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The role played by ultrahigh frequencies or ultrashort distances in the usual derivations of the
Hawking effect is discussed and criticized. The question “would a black hole radiate if there were
a Planck scale cutoff in the rest frame of the hole?” is posed. Guidance is sought from Unruh’s
fluid-flow analogue of black-hole radiation, by taking into account the atomic nature of the fluid.
Two arguments for black-hole radiation are given which assume a Planck length cutoff. One involves
the response of static accelerated detectors outside the horizon, and the other involves conservation
of the expectation value of the stress tensor. Neither argument is conclusive, but they do strongly
suggest that, in spite of reasonable doubt about the usual derivations of black-hole radiation, a
“safe” derivation which avoids our ignorance of ultrashort-distance physics can likely be formulated.

Remaining open questions are discussed.

I. INTRODUCTION

The extrapolation of quantum field theory from flat
to curved background spacetimes is physically justified
by the equivalence principle. In a freely falling reference
frame, quantum fields should behave as they do in flat
space, provided only length scales less than the radius of
curvature are involved. Although global constructs such
as a preferred vacuum state or single-particle states do
not generally carry over from flat to curved space, one
can sometimes identify physically reasonable boundary
conditions which allow truly curvature-dependent pre-
dictions to be made. Hawking’s discovery [1] that black
holes emit thermal radiation is one such prediction.

The existence of black-hole radiation is interesting not
only because it brings about primordial black-hole explo-
sions with potentially observable consequences, but also
because of the way in which it extends the analogy be-
tween thermodynamics and classical black-hole mechan-
ics [2] to a remarkable interplay of gravity, quantum field
theory and thermodynamics that culminates in the gen-
eralized second law of thermodynamics [3, 4].

6(Soutside + %Ahorizon) >0. (1)

The first term is the entropy of matter outside the hori-
zon and the second term is one fourth the area of the
horizon, measured in square Planck lengths. This gener-
alized second law (GSL) holds only if one takes seriously
the state of the quantum fields around the black hole
that give rise to the Hawking radiation [4]. Without the
Hawking effect the GSL would fail, because one could
slowly lower a box containing entropy to the horizon,
hold it there, and then drop it in the hole. The entropy
of the outside would go down, but the horizon area would
remain unchanged, because all of the mass-energy of the
box would have been converted to work on whatever was
lowering the rope from far away. The Hawking radiation
(in combination with the acceleration radiation seen by
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the static box along its accelerated world line) alters the
situation, because it produces a buoyancy force requiring
the box to be actually pushed towards the horizon.
Mostly because of the tie-in with thermodynamics,
Hawking’s prediction of black-hole radiation is consid-
ered by many to have a certain ring of truth. In fact, it
seems there is very little doubt in the community that
black holes do in principle evaporate. Yet there is some
cause for doubt, due to the role apparently played by ul-
trahigh frequencies or ultrashort distances in the deriva-
tion. In Sec. II of this paper I will elaborate on this cause
for doubt, discuss the cluster of issues that it raises, and
pose the question: “Would a black hole radiate if there
were a Planck scale cutoff in the rest frame of the hole?”
In Sec. III guidance is sought from a fluid-flow analogue
of black-hole radiation introduced by Unruh, by ana-
lyzing the effects of the atomic nature of the fluid. In
Sec. IV two arguments for black-hole radiation are given
which assume a Planck length cutoff. One involves the
response of static accelerated detectors outside the hori-
zon, and the other involves conservation of the expecta-
tion value of the stress tensor. Neither argument is con-
clusive, but they do strongly suggest that, in spite of rea-
sonable doubt about the usual derivations of black-hole
radiation, a “safe” derivation that avoids our ignorance
of ultrashort-distance physics can likely be formulated.
In the final section I discuss some of the remaining ques-
tions, and describe some approaches to resolving them.

II. HAWKING RADIATION AND
SHORT DISTANCES

According to Hawking’s analysis [1], if an object col-
lapses to form a nonrotating black hole of mass M, it will
radiate to infinity as if it were a hot body at a tempera-
ture
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Ty = he®/87kGM ~ 1077 K (1.5 km/r,)
~1 MeV/k(10%g/M) , (2)

where r, is the Schwarzschild radius 2GM/c?. This
is a result of linear quantum field theory in the time-
dependent curved spacetime of the hole, and it is widely
expected to occur for interacting fields as well. The ini-
tial vacuum state of the quantum fields evolves to a state
that is not the vacuum state far from the hole in the fu-
ture. After Hawking’s original derivation, other deriva-
tions of this effect were given, often in the analytically
extended vacuum Schwarzschild spacetime of an “eternal
black hole.” Since my goal is to understand the physi-
cal justification of the derivation, I prefer to stick to the
realistic case of the collapsing body.

