p2 4 2p2
Jpol—“’m/o d -1373(5-_31«:‘3) VxB. (84)

Both integrals are, of course, logarithmically divergent
and require a momentum cutoff A, but the terms depen-
dent on A can be absorbed by redefining the permittivity
€0 and the permeability of the vacuum po. To this end,
we substitute the polarization charge and the polariza-
tion current into the Maxwell equations (30) and (31)
and in the static case under consideration we obtain

62
V-E (60 + _—247r2 ln(A/m)) = Pext, (85)
_ e? .
VxB (/10 1 =+ 2an? ln(A/m)) = Jext- (86)

We can restore the standard form of these equations by
absorbing the (divergent) terms due to the polarizability
of the vacuum into the following observable permittivity
and the permeability of the vacuum e, and y,,,

€y = €0 (1 + —6-0—;— ln(A/m)) , (87)

o = fo (1 + 637; In(A/m))_l : (88)

The change of the permittivity of the vacuum leads to the
standard renormalization of the fine-structure constant,
the physical value being given by

e2

4rhee,

Qphys = (89)
We note that the product of € and u, that determines
the speed of light, does not change under the renormal-
ization.

The expression of renormalization constants in terms
of momentum integrals involving the Wigner function,
obtained in this section, is meant only as an illustration
of the versatility of our approach. We would like to stress
that our discussion of renormalization is far from being
complete. In particular, we did not solve the difficult
problem of the stability of the renormalization procedure
under the time evolution [14].

VI. CONCLUSIONS

We have shown that the phase-space distribution func-
tion could be a powerful tool in the study of the vac-
uum structure. Different components of the DHW func-
tion contain a wealth of detailed information about the
time evolution in the presence of electromagnetic fields.
This has been illustrated by considering pair production
in a homogenous external electric field, where we have
exhibited the rearrangement of the state occupancy of
the vacuum induced by the field. In this case, not only
have we shown that for a complex set of partial differ-
ential equations a solution can be found, but we have
also demonstrated a remarkable degree of agreement be-
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tween the elements of our numerical solutions and the
corresponding physical quantities obtained in the past
by completely different, analytical calculations. The ex-
panding hole in the vacuum seen in the solutions of our
equations represents a simple and picturesque description
of pair-creation phenomena.

We believe that as a consequence of the present work
a number of old problems becomes tractable within our
scheme; the most important of them being the feedback
problem in the sparking of the vacuum. The framework
that we have developed may in particular be useful in
the description of local changes in the vacuum structure
under the presence of adiabatically changing supercritical
Coulomb fields generated in heavy-ion collisions [23].

Despite the fact that we have remained within the
realm of standard quantum field theory, our approach
leads to novel mathematical structures as exemplified by
the evolution equations for the DHW function. The ap-
proximation we have introduced allowed us to close the
system of equations of quantum field theory within a
physically justified truncation of the hierarchy of these
equations, while maintaining all the symmetries of the
theory, including explicit gauge invariance. Our formu-
lation unifies several hitherto disconnected theories, be-
cause as special limiting cases we can obtain: the one-
particle Dirac theory of electrons in external fields, the
Maxwell theory of electromagnetic fields, and the rela-
tivistic kinetic theory of charged particles. It was this
very connection with kinetic theory that led us to study
the Wigner function rather than the Wightman function
used by Cooper and Mottola [14]. Mathematically these
two approaches are not much different, but our (classical)
physical intuition is working better when the phase-space

description is used.

An interesting aspect of our approach is a new insight
into the renormalization. It is natural in our approach
to interpret the renormalization procedure as a change
in the values of the permittivity €g and the permeability
po of the vacuum. This point of view may bhe also im-
portant for applications in QCD as well as in problems
in which the renormalization constants contain informa-
tion about the local structure of the vacuum. We note
in passing that within our gauge-invariant formulation
the quadratic divergence of the vacuum polarization does
not appear. In that regard our approach is similar to the
gauge-invariant formulation of Schwinger [20].

In order to study the permanently existing structures
of the interacting QED vacuum arising from persistent
interactions, we will have to move away from the (adia-
batic) switching-on hypothesis. This will require a new
insight into the initial conditions for the vacuum. It
seems to us that one may be able to approach this prob-
lem treating the DHW function for the physical vacuum
as a function of temperature, assuming that the high-T
vacuum state can be described by the perturbative solu-
tion. Our formalism seems to be particularly well suited
to perform this task. After all, the main motivation for
Wigner to introduce his function [4] was to study quan-
tum corrections to the thermal distribution function.
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