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We study topology-changing processes in (2+ 1)-dimensional quantum gravity with a negative cosmo-
logical constant. By playing the "gluing-many-polyhedra game" for hyperbolic geometry, we explicitly
construct an infinite number of different instantonlike solutions. These solutions can be used to evaluate
various topology-changing amplitudes in the WKB approximation.

I. INTRODUCTION

Since the pioneering work of topological geons by
Wheeler [1], it has been increasingly recognized that
topology-changing processes in space-time may play an
important role in quantum gravity. For example, we can
mention the recent proposal by Hawking [2] and Cole-
man [3] that the sum over histories of the universe in-
cluding the wormhole topologies may solve the problem
of the cosmological constant. We expect that new phys-
ics will be open, if the topology-changing processes in
space-time are taken into account.

The topology changes cannot occur classically, provid-
ed that (1) there is no closed timelike curve and (2)
space-time singularity is not admitted. The latter neces-
sarily appears in the topology-changing processes if
matter satisfies the weak energy condition which is gen-
erally believed to be physical. However, such topology-
changing processes are possible in quantum mechanics,
e.g., by quantum tunneling. In Hawking's path-integral
approach to quantum gravity, the tunneling transition
amplitudes can be semiclassically evaluated by looking
for solutions of the Einstein equation in Euclidean signa-
ture region with appropriate boundary conditions. Un-
fortunately very few solutions have been found for such
topology-changing processes in (3+1)-dimensional quan-
tum gravity [4].

(2+1)-dimensional gravity is a useful toy model for
(3+1)-dimensional gravity. This model is considerably
simpler because it contains only the global degrees of
freedom. Previously we investigated the nucleation of
the universe in the (2+1)-dimensional gravity model [5],
which can be regarded as a topology-changing process in
the sense that the universe takes a transition from the ini-
tial state of nothing to the final state of nontrivial topolo-
gy. In this paper we shall investigate more general
topology-changing processes. For example, a genus-2
universe changes into a genus-3 universe, or into two
genus-2 universes.

Our present treatment is based on the recent discus-
sions by Gibbons and Hartle [4], who deduced some rath-
er strong restrictions on the space-time topology and
geometry under the "no-boundary" condition. The
space-time considered in their paper consists of a certain
number of Lorentzian manifolds which are attached to a

SE=— j(R —2A)&g d3x .
16~G

(2)

The path integral is over a smooth three-metric g on the
Riemannian space-time manifold Mz which has ap-
propriate boundaries X"and X' ' by assumption, and the
summation over Mz means that we should also sum over
diA'erent topologies of space-time Mz. Then we can use

compact Riemannian manifold. The boundaries of the
Lorentzian and Riemannian manifolds must be totally
geodesic, i.e., all the components of extrinsic curvature
vanish there because the extrinsic curvature is essentially
the time derivative of the spatial metric and the spatial
metric have to be smooth. This fact can easily be under-
stood in physical terms. In general, the dynamical
motion momentarily stops when the system goes in and
out of the quantum-mechanical tunnel. In the case of
quantum mechanics of geometry in particular, this im-
plies that all the components of the extrinsic curvature
vanish at that moment. The result is that the possibilities
of topology-changing processes by quantum tunneling are
excluded for the space-time having a non-negative Ricci
tensor. In particular, topology changes cannot occur in
the case of a non-negative cosmological constant without
matter. In the present paper we concentrate our investi-
gation on the case of a negative cosmological constant.

We follow the same steps as in the previous paper [5].
In three dimensions, the number of independent com-
ponents of the Riemann tensor is equal to that of the Ric-
ci tensor. Therefore there are no gravitational-wave
modes in (2+ 1)-dimensional gravity so that we have only
to find out the appropriate three-dimensional compact
negative constant-curvature spaces with totally geodesic
boundaries. Once such three-dimensional manifolds are
obtained, we can evaluate the topology-changing ampli-
tude in the WKB approximation. We assume that the
amplitude can be formally described by Hawking's
Riemannian path integral as

T(i,f ) = & J &g exp( —~z [g ]), (1)
M~

where h, and hI are the two-dimensional metrics on the
initial spacelike hypersurface X" and the final space1ike
hypersurface X' ', respectively, and Sz is the Euclidean
action
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the solutions obtained to evaluate the path integral (1).
As mentioned in the previous work, the classical action
SE is simply proportional to the volume of Mz.