The essential feature, for our purposes, of the space-
time of a collapsing object is the infinite time dilation
effect: an observer at rest with respect to the hole and
far away will measure a finite time interval between the
passage of any ingoing null geodesic and the passage of a
later ingoing null geodesic that forms a generator of the
horizon, whereas after propagating through the object
the corresponding outgoing geodesics will be separated
by an infinite time interval, as measured by another such
observer (since the geodesic on the horizon is neverseen).
One finds that in order for a wave packet of a linear mass-
less field to emerge from the hole with a fixed frequency
wout at large radius at time ¢, it must begin its journey
into the collapsing matter with a blueshifted frequency
win which grows exponentially with time as exp(t/4M),
where M is the mass of the hole. (Here and hereafter we
use units with ¢ = A = k = G = 1, unless otherwise in-
dicated, so in particular 2M is the time it takes for light
to travel one Schwarzschild radius.)

Thus, for example, at a time ¢ since the hole formed,
an outgoing mode with frequency equal to the Hawk-
ing temperature 1/87wM originated as an ingoing mode
with frequency above the Planck frequency if ¢ is greater
than 4AM In(87 M /Mpjanck)- If there were a Planck fre-
quency cutoff on the ingoing modes, the Hawking radi-
ation would seemingly be extinguished on this relatively
short time scale [5].

Another way of looking at the role played by ultra-
short distances in black-hole evaporation is provided by
a recent paper of Fredenhagen and Haag [6], in which it
is shown that the existence of Hawking radiation for free
fields can be derived using only the form of the short-
distance singularity of the two-point function {(¢(z)¢(y))
at the sphere where the horizon exits the collapsing mat-
ter. That is, the only assumption needed concerning
the quantum state of the fields is the assumption that,
in an infinitesimally thin shell surrounding the horizon
at one particular time, the strongest singularity in the
two-point function has the same form as it has in the
Minkowski vacuum, namely, c~!, with ¢ the square of
the geodesic interval between ¢ and y. This condition
would rule out for example the Boulware vacuum, which
has infinite stress at the horizon. The condition says
essentially that the very-short-distance behavior of the
vacuum fluctuations “appears to freely falling observers
to be the same as in the Minkowski-space vacuum.” This
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approach brings out very clearly the sense in which the
Hawking effect seems to hinge on ultrashort-distance be-
havior of the fields.

In his original paper Hawking offered a physical pic-
ture, involving pair creation, for the origin of black-hole
radiation. In this picture, a positive-energy particle is
created outside the horizon and escapes to infinity. Its
negative-energy partner tunnels inside the horizon, where
it can exist as a real particle because the time transla-
tion Killing field (which defines the conserved energy) is
spacelike there. Were the escaping particle to be created
sufficiently far from the horizon, it would not suffer too
much redshifting on the way out, and ultrahigh frequen-
cies would not be involved in the process. However, since
the tunneling probability dies off exponentially with dis-
tance, there seems to be a preference for the pair to be
created “near” the horizon. But how near is “near”?
Unfortunately, this picture of pair creation has not been
made the basis of a solid derivation, so it is not possible
to reach any definite conclusions from it.

It is important to determine whether the Hawking ef-
fect requires arbitrarily high-frequency modes and short
distances, or whether their role can be eliminated in a
more circumspect analysis. In particle physics, when
there is ignorance about what is going on at short dis-
tances, one aims to extract predictions which are insen-
sitive to the short-distance physics. In the same spirit,
one should not be satisfied with a derivation of the Hawk-
ing effect unless it is independent of our ignorance about
short distances.

A. Lorentz noninvariance

There is an essential flaw in the analogy however. In
the particle-physics context, to speak of “short-distance
physics” or a “short-distance cutoff” on the validity of
an interacting theory in no way implies a lack of Lorentz
invariance. The fact that the center-of-mass energy or
momentum transfer of an interaction is large can be char-
acterized by Lorentz-invariant scalar quantities. In con-
trast with this, the Hawking effect has nothing to do with
interactions of the quantum fields. The high-frequency
modes whose role is being questioned here can always
be locally transformed to low frequency by an appropri-
ate Lorentz transformation. In particular, no matter how
high the frequency of an ingoing mode may be in the rest
frame of the hole, the frequency in a frame that chases
after it with sufficient speed is arbitrarily low.

If one is willing to assume exact local Lorentz invari-
ance, then this cause for doubt about the Hawking effect
is removed [7]. However such an assumption is unwise for
at least two reasons. First, just as we have no experience
with interactions at ultrahigh energy, we have no expe-
rience with physics in reference frames moving ultrafast
relative to us. The fact that Lorentz-invariant theories
agree with present observations serves only to place lim-
its on possible deviations from Lorentz invariance [8, 9].
Although today it may seem almost paradoxical to imag-
ine a preferred state of “rest,” one should keep in mind
the fact that the Universe as a whole does define such a
rest frame: that of the microwave-background radiation.
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It is not inconceivable that this cosmic rest frame also
plays some role in local physics at short distances, even
though nothing of the sort is true in currently accepted
theory.

The second reason it is unwise to assume exact Lorentz
invariance is that the assumption commits us to assign-
ing an infinite number of degrees of freedom to the fields
in any finite spatial volume. This idealization leads in-
exorably to the divergences in quantum field theory and
the nonrenormalizability of quantum gravity. While it is
possible that the solution to these problems will come in
the form of a deus ex machina such as string theory, it is
also possible that the solution lies in the removal of the
offending assumption, exact Lorentz invariance.

