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Acceleration-free spherically symmetric inhomogeneons cosmological model with shear viscosity
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Some new exact solutions to the Einstein equations with an acceleration-free imperfect-Quid source
are obtained. Some physical restrictions on the solutions are discussed. Cosmological models built out
of these solutions are found to have increasing entropy per baryon and not possess any Qatness problem.

I. INTRODUCTION

This is the second in a series of two papers in which we
explore imperfect-Quid cosmological models and obtain
some new exact solutions to them. The models that we
study have the feature that while the underlying associat-
ed geometry is in general an inhomogeneous one, the
models nonetheless evolve so that at late times the inho-
mogeneities die out and the Universe becomes the famil-
iar highly symmetric Friedmann-Robertson-Walker one
of today. To a present-day observer our models are indis-
tinguishable from the standard one and must hence be re-
garded as observationally viable. However, since each of
our models has a history which is di6'erent from that of
the standard model, our models do not all su6'er from
some of the familiar difficulties (horizon, entropy, and
flatness problems) which the standard model possesses.
They thus provide for potentially interesting cosmologies.
In our accompanying companion paper [1] we study
shear-free cosmological models with heat Aow and bulk
viscosity and in the present paper we study acceleration-
free ones with shear viscosity. In all the cases the specific
non-perfect-fIuid terms are found to lead to some interest-
ing implications for cosmology. For a complete discus-
sion of our motivation, and for our formulation of the
problem and its notation we refer the reader to Ref. [1].

In this particular paper we study Einstein's field equa-
tions with an acceleration-free imperfect-Quid source
with shear viscosity coefficient g(r, t) and associated
energy-momentum tensor [p(r, t) and p(r, t) are the stan-
dard energy density and pressure of the fiuid]
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where ~ denotes the quantity 8+G, so that the Bianchi
identities impose the following two constraints on the
Quid:
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and

where A, and Y are functions of r and t only; while the
Quid four-velocity vector itself then simplifies to

U„=( —1,0,0,0)

so that the Quid is comoving with the geometry. In this
geometry the Einstein equations take the form

H„=g„+U„U
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ds = dt +e dr —+ F (d 8 +sin 9 d P ), (1.4)

and where U„ is the four-velocity of the Quid. We take
the geometry to be spherically symmetric about a single
point, and thus isotropic but not homogeneous at arbi-
trary times. Further, we take the geometry to be
acceleration-free (viz. U Uti. =0), so that the most gen-
eral admissible metric then takes the form

(In passing we note that because of the conservation of
the energy-momentum tensor we find that unlike the
perfect-Quid case where some acceleration is necessary to
support a pressure gradient, for an imperfect fIuid this
gradient may be supported by the viscosity instead. )

In attempting to find solutions to the Einstein equa-
tions we note first that the integration of Eq. (1.9) is
straightforward, yielding
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YP

a(r)
(1.12)

1 kr /4—a„(r)=
1+kr /4

(1.13)

where a(r) is an integration function. Following the gen-
eral approach we described in Ref. [1] we impose the
physically motivated boundary condition that the metric
asymptotically approach a Robertson-Walker one. Tak-
ing this asymptotic metric to be of the form Y=re,
e =R (t)/(1+kr /4) (where k = —1,0, 1) in an isotropic
coordinate system then requires the function a(r) to be of
the form

sidered as illustrative of the kind of behavior which could
possibly be expected in general imperfect-Quid cosmologi-
cal models. Since the solutions that we present are exact
they allow us to study in some detail the time history of
the Universe so that we can obtain (Sec. IV) a reasonably
clear picture of how it is at least in principle possible to
avoid some or even all of the familiar problems of the
standard cosmological model.