1 V
4~6 Hfdf

' (3)

where V is a numerical value representing the volume of
M~ in the case of A= —1. The transition amplitude (1) is
evaluated as

T(i,f )- Q Ns exp( —Sz [g ] ) .

In Sec. II we explicitly construct an infinite number of
different instantonlike solutions by playing the "gluing-
many-polyhedra game" on the projective (Klein) model
for hyperbolic geometry [6—8], whose rules are given in
the previous paper [5]. Section III is devoted to summary
and discussions.

II. CONSTRUCTION OF
TOPOLOGY-CHANGING SOLUTIONS

In this section, we explicitly construct some topology-
changing solutions.

In our previous paper [5], we showed that a compact
orientable hyperbolic three-manifold with a totally geo-
desic boundary describes the nucleation of a universe
from nothing in a (2+ 1)-dimensional gravity model with
a negative cosmological constant in the case of no matter
fields. In a similar way, we easily see that the topology
change in space-time from a spatial surface X" to anoth-
er spatial surface X' ' is described by a compact oriented
hyperbolic three-manifold M with a totally geodesic
boundary X"UX' '. Here we do not restrict our con-
sideration to the case that the boundary surfaces X"and
X' ' are both connected.

Topology-changing solutions can be grouped ac-
cording to the topology of their boundary. We denote
topology-changing configurations with the boundary
X=X,UX 2U UX „as a type (g„g2, . . . ,g„) solu-

tion, where g, is an integer greater than or equal to 2 and
X represents a Riemann surface with genus=g. Note
that there are many different solutions of the same type
since this grouping pays attention only to the topology of
the boundary. More precisely, any two solutions of the
same type are distinct if the boundaries have different
moduli. Even if the moduli of the boundaries are identi-
cal, interpolating three-manifolds can be different. Also
note that there is no geometrical distinction between an
"initial surface" and a "final surface. " %"e can freely
divide the components of the boundary into initial and
final surfaces. For example, any type (g„g2,g3) solution
can be interpreted as

X"= nothing —+X' '=Kg&UXg2UXg3

r Xg] r rg2 U rg3

X Xgf U Xg2~X Xg3, etc

This gives rise to crossing relations for the topology-
changing amplitudes.

We would like to describe the constructions of type
(2,3) and type (2,2,2) solutions in detail, using the tech-
nique of hyperbolic geometry. Other solutions will be
brieAy discussed later.

(1) Type (2,3) solution.
The projective model is a model for the hyperbolic

space constructed on an open three-disk D
=[(x,y, z)HR fx +y +z (1], in which geodesics are
Euclidean segments and totally geodesic surfaces are Eu-
clidean planes.

We construct a type (2,3) solution by gluing two regu-
lar truncated octahedra embedded in the projective mod-
el D appropriately.

First we embed a regular octahedron and the projective
model D into R so that both of them would center
around the origin. We can expand or contract the oc-
tahedron to let the angle between each pair of the faces of
the octahedron to be m. /4. See Fig. 1. The octahedron of
this size has its vertices out of the sphere at infinity BD
and its edges intersect with D .

Next we truncate each vertex of the octahedron (Fig.
2). We pay attention to the four faces having a vertex in
common. A remarkable property of the projective model
guarantees the existence of a unique two-plane which is
perpendicular to all of them. We cut the six vertices of
the octahedron along these planes to get a regular trun-
cated octahedron embedded completely in the projective
model. This embedding induces a metric on the regular
truncated octahedron.

We take two such regular truncated octahedra and
identify each pair of their faces as Fig. 3 to obtain a space
M. The edges bearing the same arrow are identified so
that three distinct edges remain.

Now we verify that this gives a hyperbolic three-
manifold with a totally geodesic boundary. First we
claim that a neighborhood of any point of M is isometric
to a ball in the hyperbolic space. This is of course true
for an interior point of the regular truncated octahedra.
Also for a point on the faces, it is true since the neighbor-

FIG. 1. A regular octahedron embedded in the projectile
model D' so that all the dihedral angles are m. /4. Note that its
vertices are out of the sphere at infinity BD'.
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FIG. 4. Eight dihedral pieces with each dihedral angle a/4
meet at each identified edge consistently. The capital letters A

and H and A' through H' correspond to the faces in Fig. 3.