B. Imposing a cutoff

Not knowing what form physics might take at ultra-
short distances, and in order to explore the consequences
of postulating only a finite number of degrees of freedom
in a finite volume, let us frame our question about the
Hawking effect this way: would a black-hole radiate if
there were a mode cutoff at the Planck frequency in the
rest frame of the hole? Although the rest frame is well
defined only far from the hole, we will later extend it
mward using radial timelike geodesics.

The first thing to notice is the fact that the presence
of a Planck frequency cutoff on initial modes of a free
field theory not only eliminates the Hawking radiation,
according to the usual derivation, but it eliminates the
corresponding outgoing modes themselves from the field
degrees of freedom. That is, it is not just that the modes
are not excited to the Hawking temperature, but that
they are not present at all. A classical antenna attempt-
ing to radiate away from the hole would emit no waves at
those frequencies. This observation poses a puzzle, how-
ever: it is implausible that just by a little thought one
can arrive at the profound conclusion that either there
is no cutoff on field modes at any scale, or there are
bizarre effects due to missing modes outside black holes.
It seems clear that there must be yet another possibility,
namely, some mechanism, due to field interactions or per-
haps quantum gravity effects, which could “regenerate”
the mode frequencies that have been lost by redshift-
ing. This idea of mode regeneration may at first seem
hopelessly vague; however, there is in fact a model from
condensed-matter physics that is analogous to the black-
hole situation, and which exhibits just this behavior. We
turn now to a discussion of this model, with the aim of
clarifying the notion of mode regeneration and making it
more plausible.

III. QUANTUM FLUID FLOW MODEL
OF A BLACK HOLE

In a paper published in 1981, Unruh [10] invented a
fluid-flow model of a black hole. His motivation was in
part to eventually consider the issue of short-distance
physics being discussed here, as well as the quantum
back-reaction problem. Although in the paper the fluid
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is treated exclusively as a continuum, a very interest-
ing result is obtained, namely, that “the same arguments
which lead to black-hole evaporation also predict that a
thermal spectrum of sound waves should be given out
from the sonic horizon in transsonic fluid flow.”

It turns out that the linearized perturbations of an ir-
rotational flow can be described by a massless scalar field
propagating in a curved background spacetime whose
metric is determined by the background fluid velocity
field. For a spherically symmetric, static convergent flow
which exceeds the speed of sound at some radius, the
metric has approximately the form of a black-hole met-
ric. Quantizing the sound field, and assuming the field
is in the comoving ground state near the horizon for all
times, Unruh patched on to the Hawking argument out-
side the horizon to conclude that there is a thermal flux
of phonons at the temperature

T = (h/27k)(8v/0r) ~ 10~7 K (%/M> , (3)

1 mm

where Jv/0r is the gradient of the background veloc-
ity field at the horizon. Comparison with (2) indicates
that dv/dr plays the role of the black-hole surface gravity
kfc = c¢/2r;s.

Taking into account the atomic nature of the fluid, one
has a model in which there is both a preferred comoving
local rest frame, and a high-frequency—short-wavelength
cutoff on the phonon field modes. Let us see how, in
this model, the mode regeneration effect referred to in
the previous section can occur. While it may be that the
sonic horizon radiation is a general effect which would
occur in any atomic fluid, it is helpful to examine the
behavior of a particular physical fluid, since we do not
yet know which features (if any) of the mode behavior
near the cutoff are generic. Thus, to make the model
concrete, the fluid will be taken here to be helium-4 at
zero temperature and pressure. The cutoff arises because
the phonons are really collective excitations of the helium
atoms, and when the wavelength becomes much smaller
than the average interatomic spacing, the field-theoretic
description of the excitations is no longer valid.

An elementary excitation is a stable state of the fluid
with definite energy and momentum. The energy ¢ and
momentum p of the excitations for helium-4 satisfy a
particular dispersion relation € = ¢(p), shown in Fig.
1 for T = 1.1 K at the corresponding vapor pressure
[11]. States lying on this curve cannot decay to combi-
nations of other states on this curve, as can be seen from
energy and momentum conservation. For wavelengths
longer than about 10 A (p/h = 27/X ~ 0.6 A1),
the dispersion relation for these excitations is approxi-
mately linear, with slope equal to the speed of sound,
s = 238 m/s. These are the true “phonons.” For shorter
wavelengths the slope of the dispersion curve varies (and
even becomes negative for a while), so the group velocity
vy = de/dp deviates from the sound velocity s. Excita-
tions near the minimum are called rotons, and the spec-
trum cuts off at a wavelength of about 2.3 A. The cutoff
occurs when the single excitation description fails, pre-
sumably because the corresponding state can decay into
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FIG. 1. Dispersion curve for elementary excitations of
liquid-helium-4 at T'= 1.1 K and saturated vapor pressure.

a pair of lower-energy rotons or has some other decay
modes [12].

