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Spectral boundary conditions in one-loop quantum cosmology
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For fermionic fields on a compact Riemannian manifold with a boundary, one has a choice between
local and nonlocal (spectral) boundary conditions. The one-loop prefactor in the Hartle-Hawking ampli-
tude in quantum cosmology can then be studied using the generalized Riemann g function formed from
the squared eigenvalues of the four-dimensional fermionic operators. For a massless Majorana spin-2

field, the spectral conditions involve setting to zero half of the fermionic field on the boundary, corre-
sponding to harmonics of the intrinsic three-dimensional Dirac operator on the boundary with positive
eigenvalues. Remarkably, a detailed calculation for the case of a flat background bounded by a three-

sphere yields the same value g(0) = —" as was found previously by the authors using local boundary con-

ditions. A similar calculation for a spin-2 field, working only with physical degrees of freedom (and,

hence, excluding gauge and ghost modes, which contribute to the full Becchi-Rouet-Stora-Tyutin-
invariant amplitude), again gives a value g(0) = —

360 equal to that for the natural local boundary condi-

tions.

I. INTRODUCTION

In recent work by the authors [1,2], one-loop effects in
quantum cosmology for fermionic fields have been stud-
ied using local boundary conditions. In the case of a
massless spin- —,

' field (f",f" ) in a Riemannian back-
ground, which we shall refer to loosely as a Majorana
spin- —,

' field, [2] the simplest natural local boundary con-
ditions are (using two-component spinors)

A'yA eq
A'

where, n is the spinor version of the unit Euclidean
normal, n" to the boundary and @=+1. Note that the
primed field g

" is taken to be independent of lt, not re-
lated by any conjugation operation. A first-order
di6'erential operator for this Riemannian boundary-value
problem exists which is symmetric and has self-adjoint
extensions. One can then study the generalized Riemann
g function formed from the squared eigenvalues of the
Dirac operator. The value of g(0) yields the one-loop
divergence of the quantum amplitude for the Hartle-
Hawking quantum state subject to these boundary condi-
tions. Further, g(0) determines the scaling of the one-
loop amplitude: in the case of a flat Euclidean four-
dimensional background geometry bounded by a three-
sphere of radius a, the one-loop amplitude scales as
a ~' ' for a fermionic field (in the case of a scale-
independent measure). A direct calculation [2] for a
massless Majorana spin- —,

' field with the boundary condi-
tions (1.1) on a three-sphere in fiat four-space gave the
value g(0) =

—,
" . Such boundary conditions are of interest

because they are part of a supersymmetric family of local
boundary conditions for both fermions and bosons [1—5],

—3/2
yA ga~e[m„~(r)p"e +r„(r)cr" ],

npq

—3/2

y
A' —r

(1.2)

ga„[m„(r)p" " +r„(r)tr" "
] . (1.3)

npq

In the summations, n runs from 0 to ~, p and q from 1 to
(n+ 1)(n+2). The a~q are a collection of matrices intro-
duced for convenience, where, for each n, 0;Pq is block di-

agonal in the indices pq, with blocks (I '&). The har-
monics p"q have positive eigenvalues —,'(n +—', ) of the in-

I

trinsic three-dimensional Dirac operator n~ ~.e ' 'D.
on the three-sphere, while the harmonics o. " have neg-
ative eigenvalues —

—,'(n+ —,'). Here e "~ is the spinor

so that one can check whether or not the one-loop diver-
gences in the Hartle-Hawking amplitude cancel in ex-
tended supergravity theories.

Because of the first-order nature of the fermionic
operators, one has a choice between local boundary con-
ditions such as Eq. (1.1) and nonlocal (spectral) boundary
conditions. While spectral boundary conditions are not
in any obvious way related to supersymmetry, they are
nevertheless of considerable mathematical interest, and
are the subject of this paper. Their mathematical founda-
tions lie in the theory of elliptic equations and in the in-
dex theory for the Dirac operator [6]. To illustrate these
boundary conditions, consider again the case of a mass-
less Majorana spin- —,

' field (f,g" ) in the region of fiat

Euclidean four-space bounded by a three-sphere of radius
a. Denote by ~ the Euclidean distance from the center of
the sphere. Then the field (lb",f" ) may be expanded in
terms of harmonics on the family of spheres centered on
the origin, [2,7] as
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version of the orthonormal spatial triad on the three-
sphere, and ' 'D is the three-dimensional covariant
derivative (j=1,2,3) [7]. Similarly, the harmonics o "q

have positive eigenvalues —,'(n+ —,') of the corresponding
three-dimensional operator on primed spinors, and the
harmonics p

"~" have negative eigenvalues —,'(—n+—', ).
This expansion can be summarized more simply as

qA qA +yA

y
A'

y
A' +q A'

(1.4)

where the (+) parts correspond to positive and negative
eigenvalues, respectively, for the intrinsic three-
dimensional Dirac operator.

In studying the classical boundary-value problem for
the massless Dirac equation, one finds that classical solu-
tions corresponding to boundary data with a nonzero
coefficient r„~(a) or m„~(a) diverge as a negative power of
r near the origin [7]. Boundary data with a nonzero
coefficient of m„(a) or r„~(a) yield a regular solution of
the massless Dirac equation, proportional to a positive
power of ~. Thus the classical boundary-value problem is
only well posed if one specifies the m„(a) and r„(a), but
not the remaining data. In the case of a general manifold
with boundary, knowledge of the spectrum of the intrin-
sic three-dimensional Dirac operator is necessary if one
wishes to compute the g invariant which gives a bound-
ary contribution to the index of the Dirac operator for
the manifold with boundary [6]. (In the generic case, the
index will be nonzero, and the classical boundary-value
problem will not be well posed [6].) In this paper we are
however not concerned with this index, but rather, as ex-
plained above, with the zeta function g(s) formed from
the eigenvalues of the four-dimensional Dirac operator,
subject now to boundary conditions in which g~+~ and
i)'j~+~ are specified on the boundary in our flat-space ex-
ample.