II. EXACT INHOMOGKNKOUS SOLUTIONS

Because of Eq. (1.17) and, because of our simplifying
choice of vanishing bulk-viscosity coefficient, the Quid
energy-momentum tensor is traceless. This tracelessness
condition then leads to

at all times. Next, eliminating A, from Eqs. (1.6)—(1.8) by
the use of Eq. (1.12) yields Y(1—a )+ Y ( YY) =0,

c3r Bt
(2.1)
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p(r, t) = 3p (r, t),
while for the matter-dominated Universe we take

(1.17)

In order to solve these equations, we need to specify an
equation of state. For the early radiation-dominated
Universe we take, following the procedure described in
Ref. [1], the local version of the standard equation of
state, viz. ,

where p(t) is an arbitrary function of t In .general it is
quite hard to find exact solutions to our model especially
given our asymptotic boundary condition that our metric
approach a Roberston-Walker form at large times. How-
ever, we have found some classes of solutions in certain
simplified cases which we shall report on in this paper.

To begin with, we study first the most simple case in
which our metric is to asymptotically approach a Aat
(k=0) Robertson-Walker metric. Then the integration
function associated with Eq. (1.12) is given by the very
simple form a(r) = 1. Further, in this case Eq. (2.2)
reduces to

p(r, t)=0 . (1.18)
(YY)=P(t) .

at
(2.3)

With the use of Eq. (1.17) or Eq. (1.18), Eqs. (1.14)—(1.16)
can then be solved with the functional dependence of
g(r, t) on space and time then being obtained as part of
the solution (as a consequence of satisfying our required
asymptotic boundary condition) rather than its being
some a priori prescribed function of p(r, t) and p(r, t) In.
this paper we shall concentrate on the early Universe and
shall study the radiation-dominated case of Eq. (1.17) to
find some new exact inhomogeneous solutions which we
present in Secs. II and III.

Ideally, to solve our model completely we would need,
as already noted in Ref. [1], to study the imperfect-fiuid
Einstein equations in conjunction with the general-
relativistic Boltzmann transport equation in order to ob-
tain closed-form expressions for the transport coefFicients
which appear in Eq. (1.1). For the moment this is a total-
ly prohibitive problem. In the absence of any such solu-
tions we have opted both here and in Ref. [1] to take a
much more limited approach and instead try to find solu-
tions simply by imposing a boundary condition on the
Einstein equations, namely, that our models each evolve
into the standard cosmology at late times. Thus the mod-
els which we present in this series of papers are to be con-

This equation can be solved for some particular choices
of p(t). We look for solutions of the form

Y = [fi(r)gi(t)+ f2(r)g, (t)]' ', (2.4)

where f, and f2 are not proportional to each other and
nor are g, and g2. We impose this particular require-
ment since Y would otherwise be a separable function of r
and t which would lead to a metric that is either
Robertson-Walker at all times or which never approaches
a Roberston-Walker metric at all. Inserting Eq. (2.4) into
Eq. (2.3) yields an equation that can be satisfied in a finite
number of inequivalent ways with the function p(t) being
restricted to taking only certain specific forms. With our
additional asymptotic requirement that the metric be-
comes Roberston-Walker at large times we obtain four
different solutions for the function Y(r, t) which are of in-
terest to cosmology. (In this paper we only present the
solutions to the equations that we have found, and we
refer the reader to Ref. [2] for details of the derivation. )

Substituting the four respective expressions for Y(r, t)
into Eqs. (1.12) and (1.14)—(1.16) we then obtain expres-
sions for e, p, and g in each of the four cases. The four
sets of solutions are listed below.
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Case (i)

y g 1/2p( 3/2 Q 3+ 3 )(t +t )3/4+ ]
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In this first case we find that there is a hypersurface
represented by

t01+—
3/4 r'"+Qr'+ r'7'0

~ 3/2

'2

(2.8)

on which Y is zero and e is infinite. This surface thus
corresponds to a singularity in the metric. The diver-
gence of the energy density on the surface suggests that it
is a real physical singularity which can be viewed as a big
bang, an inhomogeneous big bang which occurs at
different times for different locations. The surface given
by Eq. (2.8) is that of a shrinking sphere located where
the singularity is. The big bang takes place the earliest at