In Unruh’s black-hole model, the fluid has a spheri-
cally symmetric convergent flow which is faster towards
the center and exceeds the speed of sound at some radius,
forming a sonic horizon [13]. Now excitations that are
propagating upstream loose energy as they climb away
from the sonic horizon, just as in the black-hole case. It
is the energy € in the comoving rest frame that is decreas-
ing, while the energy o9 with respect to the asymptotic
rest frame is constant [14]. The relation between the two
is given by

Eo=€+p-v=€—pv, (4)

where v is the velocity of the fluid, and in the second
equality we have assumed p is antiparallel to v.

Consider an excitation propagating away from the
horizon upstream in the fluid. Having swum against the
flow gradient, the excitation must have had a shorter
wavelength the closer it was to the horizon. If the cutoff,
which is at fixed wavelength in the comoving frame, is
reached before we can extrapolate all the way back to
the horizon, then we can infer that some sort of mode
reconstruction must have taken place to produce this ex-
citation. It may seem that this will certainly happen;
however, one must take into account the fact that the
location of what we might call the “effective horizon”
depends on the group velocity v, and therefore on the
momentum.

To determine whether the cutoff is reached before the
horizon, consider the energy £(v) and momentum p(v) as
functions of the local velocity of the fluid, and require
that they simultaneously satisfy the dispersion relation
Fig. 1 and the energy relation (4), with the lab energy
€o held fixed. To solve graphically, examine the intersec-
tion between the dispersion curve and the straight line
€ = €9 + pv. This point of intersection gives the energy
and momentum of the propagating excitation as a func-
tion of v. First consider a long-wavelength phonon far
from the horizon where v = 0, with momentum less than
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that of the first maximum on the dispersion curve. Then
extrapolating backwards, v increases and the point slides
up the dispersion curve toward the maximum. Before it
reaches the maximum, the straight line becomes tangent
to the dispersion curve. At this point, the phonon is at
rest with respect to the lab frame, which means that the
effective horizon has been reached before the cutoff.

Now consider an excitation with momentum greater
than that of the roton minimum when far from the hori-
zon. Extrapolating backwards, as v increases the corre-
sponding point slides towards the cutoff along the disper-
sion curve. If at some v the straight line is tangent to the
dispersion curve, then the effective horizon is reached be-
fore the cutoff. However, as long as vy does not vanish as
the cutoff is approached [12], outgoing excitations with
energy greater than some threshold lab energy will, when
propagated backwards, reach the cutoff before reaching
the effective horizon. More precisely, if v, at the cutoff
is some v, > 0, then the threshold lab energy is given by
€c —PcVe, Where €. and p. are the energy and momentum
at the cutoff.

There are therefore situations in which an elementary
excitation propagating freely upstream could not have
originated as an elementary excitation arbitrarily near to
the horizon. This leads to a puzzle, the analog of which
previously led us to doubt the consistency of imposing a
cutoff on initial modes in the collapsing black-hole space-
time. The puzzle is, how did the outgoing excitation or
mode come to exist?

The answer for the superfluid must be that the mode
arises from an interaction of two (or more) lower-energy
modes, for example in a process which is the time reverse
of the decay to a roton pair. Even in the ground state at
zero temperature, the effective-field-theory decription of
helium is an interacting one. A detailed analysis of the
issue of horizon radiation would require finding the time
evolution of the quantum state of the interacting fluid as
the inhomogeneous background flow is established and
thereafter.

Fortunately it is not really necessary to understand
the details of the corresponding process in superfluid he-
lium to draw from the model an important lesson for
the black-hole situation. We learn that the existence of
a high-frequency cutoff on ingoing modes can be consis-
tent with the existence of a full spectrum of outgoing
modes (below the cutoff), provided there is some nonlin-
ear process involving the short-distance physics that can
“regenerate” the outgoing modes just outside the hori-
zon. Moreover, we learn that one should not rely on
any derivation of black-hole radiation that involves free
propagation through this “zone of ignorance” outside the
horizon, where some unknown physics is presumably tak-
ing place.

IV. DO BLACK HOLES EVAPORATE?

In view of our ignorance of physics at ultrashort dis-
tances, we seek a derivation of black-hole evaporation
which does not assume “business as usual” outside the
horizon in the “zone of ignorance” just mentioned. To
get a feeling for the physical issues involved, I will dis-
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cuss here two arguments which assume the existence of
a cutoff at the Planck scale. Neither argument is conclu-
sive, however they should provide guidance in the search
for a bona fide derivation.

A. The cutoff

We are entertaining the hypothesis of a cutoff which,
for reasons discussed earlier, must violate Lorentz invari-
ance. It is therefore necessary to specify the reference
frame in which the cutoff is applied. The least arbitrary
assumption would be that in quasiflat regions of space-
time, the cutoff is uniform in the rest frame of the cosmos,
i.e., that of the microwave background radiation. Now we
must face the question of how the cutoff is to be extended
into the spacetime region surrounding a black hole that
is approximately at rest with respect to the cosmic rest
frame.

As already discussed, it is probably not correct sim-
ply to impose the cutoff on the field degrees of freedom
before the hole forms, and then propagate it using the
free field equations, for this leads to an implausibly red-
shifted cutoff on outgoing modes. Instead, we must make
an assumption for the nature of the cutoff in each region
of spacetime that somehow takes into account whichever
mode regeneration processes may have occurred. Lack-
ing the fundamental cutoff theory, the only assumption
that suggests itself is that the preferred rest frame is car-
ried down into the hole by observers who fall freely from
far away at rest. The resulting frame will be called the
“falling frame.” Note that in the fluid flow analog, the
falling frame corresponds to the comoving rest frame of
the fluid.