FIG. 2. Truncation of the regular octahedron in Fig. 1. Each
vertex is truncated along a two-plane which is perpendicular to
the four faces around the common vertex. This regular truncat-
ed octahedron entirely resides in D'.

hood is divided into half spaces by the face. For the
point on the edges, it is not so trivial. Note that the an-
gles around the edge must add up to 2m. . In fact, eight
dihedral pieces with each dihedral angle being m. /4 meet
at each identified edge consistently as illustrated in Fig. 4.
So the neighborhood of any point on the edges is also
isometric to a ball in the hyperbolic space.

Next we claim that the boundary is totally geodesic.
Since each square of the truncation is totally geodesically
embedded in the projective model, we have only to check
the gluing consistency condition along the edges and also
around the vertices of the squares. Gluing along the edge
causes no problem since the boundary intersects with the
face of the octahedra perpendicularly at the edge. Gluing

around the vertex is harmless by the same reason as the
gluing around the edge of the octahedra. It is also seen
from the fact that near the vertex the boundary is a hy-
persurface which is perpendicular to the edge of the oc-
tahedra as shown in Fig. 5.

Finally we would like to show that the boundary is to-
pologically a disjoint union of a double-torus (g =2
closed surface) and a triple-torus (g =3), i.e., this solution
belongs to type (2,3). It can be verified that the boundary
of M has two topological components X, and X 2. The
smaller component X~& consists of four squares indicated
by e in Fig. 3. The other component X 2 consists of the
remaining eight squares indicated by P. We easily see
that the smaller component is topologically a double
torus by a "patch work, "but the determination of the to-
pology of the larger component is rather a tedious task.
Here we take a shortcut. We have only to count the
Euler characteristic g of each component since we have
already known that each component is a closed surface.
In fact, it is easy to count g because each component is
naturally regarded as a polyhedron whose faces are
squares. The smaller component has two vertices (the
head of the plain arrow and the tail of the dotted arrow),
eight edges (with each pair of sixteen edges being
identified) and four faces. So
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FIG. 3. Gluing two regular truncated octahedra of the same
shape. Each face of an octahedron (e.g. , A) is identified with
another face of the same or the other octahedron ( A ') so as to
match the three arrows on the face. The squares of truncation
with the same Greek letter {a,P) gather to from a boundary
component diffeomorphic to a double torus and. a triple torus,
respectively.

FIG. 5. Twelve squares of truncation of the two octahedra
are glued to form two boundaries of a three-manifold. Gluing
causes no problem at the boundary since each square of trunca-
tion is perpendicular to the corresponding four faces and four
edges of the octahedron.
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FIG. 6. Gluing two regular truncated octahedra of the same

shape. Each face of an octahedron (e.g. , A) is identified with
another face of the same or the other octahedron ( A ') so as to
match the three arrows on the face. The squares of truncation
with the same Cxreek letter (a,P, y) gather to form a boundary
component diffeomorphic to a double torus.

y(X, )=2+( —1)X8+(—1) X4= —2.
In a similar way, we see

y(Xg2) =4+ (
—1)X 16+ ( —1)X 8= —4 .

We conclude that g, =2 and gz =3.
This result is consistent with the Gauss-Bonnet

theorem. The curvature of the boundary is constant and
the larger component is twice as large as the smaller one
in hyperbolic area.

(2) Type (2,2,2) solution.
We use the same regular truncated octahedra as build-

ing blocks but a di6'erent identification rule to get a type
(2,2,2) solution. The new identification rule is shown in

Fig. 6. Each eight edges of the twenty-four edges is
identified and therefore there remains three distinct
edges.

In this identification, the boundary has three com-
ponents, which are illustrated in Fig. 7. Each square is

cut into two triangles along the diagonal line (an arrow
with a number) and the triangles are relocated to make an
octagon. This means that each component is topological-
ly a double torus. It is also seen that the gluing is con-
sistent since the central points in the octagon correspond
to the heads of three arrows. Moreover p and y in Fig. 7
proved to be isometric. We are not certain whether o. has
the same moduli as P and y. Though the diagram for cz

in Fig. 7 is different from those of p and y, it is not easy
to show that there is no isometry from a to p or y.

We can obtain several other solutions by changing the
identification rule.

(3) Other solutions.
We also find other tunneling solutions which express

topology change or nucleation of universes. We will
show only the outline of construction of these solutions.