I

spatial infinity and progresses toward the center. It will
not take place in the neighborhood of r=O until t ap-
proaches infinity. Thus we have a incomplete physical
spacetime. Outside the shrinking "fire ball" the space-
time is regular and physical, on the sphere there is a
singularity, and inside the sphere the physical spacetime
does not exist (the energy density is negative there). Be-
cause of the singularity, an insurmountable barrier, the
inside region is unattainable to the physical world outside
and, therefore, does not cause us any concern. At any
given spatial point the big bang occurs at the time given
by Eq. (2.8). Afterwards, the metric approaches the
Robertson-Walker one as t —+ ~. This is an example of
spacetime which is very inhomogeneous at very early
times and then gradually becomes homogeneous.

Case (ii)
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In the second case the coordinate r is restricted to the
range r0 & r & ~. Thus the "origin" is at r =r0 instead of
at r =0. As in case (i) there is a big-bang hypersurface de-
scribed by

I

on which e vanishes, giving rise to a big-bang singulari-
ty. The behavior of p is similar to that of case (i).

For each of the above two cases the function p(t) takes
the form

t0I+
' 3/4 „3/2+ Q„3r r0

3/2
0

2

(2.12)

3t2g 3/2

p(t) =
32t "4(t +t, )"4 (2.13)

up to a case-dependent overall plus or minus sign, with
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the coefficient of shear viscosity g then being obtained
from Eqs. (1.15) and (1.16). The resulting v) turns out to
be independent of the spatial coordinate r and is therefore
the same in both the cases being of the form

1 1 1
g(&) = +-

8K t+to t
(2.14)

Case (iii)

The shear-viscosity coefficient is thus nicely positive as it
should be (see Sec. IV) and asymptotically approaches
zero as t ~ ~, a property which we expect ri(t) to possess
since we impose the asymptotic condition that our solu-
tions approach the Roberston-Walker form. These prop-
erties are also shared by the expressions for the shear-
viscosity coefficient g which follow in the next two sets of
solutions.

(2.26)

and represents an inhomogeneous big bang.
With regard to our entire set of solutions we note that

in the region outside of the singularity sphere all four of
our solutions not only have positive energy density,
which is essentially the requirement of the "weak energy
condition, "but our solutions actually satisfy the stronger
"dominant energy condition" wherein the scalar quantity
8'„T" 8' is always positive and the four-vector T" 8
is always nonspacelike for any timelike vector 8„we
may choose. Moreover, the contribution of the shear
viscosity to the energy-momentum tensor attenuates fas-
ter than the energy density itself, indicating that the
viscosity contribution dies out as t ~~. For example, in
solution (iv) we have the relation

/ —A 1 /2(r 3/'2, t 3/4+ b /r 3/2)2/3 (2.15)
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Thus both sides of Eq. (2.27) behave like t even while p
goes like t as t~~. The components of the energy-
momentum tensor T, ' and T2 can also be obtained:

P(r) A 3/2r —5/4b

8
(2.19) T2 =@+—,'q 1 r / +b/3t

4«' r'~'+b/t

In the third case there is again a singularity hypersurface,

t 3/2 b 2
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Case (iv)
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on which either Y (when b (0) or e (when b &0) van-
ishes and on which p diverges. The surface is also a
shrinking sphere outside of which, or to the future of
which, the physical spacetime lies. The coefficient of
shear viscosity is found to be positive and independent of
the spatial coordinates.

With these expressions it can readily be checked that the
dorn1nant ener'gy condlt10Il, which can be w11tten as

p& ~T, '~ and p& ~T2 in our case, is indeed satisfied.
Therefore, these solutions can be considered as candidate
physica1 models. All these solutions share a common
feature, namely, that they have a center which is un-
reachable from the physical region. Thus, the Universe is
very inhomogeneous and there is an inhornogeneous big
bang. The observed Universe, which is a small part of
the complete spacetime manifold, thus has to locate far
enough from the center so that the observable region is
presently homogeneous.