Of course this definition of the local rest frame is unam-
biguous only in the spherically symmetric case, and then
only if one restricts to radial free fall trajectories that
are always infalling, ignoring those which pass through
the center of the collapsing matter and later fall back. In
more general situations, the fundamental cutoff theory
would be needed to even formulate the nature of the cut-
off. But in order to explore the qualitative implications
of a cutoff, it seems reasonable to stick to the spherically
symmetric case and to impose the cutoff in the falling
frame.

There is another frame that has a preferred status,
namely, the frame of the static observers at constant ra-
dius. To interpret the consequences of the cutoff it is
useful to know how the cutoff is viewed in this “static
frame.” This is determined from the relative velocity of
the frames, by the Doppler shift factor.

The falling four-velocity u is the unit tangent of a ra-
dial timelike geodesic which starts from rest at infinity.
Everywhere along the geodesic u has unit inner product
with the time-translation Killing field £ = 8/9¢, where t
is the Schwarzschild time coordinate. The norm of £ is
given by N:=(¢ - £)/2= (1 — 2M/r)}/2, where r is the
Schwarzschild radial coordinate. The function N will also
be called the “lapse,” since it gives the relation ds = N dt
between proper time and dt at fixed radius. Note that
N — 0 at the horizon, and N — 1 at spatial infinity.

The static four-velocity is parallel to the time transla-
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tion Killing field; hence, it is the unit vector £ = N~-1¢.
The inner product of falling and static four-velocities at
any point is therefore given by u - £ = N~!. From this
one finds that the Doppler shift factor for massless modes
is given by N(1 + 1 — N2)~! for outgoing modes, and
by its inverse for ingoing modes. We shall consider only
massless modes since in any case the frequencies that will
be important in our discussion are much larger than any
mass we might wish to consider.

If the cutoff on both outgoing and ingoing modes is
at the Planck frequency in the falling frame, wf! = wp,
then in the static frame near the horizon where N <« 1
it will be given by

stat . 1

We out = zNwP )

(%)

stat -1
wein 2N "wp .

Note that the cutoff on outgoing modes approaches zero
near the horizon in the static frame.

Recall that the Hawking radiation is in some sense re-
lated to the thermal excitation of static detectors at a
temperature that diverges at the horizon. However, these
detectors cannot be thermally excited at a temperature
above the cutoff, so the fact that the cutoff wi'3y,, ap-
proaches zero near the horizon precludes their being ex-
cited and calls into question the existence of the Hawking
effect itself. In order to get a feeling for the implications
of this line of reasoning, we now review the relation be-
tween accelerated detector response and Hawking radia-
tion, and then consider the effect of imposing a cutoff as
Just described.

B. Accelerated detectors

A detector with uniform acceleration a in the usual
vacuum state of flat Minkowski space will be thermally
excited [15-17] to a temperature Ty = (h/2wk)(a/c).
This result is easily seen by considering the two-point
function (0|¢(z(s))#(0)]|0), where z(s) is the accelerated
world line and s is the proper time along it. In the
Minkowski vacuum state the two-point function depends
only on the invariant interval z2(s). For uniformly ac-
celerated motion, z(s) is the result of exponentiating a
boost, so it is periodic in the translation of s by the imag-
inary quantity i27/a, where a is the proper acceleration.
Now a two-point function periodic in imaginary time is a
thermal two-point function, and one concludes that the
detector feels a temperature Ty = a/27 [18].

Following Unruh [15] and DeWitt [16], this result can
be applied to a static detector outside the horizon of a
black hole. The acceleration of a world line at constant
radius is given by a = N~!}(1~ N2)2 g, where k = 1/4M
is the “surface gravity” of the hole. At the horizon N —
0, so the acceleration diverges, and at infinity N — 1,
and the acceleration vanishes.

The equivalence principle suggests that the response
of a static detector in Schwarzschild spacetime should be
related somehow to that of a uniformly accelerated de-
tector in Minkowski space. However, the response of a
detector is determined by the two-point correlation func-
tion of field fluctuations, which depends on the state of
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the field, and not just on the acceleration of the detec-
tor. If the two-point function along the world line of
the static detector were the same function of proper time
as it is along an accelerated world line in the flat-space
Minkowski vacuum, one could conclude that the detector
is thermally excited at the Unruh temperature

Ty =a/2r = N"'(1-N»2 Ty, (6)

where Ty = &/27 is the Hawking temperature. As
viewed from infinity, this temperature suffers a redshift
given by the lapse function N, so at infinity it is given
by

TU,oo = (1 - N2)2 Ty, (7)

which agrees with the Hawking temperature of the hole
provided the detector is placed just outside the horizon
where N — 0.