First, we can find new solutions by using more general
building blocks, i.e., an appropriate number of truncated
polyhedra, while we used two octahedra in the previous
subsections. In the previous paper [5], we already found
that the "nothing to a double torus" [type (2)] solution is
constructed by two regular truncated tetrahedra. Here
we report "a double torus to a double torus" [type (2,2)]
and "scattering of two double tori" [type (2,2,2,2)] solu-
tions as illustrated in Fig. 8. They are constructed by two
regular truncated hexahedra whose dihedral angle is m/6,
and four regular truncated hexahedra whose dihedral an-
gle is also m/6, respectively.

Second, we show an inductive procedure to get another
solution with boundaries consisting of more general
Riemann surfaces using particular solutions obtained by
the "gluing-many-polyhedra game. " (1) We prepare n X
(one of solutions composed of several polyhedra). (2) We
make an expansion so that the dihedral angle of the regu-
lar polyhedra becomes an nth of the dihedral angle of the
original regular polyhedra. (3) Let us pick up two of such
manifolds as obtained by the steps (1) and (2) and connect
them in the following way. Find a face which satisfied
the following two conditions.

Condition 1: The face contains all kinds of edges.
Condition 2: Any pair of edges in the face is not

identified.

aI ound around - - - - -~ around

FIG. 7. Eight dihedral pieces with each dihedral angle m/4
meet at each identified edge consistently. The capital letters A

through H and A' through H' correspond to the faces in Fig. 6.
Three octagons correspond to three boundary surfaces a,p, y.
Each square of truncation is cut into two triangles along the di-
agonal line (an arrow with a number) and the triangles are relo-
cated to make an octagon. This means that each component is
topologically a double torus.

FIG. 8. A type (2,2) solution (illustrated schematically) is
constructed by two regular truncated hexahedra whose dihedral
angle is m. /6. A type (2,2,2,2) solution is constructed by four
regular truncated hexahedra whose dihedral angle is also m/6.
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Suppose there exists such a face. This face has been
identified to another face in a single solution by a
specified gluing rule. Unglue the previously identified
two faces to obtain a new object (this is in fact a hyper-
bolic manifold with a boundary). Prepare two such ob-
jects. Then we have two pairs of unglued faces. Inter-
change the partners and glue the new pairs to get a dou-
ble covering space. (4) Obviously there exist at least two
such faces in the double covering space that satisfy the
conditions 1 and 2. See Fig. 9. Therefore we can proceed
further to successively combine 3,4, . . ., n such objects.

Recalling that the dihedral angle of a truncated po-
lyhedra for this new solution is an nth of that of the origi-
nal polyhedra, we can see that the sum of the angles
meeting at an identified edge becomes 2m. This pro-
cedure gives a hyperbolic three-manifold with totally geo-
desic boundaries as we shall see below. The number of its
boundary components is the same as the one of the origi-
nal single solution. By computing the Euler characteris-
tics, the genus of its boundaries can be found as shown
later. We note that our procedure gives an n-fold cover-
ing. The conditions 1 and 2 constitute a sufficient condi-
tion for the n-fold covering to admit a hyperbolic struc-
ture.

At present, all the solutions that we have found con-
tain at least one face which satisfies the conditions 1 and
2 except for the cases of type (2) and type (2,2) solutions.
In these two cases there are no such faces that satisfy the
condition 2. By this procedure, for even m
(m =2n, n = 1,2, . . . ), the type (m, 2m —1), type
(m, m, m ), and type (m, m, m, m ) solutions are con-
structed from the type (2,3), type (2,2,2), and type

special solution
type of « » type ofx $.5covering

l
' . generalized

space solution
solution

Type (2,3) (m, 2m-l) (3,5) (n+1,2n+1)

Type (2,2,2) (m, m, m) (3,3,3) (n+1,n+1,n+1)

Type
(2,2 2 2) (m, m, m, m) (3,3,3,3)

(n+1,n+1
,n+1,n+1)

Type (2) (m) (3) (n+1)

Type (2,2) (4n-2, 4n-2) Impossible (4n 2 4n 2)

m=2n, n=1,2,3....

(2,2,2,2) solutions, respectively.
We can also obtain solutions for odd m by preparing

solutions composed of "1.5 X (polyhedra composing the
single solutions). " For example, we can construct type

TABLE I. We classify our solutions. In the first column, the
solutions are schematically illustrated. In the other columns,
the types of the descendant solutions are shown.