To conclude this section we note one further feature of
our solutions. Specifically, all of our metrics not only ap-
proach the Robertson-Walker one as t ~ ~ but they also
do so as r ~ ~. In other words, they are spatially asymp-
totically of the Robertson-Walker type just as the
Schwarzschild solution is spatially asymptotically of the
Minkowski type.

1

4Kt
(2.24) III. INHOMOGKNEOUS SOLUTIONS

WITH P( t }BEING ZERO

f3(r)= 'b A (At)— (2.25)

In the fourth case we see that for b )0 there is no singu-
larity for t )0 and p is negative for small t. This is thus
an unphysical case. For b (0 however this case becomes
similar to cases (i), (ii), and (iii). Then a physical singular-
ity is found on the surface

In the preceding two sections solutions were obtained
for various choices of the integration function P(t). The
solutions that we found all possess singularities near the
center of coordinates so that the center has to be exclud-
ed from the physical spacetime. In each case the entire
spacetirne metric never completely evolves into a
Roberston-Walker geometry, only the region far enough
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k + (YY-)=0
(1+kr /4)

(3.1)

when I3(t) is zero. The most general solution to Eq. (3.1)
is

away from the center actually attains such uniformity. In
this section we return again to Eq. (2.2) and study anoth-
er soluble case, the one where It3(t) =0. This time we are
able to obtain exact solutions for each of the three spatial
geometries (k = —1,0, 1) associated with Eq. (1.13). In
contrast with our previous solutions this time we will find
exact solutions which do uniformly approach the
Roberston-%'alker one with there now being no spatially
singular point at all except at very early times.

To obtain these additional solutions we note first that
with the use of Eq. (1.13), Eq. (2.2) may now be written as

dominant energy condition is satisfied.
Just as in Sec. II we again have an inhomogeneous big

bang. So far though no specification of B(r) has been
given other than Eq. (3.7) which only requires that 8 (r)
be monotonically increasing. Thus practically one could
choose almost any function 8 (r). The following
represent some typical purely illustrative examples of
physically motivated forms for the function 8 (r) that one
might actually choose, and their significance lies in the
fact that our ability to choose this broad class of func-
tions at all indicates that, unlike the situation in the stan-
dard model, our model requires no fine-tuning of parame-
ters or initial conditions.

(i) We might want to choose 8 such that the big bang
takes place uniformly, i.e., so that to(r)=0. Then we
could take

[ kt +a—(r)t +b (r) ]'~
1+kr /4

(3.2)
8 (r)+ —,'rB'(r) =0,

so that we obtain

(3.9)

Note that in general a and b are functions of r. If a and b
were both independent of r the solution would simply be
the Roberston-Walker one at all times. We are thus in-
terested in cases where at least one of them is not con-
stant. We now study such cases for the various different
values of k.

8(r)=—
p

2
(3.10)

where b has to be positive according to Eq. (3.7) which
then makes g nicely positive according to Eq. (3.6). With
the use of Eq. (3.10), Eqs. (3.3)—(3.5) then reduce to

A. Zero-curvature case

Y(r, t) =r [ A(t B(r))]'— (3.3)

In this case k=0 and ao(r)= l. In order for Y to ap-
proach the Roberston-Walker form asymptotically a (r)
must be a constant. Thus we have in general

Y(r, t)=r [2 (t+blr )]'

g 1/2t

(t+blr')'" '

3 t +4b /3r
4t (t+blr )

(3.1 1)

(3.12)

(3.13)

where A is a constant. From Eqs. (1.12) and
(1.14)—(1.16) we obtain

g 1/2
e i t B(r)—

—,
' rB'(—r) i,&t B(r)—

rB'(r)
=3 1

' '
6KP—

4 [t —8(r)]2 rB'(r)
2

1 1
71=

4a t B(r)—

(3.4)

(3.5)

(3.6)

rB'(r) ~0 (3.7)