But why should the two-point function behave in this
way, that is, can this behavior along the static world line
of the detector be deduced from our assumptions about
the initial state? Far from the hole, the acceleration van-
ishes, so any thermality must be attributed “by hand” to
the state of the field, rather than being derived from the
acceleration temperature effect. It is only when applied
near the horizon that the above argument has any chance
of being correct and having predictive power. Moreover,
the state resulting from collapse is not the thermal equi-
librium (Hartle-Hawking) state with both ingoing and
outgoing modes thermally populated; instead, only the
outgoing modes are thermally populated. I do not know
any property of the state of the ingoing modes near the
horizon that holds generically in the collapsing case other
than regularity of the stress tensor or equivalent condi-
tions, and this does not distinguish between the equilib-
rium and collapse states.

Only if we restrict attention to outgoing modes near the
horizon does the argument appear to carry some weight.
At late times, the modes that finally peel away from the
horizon have been exponentially redshifted, so it is plau-
sible that their quantum state is independent of the de-
tails of the initial state and the collapse process, and it
is plausible that, in a thin shell just outside the horizon,
that state is close to the Minkowski vacuum state. In any
case, this is the best I can do to solidify the argument.

Now let us consider how the argument is affected by the
presence of a Planck frequency cutoff in the falling frame.
The essential point is that the static cutoff frequency for
outgoing modes (5) goes to zero at the horizon, whereas
the acceleration temperature (6) diverges. To apply the
argument one must therefore stay far enough from the
horizon that the acceleration temperature is below the
cutoff. The question that arises is whether this is so
far that the argument breaks down completely. In fact,
we see from (5) and (6) that the outgoing static cutoff
is equal to the acceleration temperature when the lapse
function is given by

Niin = (T fwp)/? ~ (Ip frs)1? ®)

provided lp < 74, so that the higher-order terms in NV
can be neglected. At this lapse, the temperature “at in-
finity” indicated by (7) differs by a term of order O(Ip/7,)
from the Hawking temperature.
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The above reasoning suggests that as long as the
Schwarzschild radius r; is much greater than the Planck
length Ip, the cutoff will not make a significant difference
for observations far from the hole. More specifically, it
suggests that the spectrum of emitted radiation would
differ from Hawking’s thermal spectrum by terms of or-
der O(lp/r,). Another indication of the analysis is that
for a given mass hole, there is a maximum local temper-
ature to which a static detector would be excited, given
by the acceleration temperature at the position where it
is equal to the cutoff. From (5) and (8), this temperature
is seen to be

Tlocal ~

max = {VminWp = (]1H¢'~1}’)1/2 . (9)
Since the existence of this limit violates the usual red-
shift relation for the variation of temperature in a static
gravitational field, it may have some implications for the
existence or properties of a thermal-equilibrium state sur-

rounding a black hole.
C. Stress-energy tensor

In making the argument that a static detector just
outside the horizon of a black hole is thermally excited,
it was necessary to assume that the two-point function
along the detector world line behaves like that along a
uniformly accelerated world line in the Minkowski vac-
uum. A plausibility argument was advanced to support
this assumption for the outgoing mode contribution; how-
ever, it is an admittedly weak one, especially because
to actually calculate the two-point function from initial
conditions before the collapse would involve whatever
physics takes place in the zone of ignorance where the
mode reconstruction process presumably occurs. We seek
instead a derivation that uses assumptions which can be
justified on general physical grounds alone. A promising
strategy in this regard is based on conservation of the
stress tensor.

Consider a conformally invariant field in the two-
dimensional black-hole spacetime that results when the
angular coordinates are dropped. Employing a slight
modification of the analysis of Christensen and Fulling
[19], it will be shown below that the outgoing flux of
energy from the hole at late times is completely deter-
mined just by conservation and finiteness of the expecta-
tion value of the renormalized stress tensor, together with
the value of the anomalous trace. The flux so determined
agrees with the Hawking result for the net flux, and it is
notable that the result is obtained without evaluating the
Bogoliubov coefficients connecting the ingoing and out-
going modes, without specific assumptions regarding the
initial state, and without assuming time independence of
the final state. Moreover, the result applies to general in-
teracting fields, as long as they are classically conformal
invariant so that their trace is determined by the trace
anomaly.

Conservation and finiteness are assumptions that can
be plausibly justified without regard to the short-distance
physics; however, this is not so for the value of the trace.
In this section I shall estimate the modification of the
trace due to the existence of a Planck length cutoff, and
then examine the implications for the outgoing energy
flux in this two-dimensional model. Of course it would
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be preferable to have a four-dimensional analysis; how-
ever, in four dimensions it is not possible to derive the
exact amount of energy flux in this manner, because the
tangential stress remains undetermined [19]. Neverthe-
less, as discussed in Ref. [19], some information can be
garnered from physical assumptions regarding the tan-
gential stress, and it is possible that our argument in the
presence of a cutoff can at least be partially extended to
four dimensions.

The Schwarzschild metric with angular coordinates
dropped can be expressed in null coordinates by

ds’ =Cdudv, C=1-2M/r,
(10)
elv—w)/aM (r/2M — l)er/ZM .