(a)

open again TABLE II. The volumes of some simple solutions are shown.
These numerical values are calculated in the case of A = —1.

type of
solution

building
blocks

dihedral
angle volume

(b)

open again

(2)

(3)

two tetrahedra

three tetrahedra

z/6

z/9

6.452

10.429

(2 3)

(3,5)

two octahedra

three octahedra

z/4

z/6

21.304

34.346

FICx. 9. (a) We take two solutions and unglue the two faces
(which should satisfy the conditions 1 and 2). Then we inter-
change the partners and glue the new pairs to get a double cov-
ering space. (b) We can continue the above procedure to get an
n-fold covering space of the original solution. This covering is
naturally furnished with a hyperbolic structure.

(2,2,2)

(3,3,3)

(2,2,2,2)

(3,3,3,3)

(2 2)

(6.6)

two octahedra

three octahedra

four hexahedra

six hexahedra

two hexahedra

six hexahedra

vt/4

x/6

vt/9

z/6

x/12

21.304

34.346

43.263

69.100

21.632

70.509



1768 FUJIWARA, HIGUCHI, HOSOYA, MISHIMA, AND SIINO

FIG. 10. Plumbing the solutions.

(3,3,3) by three octahedra knowing that two octahedra
give type (2,2,2). Again this method does not work for
the type (2,2) solution.

Using less systematic prescriptions, we have construct-
ed type (n) and type (4n 2, 4n——2) solutions. We do
not give details of the constructions. Table I summarizes
all our results.

Finally, by plumbing the solutions in Table I, we can
construct more and more complicated solutions (Fig. 10)
with increasingly large volumes. There are infinite num-
ber of solutions of the same type with the same moduli of
boundaries. This plumbing is performed by joining the
solutions across a pair of their boundaries which have the
same moduli. This is possible because the boundaries
have vanishing extrinsic curvature.

For the volumes of typical solutions, see Table II [9].

III. SUMMARY AND DISCUSSIONS

We have studied topology-changing processes in the
(2+ 1)-dimensional quantum gravity with a negative
cosmological constant in the WKB approximation.

Following the recent work by Gibbons and Hartle, we
have described the cosmological tunneling process as a
transition from the Euclidean to Lorentzian signature re-
gions. The boundary surface turns out to be totally geo-
desic.

We have shown various explicit examples of hyperbolic
three-manifolds with totally geodesic boundaries which
can be physically interpreted as topology-changing pro-

cesses or multiple production of universes by quantum
tunneling. More precisely, we have constructed the
three-manifolds with the boundaries being three g=2
surface, g=2 and g =3 surfaces, etc. , by gluing polyhe-
dra in the projective model of hyperbolic geometry. Fur-
ther we have shown a definite prescription to construct
n-fold coverings of the hyperbolic three-manifolds ob-
tained above, if certain conditions are met. By plumbing
obtained solutions, we can find an infinite number of hy-
perbolic three-manifold s with totally geodesic boun-
daries, though we have not exhausted all the solutions.

These solutions describe various tunneling processes
which exhibit topology change or multiple production of
universes. The exponential of the minus of volume of the
constructed hyperbolic three-manifold (Table II) essen-
tially gives the corresponding tunneling amplitude in the
WKB approximation [Eqs. (3) and (4)]. It is interesting
to point out that in general the dynamical degrees of free-
dom (number of moduli parameters) change in the tun-
neling processes.

%'hat is left for future investigation is the moduli struc-
ture of the boundary surfaces. The Mostow rigidity
theorem [6] implies that there should be a kind of selec-
tion rule for the topology-changing transitions of
universes. or restriction on the topology and geometry of
the universes born from nothing. The last statement may
suggest that the Hartle-Hawking "no boundary condi-
tion" [10] strongly restrict the variety of the initial
universes which partially solve the initial condition prob-
lem in the (2+ 1)-dimensional cosmology.

However, as remarked in our previous paper [5], the ri-
gidity theorem heavily relies on the three-dimensional hy-
perbolic geometry and therefore it is highly nontrivial to
generalize our discussion in the (2+ 1)-dimensional
space-time to the one in the physical (3+1)-dimensional
space-time.

The stability of our instanton solutions is an open ques-
tion. At least we can say that the rigidity of hyperbolic
three-manifolds implies the absence of zero modes.
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