Equation (3.5) shows that the energy density has a double
pole at t =8 (r), a single pole at t =8(r)+rB'(r)l2 and
also a zero at t =8(r) rB'(r)l6 T—o have a .physical
model we need to choose the pole at the later time to be
the big-bang singularity so that there is then no singulari-
ty after the big bang. If rB'(r) is less than zero the big
bang should occur at time t =8 (r). But the numerator
could then be negative at a t near 8 (r). This case is thus
ruled out. Rather, we have to set

(3.14)

which satisfies Eq. (3.7) provided the constant b is posi-
tive. With the use of Eq. (3.14) we find

1/2

y g 1/2 br
I +7"0

(3.15)

The big bang thus takes place uniformly at t=0 as re-
quired. However, we note that the metric is also singular
at r =0 where it never approaches the Robertson-Walker
form. This is then a situation similar to the ones previ-
ously discussed in Sec. II.

(ii) A second possibility is to try to find a 8(r) that is
bounded and nowhere singular throughout the entire
three-space. The metric would then uniformly approach
the Roberston-Walker one as t~ ~. But the big bang
would now have to occur nonuniformly. Accordingly, we
would have a big bang which is space dependent. After
enough time has elapsed to allow the big bang to take
place at every possible spatial point, the metric would
then become nonsingular everywhere. A simple example
of such 8 (r) which actually does all this is given by

brB(r)=
+P' 0

and the big bang occurs at

t =to(r) =B(r)+ ,'rB'(r) ~ 8 (—r) . — (3.8)

With Eqs. (3.7) and (3.8) it can again be shown that the

g 1/2

br

(r +ro)

br (r +2ro)
(r2+r2 )2

(3.16)
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3 1KP—
b 2

(r +ro)

The big bang thus takes place at

Qr2(r2+ 2r2)
3 0

(r2+ 2 )2

br (r +2ro)
(r +ro)

(3.17)

nonetheless still end up with the same final Robertson-
Walker state, with no fine-tuning of initial conditions ap-
parently being necessary. This is indeed the kind of re-
sult that one might like to see with viscous processes
smoothing out any inhomogeneities present in the early
Universe.

B. Positive-curvature case

(3.18)

with both p and g being positive at all times t & to(r) as
required. On the surface of Eq. (3.18) e vanishes. After
t becomes greater than b =max to(r) the metric is then
completely regular. When t »b the metric becomes the
Robertson-Walker one throughout the space.

There is thus an infinite number of choices of 8 (r) that
satisfy the physical conditions we impose. This means we
can have many different kinds of initial Universe and

I

In the k= 1 case the function ai(r) is given by
(1—r /4)/(1+r /4). Equation (3.2) can be written as

provided

[( A (r) t )(t ——8 (r))]'~
1+r /4

(3.19)

A (r) & t & 8 (r) (3.20)

and thus yields a recollapsing closed Universe. Equa-
tions (1.15) and (1.16) give for g the expression

1 —a +2YY+ Y
Y2

Y
Br Y

1 A (r) B(r—) 8'(r)[ A (r) —t] A'(r)[t 8—(r)]—
4~ [ A (r) —&][& —8 (r) ] 8'(r) [ A (r) —t] + A '(r) [t —8 (r) ]

(3.21)

To ensure the positivity of g we need to set

A'(r)=0, i.e. , A =const . (3.22)

Consequently we have

1 A 8(r)—
71=

4x (A t)[t 8(r)—]—
With the use of Eqs. (3.19) and (3.22), we can now write Eqs. (1.12) and (1.14) as

(3.23)

[( A t)(t —8(r) )—]'~'
1+r /4

t 8(r)——rB'(r)
2a, (r)

t —8(r) (3.24)

rB'(r) 2 rB'(r) A t—
3 [ A —8 (r)]2 2a, 3 a, A 8(r)—

Kp—
4 [( A t)(t —8 (r) ) ]-' t B(r)—rB'(r) /—2a i

(3.25)

Similar to the k =0 case the big bang occurs at

t =t,(r)=B(r)+ rB'(r)
2ai(r)

and 8 (r) thus has to satisfy

rB'(r) &0.
2a, (r)

(3.26)

(3.27)

would not need to be bounded if the present homogeneity
of the observed Universe were only to be a local property
(i.e., if there are presently unobservable parts of the
Universe which are inhomogeneous in analogy to the sit-
uation discussed in Sec. II).