At the horizon C — 0 and u — oo, whereas at future
null infinity € — 1 and v — oo. Let T,y = (T )ren be
the expectation value of the renormalized stress tensor.
Then T,,”,, = 0 implies

1 v
Tuu(t, v) = Tyu(u,vo) — Zf CT,dv, (11)
Vo

where T = (Tﬁ‘),en is the trace. The Ty, component
of the stress tensor signifies outgoing energy flux when
evaluated at infinity.

Now the assumption of finiteness (in nonsingular co-
ordinates) implies that Tyy(u,vo) must go to zero as u
approaches oo at the horizon. To see why, suppose that
(A(u,v), v) is a regular coordinate system at the hori-
zon. Then dA/Ou — 0 at the horizon, since A covers a
finite range in an infinite range of u. The tensor trans-
formation law gives Tyy = (0A/0u)?Thx, which shows
that T,, vanishes at the horizon by the finiteness as-
sumption. More precisely, taking A to be an affine pa-
rameter along a line of constant v, we have d\A = C du,
s0 (OA/0u)? = C? ~ e(""¥)/2M pear the horizon. Thus
conservation and finiteness alone imply

v
Tuu(,) = O(e™/™) — 2 [ CTudo. (12)

Yo
At late times at fixed radius, the first factor falls expo-
nentially with time, so the energy flux out at infinity is
determined solely by the trace. If the trace is entirely due
to the anomaly, (12) shows that this flux is independent of
the initial state of the field, on account of the redshifting
away of any incoming energy. Using the standard value
of the trace anomaly for a scalar field, T = —R/24x, and

letting v — oo, (12) yields

1
7687 M2

which agrees with the Hawking flux as u — oo.

Now let us consider the above argument in the context
of a cutoff theory. We assume there exists a quantity cor-
responding to (T}, )ren, even if it is not calculated by the
usual rules of quantum field theory but by some other
theory which remains unknown. We assume moreover
that it is conserved, and that it is regular at the horizon;
however, we do not assume the usual trace anomaly. Nev-
ertheless, to proceed from (12) we need to know some-

+ O(e~u/?M)y | (13)

Tuu(u,00) =
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thing about the trace. Since it cannot be computed in
an unknown theory, I propose simply to compute it us-
ing standard quantum-field theory with an ad hoc cutoff.
Fujikawa’s method [20] will be employed, because that
method seems best suited to accommodate the effects of
a cutoff. In other calculational schemes, the dimension-
ful scale comes in “through the back door,” and I do not
know how to relate it to a physical scale.

In Fujikawa’s approach, the anomaly arises because al-
though the action is conformal invariant, the measure in
the functional integral is not. Evaluating the nontriv-
ial Jacobian resulting from the change of measure under
conformal transformation of the fields, one finds [20]

T = (T4(x)) = Y _ ¢n(z)on(z), (14)

where {¢,} is a complete set of eigenmodes of the dif-
ferential operator D in the action, D¢, = A\,%¢,. The
sum is divergent, and to regulate it Fujikawa introduces
a mass scale A and defines the sum by the limit A — oo
of

3 $a(@)e A g (z) . (15)

So defined, the sum is convergent only for Euclidean sig-
nature spacetime, because only then are the eigenvalues
An2 of D all positive. Since it is the Lorentzian cutoff
theory itself that interests us, the use of Euclidean signa-
ture cannot be justified. Unfortunately, however, I have
nothing better to offer at this time, so the Euclidean
definition will be used and the result will be formally
continued to Lorentz signature. It remains an important
problem for future work to calculate the trace directly
in the Lorentzian cutoff theory. In such a calculation, a
dependence on the frame in which the cutoff is applied is
expected to occur.

Using the Euclidean method, in the two-dimensional
case the sum (15) has the form [21]

1
2

O(A?) = =R+ O(R*/A?) . (16)
The O(A?) term can be taken to renormalize the cosmo-
logical constant, the O(A®) term is the standard trace
anomaly, and the O(R?/A?) term is a correction term
we are after. Setting the cutoff A equal to the inverse
Planck length, the correction AT to the trace is seen to
be of the form AT = O(I4R)R. For the path of integra-
tion u = const, v9 < v < oo in (12), this correction to
the trace is bounded by AT ~ (Ip/rs)2R. Therefore the
result for Ty, (u, 00) will differ from that given in (13) by
a term of relative order (Ip/r;)?.

We conclude that if the stress tensor expectation value
is conserved and finite, then in the two-dimensional
model there is necessarily some flux of energy at infinity,
provided only that the gradient of the trace is nonvan-
ishing. If the trace is given by the usual trace anomaly,
then the flux is precisely the Hawking flux. Our method
of estimating the trace leads to the conclusion that the
effect of a Planck-length cutoff is to modify the trace by a
term of relative order (Ip/rs)? near the hole, which leads
to a change in the flux at infinity AT,SZO) of the same
relative order:
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ATE = O(3/73) TE - (17)

The analysis does not apply directly to the four-
dimensional case, for which supplementary analysis re-
garding the modification of the tangential stress would
be required. Supposing qualitatively similar results, we
can conclude that the modification (17) is negligible for
any but the tiniest black holes. In particular, it would not
affect the order-of-magnitude estimate [1] of the energy
released in a mini-black-hole explosion, because most of
that energy would be released before the hole gets any-
where near the Planck size.