An example of a bounded B(r) which satisfies Eq.
(3.27) is given by

2c

According to observations the Universe today is very
homogeneous. Consequently 8 (r) has to be small com-
pared to the present time t~„„„,(and thus small com-
pared to A) if the present homogeneity is to be con-
sidered as a global property. This means 8 (r) has to be
bounded. Of course, analogously to the k=0 case, 8(r)

8(r)=b
1+r /4

(3.28)

where the constants b and c are both greater than zero.
The initial time to(r) as defined in Eq. (3.26) is thus given
by
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to(r) =(1+c)B(r) =(1+c)b
1+r /4

2c

(3.29)

The points r=0 and r = ~ (corresponding to the north
and south poles in a closed Robertson-Walker space)
start the big bang at t=0 and their neighboring points
then follow them. The surface r=2 (corresponding to the
equator of the space) is the last to start the big bang, and
this occurs at a time at t =(1+c)b =max to(r). Subse-
quent to this time the metric becomes completely regular
and asymptotically approaches the Rob erston-Walker
form.

[(t —A (r) )( t 8(r) ) ]—' '
1 —r /4

(3.30)

C. Negative-curvature case

For the k = —1 case the function a, (r) takes the
form (1+r /4)/(1 r /4—) Equa. tion (3.2) can be written
as

1 A (r) B(—r)
4a [t —A (r)][t —8(r)]

A'(r)[t 8(—r)] —8'(r)[t —A (r)]
A '(r) [t 8—(r) ] +8'(r) [t —A (r) ]

As t~ ~ we find

1 A (r) 8(r—) A '(r) —8'(r)
4~ [t —A (r)][t B(r)—] A'(r)+8'(r)

Thus we require

/8 (r)f & [A (r)/

(3.31)

(3.32)

to ensure that g ~0 at all times after the big bang. Equa-
tion (3.32) implies A'(r)%0 [since otherwise 8'(r) would
also be zero and thus yield a Robertson-Walker metric at
all times]. The energy density is given by

where A (r) )8(r) is assumed this time. Note that the
coordinate r is restricted to the range 0 & r & 2 (r= 2 cor-
responds to spatial infinity). The coefficient of shear
viscosity is given by

3[A (r) —8(r)]Kp=
4[(t —A (r)){t—B(r))]

As t~~ it approaches

2r A '(r) —8'(r) r A '(r) 8'(r)
3a

&
A (r) —8 (r) 6a

&
t —A (r) t —8(r)

T

r A '(r) 8'(r)
2a, t —A (r) t —8 (r)

(3.33)

3 [ A (r) —B(r)] 2r A '(r) —8'(r)
Kp~ ~

1+
4 [(t —A(r))(t —8(r))]'

Thus we need to set

A (r) B(r)=C =c—onst

in order to get the model to approach the standard cosmology at late times. Using Eq. (3.35) we get

[(t 8(r) —C)(t —8(r))]' '—
(1 r /4)—

(t D, (r)][t —Di—(r)]
(1 r'/4) [(t 8(r) ——C)(t —8(r))]' ' '—

I~p=
z

t 28 (r)+ C — —t +8 (r)[8 (r)+ C]
3C rB'(r)

4[(t 8(r) C)(t 8—(r))] ——[t —D&(r)][t —D2(r)] 3(x

(3.34)

(3.35)

(3.36)

(3.37)

where

I

[28 (r)+C]
6a

1 Q2 2t 28 (r) C——
«[t —8(r) —C][t —8(r)] [t 8(r) —C]2+[t B(r)]—2— (3.38)

(3.39)

2 1/2'

D, (r)= —.28(r)+C+ + C + (3.40)

2 1/2

Dz(r)= —,28(r)+C+ — C +2'
CX ) CX

(3.41)
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Similar to the previous cases, the requirement that p be positive and regular after the big bang leads to

rB'(r) &0,a, (r)

with the big bang taking place at

t=to(r)= D,—(r) .

(3.42)

(3.43)

It is also instructive to examine the contribution of the shear viscosity to the energy-momentum tensor. For the
k = —1 case we note that

C [2t —2B(r)—C]2 rB'(r)
~ Y 1 2'

4I~ [(t B(r)——C)(t B(r))]—'[t —D, (r)][t —D,(r)]
(3.44)

As t~ ~ this expression goes like t while the p- and
p-dependent terms go like t . Therefore, the shear-
viscosity contribution does indeed vanish faster than the
perfect-Quid piece which is due to the energy density p
and the pressure p. It is also easy to see that the dom-
inant energy condition is satisfied. In passing we note
that the same conclusions also hold for both the k =0 and
k= 1 cases that we have just discussed.

To conclude this section we note again that we have
obtained a class of exact solutions for each of the three
different spatial geometries. The Universe starts with an
inhomogeneous big bang, gradually approaches homo-
geneity and gradually becomes a Robertson-Walker
Universe. Unlike the solutions presented in Sec. II which
do not approach the Robertson-Walker one globally, the
solutions here do in fact homogenize uniformly and glo-
bally if B(r) is properly chosen. This particular feature
of the solutions given in this section of our present paper
is especially interesting since the solution presented in
our companion paper [1] approached a Robertson-
Walker form only locally and not globally. Even though
current observation only requires a local Robertson-
Walker metric at late times it is nonetheless interesting to
see that there are in fact inhomogeneous cosmologies
whose late time behavior is both locally and globally of
the standard Robertson-Walker form.

S". = k —— ~04g . Y
3T Y

(4.4)

and thus the coeScient of shear viscosity, g, has to be
non-negative, with this in fact being the case in all of the
solutions that we have presented in this paper.

In order to be able to obtain an expression for the en-
tropy density S from Eq. (4.2) we need an expression for
the temperature. For the radiation-dominated Universe
the most natural and simple assumption is that (see Ref.
[1])of a local blackbody, viz. ,

p(r, t)=aT (r, t), (4.5)

where a is a constant. Substituting Eqs. (4.5) and (1.17)
into Eq. (4.2) then yields

S 4 p'/4
Q

1/4

n 3 n

4 T
Qd

3 n
(4.6)

or

S 4 T 4 i/4p—=—a =—a '/4
n 3 n 3 n

(4.7)

where S"=SU~ is the entropy Aow vector of the Quid. In
the acceleration-free geometry of Eq. (1.4) this last condi-
tion reduces to

'2

IV. ENTROPY PRODUCTION AND THE
FLATNESS PROBLEM

Any physical system has to satisfy the following three
thermodynamic conditions.

(i) Conservation of baryon number:

with the integration constant being set equal to zero as
required by the third law of thermodynamics. Equation
(4.7) is then the required expression for the entropy per
baryon. The number density n can be obtained from Eq.
(4.1), i.e., from

(n U") „=0, . (4.1)
1

I/2 ~t [(
( g)1/2

(4.8)

Td
S

(4.2)

where T is the temperature and S is the entropy density.
(iii) Positivity of entropy production:

where n is the particle number density and U" is the Quid
four-velocity vector.

(ii) Cxibbs' relation:

so that in our geometry the number density obeys

no(r)
n (r, t)=

A, Y2
(4.9)

4a 1/4ek, y.2 3/4/n
0 (4.10)

where no(r) is a convenient integration function for Eq.
(4.8). Equations (4.7) and (4.9) then give

(4.3) Substituting into Eq. (4.10) the expressions for the energy
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density and the metric coefficients associated with the
solutions obtained in Secs. II and III then gives an ex-
pression for S/n in each of the solutions. As an example
we may take the solution of case (iv), i.e., Eqs.
(2.21)—(2.24), of Sec. II. For this particular solution we
find that