V. DISCUSSION

So, do black holes evaporate? The analysis presented
here supports the viewpoint that black-hole evaporation
is not really an ultrashort-distance effect, despite the role
played by ultrashort distances in its usual derivations.
Thus it seems that the existence of a Planck-scale cutoff
or other unknown Planck-scale physics would probably
not affect the existence of black-hole radiation. Never-
theless, many open questions remain.

The notion of mode regeneration was introduced in
this paper to account for the compatibility of a short-
distance cutoff with the infinite redshift effect of black
holes. The implication is that nonlinear field propagation
is crucial to a sound physical understanding of black-hole
radiation. This is somewhat disturbing, since it leads
one to question what happens if the regeneration pro-
cess is not complete. Why wouldn’t the final state de-
pend upon some coupling constants, and how could this
agree with the Hawking result? A possible answer goes
like this. Since the regeneration process is reestablishing
the full spectrum of vacuum fluctuations locally, and the
Minkowski vacuum is statistically like a zero-temperature
thermal state [22, 17], perhaps the regeneration is an
equilibration-type process, that leads to a state which is
independent of coupling constants provided enough time
passes. This would suffice, since the “pure” Hawking ra-
diation is, strictly speaking, what emerges from the hole
at very late times after the collapse.

Another question is how can the process of mode re-
generation be incorporated into quantum field theory?
A changing dimension of the state space seems to be re-
quired; however, this would be something that lies en-
tirely outside quantum field theory as we know it. The
analogy with the atomic fluid suggests that the quantum
dynamics of spacetime geometry must play a role. This
issue arises also in the cosmological context, where one
would need to understand how the cutoff could remain
at the same proper scale in spite of the redshifting due to
the expansion of the universe. One hypothesis is that, as
the universe expands, new modes are always being added
to the state space at the cutoff scale. The qunatum state
of such modes must then be specified by an initial con-
dition as they appear in the state space [23].

Lacking the fundamental short-distance theory, our
present goal should perhaps be to identify the minimal
and most physically sound assumptions needed to infer
the existence of black-hole radiation. This was the mo-

tivation for the stress tensor argument of the preceding
section. To improve on that, one needs to generalize from
conformal invariant fields in two dimensions to any fields
in four dimensions, but it is difficult to see how this can
be done since the trace and tangential components of the
stress are no longer determined by general considerations.

To avoid the need to understand the mode-
regeneration process one might do the following. Instead
of imposing a boundary condition on the state at past
infinity (as in Hawking’s original derivation [1]) or on
the short-distance limit of the two-point function at the
horizon at one time (as in the derivation of Fredenhagen
and Haag [6]), one could impose a condition in a thin
shell just outside the horizon at every time. Points in
such a region are not causally independent, so one can-
not impose an initial condition there; however, it may be
possible to identify a condition which, if met, would yield
the Hawking effect. Roughly speaking, the required con-
dition would be that outgoing modes up to the cutoff fre-
quency are in their “ground” state, as viewed by a freely
falling observer [24]. The analysis of Sec. IV B suggests
that this approach should work, as does a more careful
analysis [23]. Further work could focus on whether or
not this condition is met in any particular cutoff theory.

Finally, returning to the fluid flow model of a black
hole, it is interesting to ask whether Unruh’s conclusion
that a sonic horizon will radiate thermally remains true
when the fluid is treated not as a continuum but as the re-
alistic superfluid, helium-4. If the temperature were high
enough for something other than the long-wavelength
phonons to emerge far from the horizon, then due to
the form of the excitation spectrum Fig. 1, the effective
horizon might occur at a speed substantially less than
the speed of sound. Unfortunately this is impossible, for
if the temperature were to be 1 K, then according to (3)
the gradient of the velocity at the horizon would need to
be 100 m/s per angstrém.

For long-wavelength phonons, we have seen that ex-
trapolating backwards, the effective horizon is reached
before the phonon reaches the first maximum of the dis-
persion curve Fig. 1, and therefore well before the cutoff
is reached. Thus it seems that, due to the nonlinear-
ity of the dispersion relation, the issue of the requisite
modes being cut off does not arise for a prospective low-
temperature sonic horizon. On the other hand, since the
flow speed must be so high, the flow will be subject to
various instabilities. If the instability to vortex creation
at very low speeds could somehow be suppressed, there is
still a critical speed [24], about 60 m/s, at which the su-
perfluid is unstable to the appearance of a periodic roton
condensate [25] which would complicate the flow pattern.

Ignoring such complications, Unruh’s argument sug-
gests that a low-temperature sonic horizon emits ther-
mal phonons. However, we expect that each mode would
be populated at a different temperature, determined by
the gradient of the velocity field evaluated at the effec-
tive horizon for that mode. For modes whose wavelength
is so short that mode regeneration must have occurred,
the effective horizon would presumably be located where
the mode was regenerated. It will be interesting to pur-
sue this question, not only to determine what happens in
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helium-4, but also because it may be relevant to black-
hole evaporation. After all, the dispersion relation for
quantum field excitations might too be nonlinear at ul-
trahigh frequencies.
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