3/4
S S

1—,(4.11)
b

RW
3tr'"

where

S 4a

Rw
3

b1+
tr

g 3/2 2

n, (r)
(4.12)

(4.13)

where 0 is the expansion parameter defined by

Y8=U . =A, +2—.;&' Y
(4.14)

In terms of the language of the standard cosmology we
can thus identify a present-day critical density

'2

p, = 02=, +2—1 2 1 Y' Y
(4.15)

3v 3v Y' Y

Because of the presence of the explicit shear tensor term
in Eq. (4.13), we find that, unlike the familiar situation
which occurs in the standard model, the Einstein equa-
tions no longer require us to have to fix the early
Universe magnitude of p/p, to incredibly high accuracy
so that it can then evolve to a value which is close to one
today. In fact, it turns out that in all of the models
presented in this paper p/p, is actually either zero or
infinite at the time of the (inhomogeneous) big bang.

is the corresponding expression for a Robertson-Walker
spacetime. The product of the last two factors in Eq.
(4.11) is an increasing function of t which is zero initially
on the big-bang surface given by Eq. (2.26) where the fac-
tor (1+b/tr )' vanishes (recall that the parameter b
that appears here is negative in this solution). Thus the
entropy per baryon is indeed zero at the big bang and in-
creases steadily as time increases. When t~ ~ we find
that S/n~(S/n)Rw In ot.her words, the entropy per
baryon of the Universe increases smoothly from zero to
its present large value as the Universe evolves from the
big bang to the present time. The same conclusions can
also be made for the other physical solutions that we
presented in Secs. II and III. Therefore, the entropy
problem that exists in the standard Friedmann big-bang
model is absent here.

In addition to being able to resolve the entropy prob-
lem, our models also do not appear to su6'er from any
fIatness problem either. Specifically, we may rewrite Eq.
(1.14) in the form

2

+-Y 1 [Y(1—a )],2

Y Y2Y' Br

b
3 3/4r t

b1—
r 3t 3/4

1/3

(4.16)

When the parameter b in Eq. (4.16) is taken to be nega-
tive (corresponding to the case where e vanishes at the
big bang) the right-hand side of Eq. (4.16) is smaller than
the corresponding Robertson-Walker expression. The
light trajectories are then less causal then those associat-
ed with a Robertson-Walker geometry. Cases (i) and (iv)
of Sec. II are also in this class. However, when the pa-
rameter b is positive (corresponding to the case where Y
vanishes at the big bang) the right-hand side of Eq. (4.16)
is larger than the corresponding expression in the stan-
dard model. Moreover, case (ii) of Sec. II and all the
cases considered in Sec. III also behave this way. In
these cases then the light-cone trajectories are more
causal than those associated with a Robertson-Walker
geometry. Unfortunately though, because of the singular
nature of the geodesics at early times we have not been
able to explore whether this improvement is significant
enough to resolve the horizon problem.

To conclude this paper we would like to state that even
though there is still a need for further analysis of the
solutions presented both here and in our companion pa-
per, we feel that the wide variety of exact solutions that
we have found is suggestive of the possibility that all of
the difhculties of the standard model may be completely
resolvable by inhomogeneous cosmology.
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Thus our model requires no fine-tuning of the quantity
p/p, at early times. In a sense then, the Aatness problem
is only a problem in models where the entire history of
the radiation-dominated Universe is the standard
perfect-Auid one. This is not the case in any of the mod-
els discussed in this series of papers.

With regard to the horizon problem situation in the
models considered in this paper, we are unfortunately un-
able to make as definitive a statement as we did in the
model of Ref. [1] (where we actually found a model
cosmology with no horizon problem at all) since we can
no longer integrate the light-cone geodesic equations ex-
actly, and we cannot even integrate them reliably numeri-
cally either because of the singularity structure of the in-
homogeneous big bang. We can however explore our
models qualitatively to see whether they could have
better causal structure than the standard Robertson-
Walker model. Thus for the model of case (iii) of Sec. II
for instance we find that the light-cone equation takes the
form
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