Thus, just as one has a well-posed classical problem
with these boundary data, one similarly expects that the
analogous quantum amplitude, the Hartle-Hawking path
integral

ED AD A (1.6)

for the fermions, is naturally studied by taking spectral
boundary conditions in which P~"+

~
and P ~"+ ~, or

equivalently the m„(a) and r„~(a) in our example, are
specified on the boundary. Here the Euclidean action is

(1.7)

The fermionic fields are taken to be anticommuting, and
Berezin integration is being used [7]. With our conven-
tions, the Infeld —van der Waerden connection symbols
o. ~" are taken to be oo= —(i I&2)I, o;=2;1&2
(i=1,2,3), where X; are the Pauli matrices. A boundary
term Iz, discussed in Ref. [7], is needed in general. In
our simple example of the three-sphere, the Hartle-
Hawking amplitude is then a function

&HH[m„~(a), r„~(a)] of the spectral boundary data. The
one-loop properties of this amplitude can be studied
without loss of generality by setting the allowed bound-
ary data m„~(a), r„(a) to zero, Vn, p, so that the bound-
ary conditions become

0("+i=0 0 ~"+)=0 . (1.8)

(A similar simplification was made in Ref. [2] in choosing
the local boundary conditions (1.1), rather than specify-
ing a nonzero spinor field &2,n ~ g e—g " on the
boundary. } The boundary term Iii is zero in this case.

In Sec. II the action (1.7) is expanded in harmonics,
subject to the spectral boundary conditions (1.8) on the
three-sphere of radius a bounding a region of Hat four-
space. The eigenvalue equation arising in the evaluation
of the one-loop functional determinant is derived. The
resulting g function formed from the squared eigenvalues
is related to the heat kernel G(T) for the Laplacian
operator on spinors. In Sec. III the Laplace transforms
of the corresponding Green's functions are derived. The
detailed calculations leading to the asymptotic expansion
of G(T) as T~O+ are described in Sec. IV. These lead
to the value g(0) =

—,",„which remarkably is the same as
that found previously [2] for a massless Majorana spin- —,

'

field using the local boundary conditions (1.1) on the
same manifold with boundary. An analogous calculation
for the spin- —,

' field is sketched in Sec. V, working only
with the physical degrees of freedom in a particular
gauge. This of course excludes the contribution of gauge
and ghost modes which should appear in the full Becchi-
Rouet-Stora-Tyutin- (BRST-) invariant path integral.
Nevertheless, it is striking that the value g(0) = —

—,",', ob-
tained is again identical to that found using the natural
local boundary conditions for the physical degrees of
freedom [1]. Some comments are included in Sec. VI.

m„(a)=0, r„(a)=0, Vn, p . (2.1)

The Hartle-Hawking path integral (1.6), with the Eu-
clidean action Iz given by Eq. (1.7), can then be studied,
with m„(r),r„~(r) constrained by Eq. (2.1) at the bound-
ary, but m„(a) and r„(a) unconstrained. The physical
fields (itj, g ) summed over in the path integral should
at least be bounded near the origin ~=0. Because of the
factor r in Eqs. (1.2) and (1.3), this implies that

m„p(0)=r„q(0)=m„p(0)=r„(0)=0, Vn, p . (2.2)

The action Iz can then be expanded out in terms of har-
monics, by analogy with the treatment of Ref. [7], as

{n +1)(n +2)
I~= g g [I„(m„,m„)+I„(r„,r„)],

n=O @=1
(2.3)

II. EIGENVALUES FOR SPECTRAL BOUNDARY
CONDITIONS ON S

In the case of a region of four-dimensional Hat Euclide-
an space bounded by a three-sphere of radius a, we
decompose the massless spin- —,

' field (1t ",itj" } as in Eqs.
(1.2) and (1.3) and impose the spectral boundary condi-
tions (1.8), so that



SPECTRAL BOUNDARY CONDITIONS IN ONE-LOOP QUANTUM. . . 1715

where

aI„(x,x ) = dr —(xx+xx )—
0 2

3n+—
2

XX (2.4)

and an overdot denotes d/dr. Note that, as remarked in
the Introduction, no boundary term I~ of the type de-
scribed in Ref. [7] appears in the action, because of the
boundary conditions (2.1) and (2.2).

Because of the degeneracy (n + 1)(n +2) in the label p,
and because of the splitting of the action Iz in Eq. (2.3)
into identical pieces involving (m„p, m„p ) and (r„p, r„p ),
the complete path integral (1.6) splits into a product of
Berezin integrals:

corresponds to the eigenvalue —Enk. Hence the path in-
tegral can also be written as g„k(~X„k~/P) '"+'""+ '.
The Berezin integration rules imply that one should only
include those values of k, say k=1,2, . . . , which corre-
spond to positive values of E„k. This formal expression
must then be regularized using g-function methods.

The coupled first-order equations (2.10) and (2.11) lead
to the second-order equation

(n+1) ——'
+E„q x« =0, (2.12)

together with a corresponding equation for x«(r). The
solutions (x„k(r),x«(r)) obeying the boundary condi-
tions (2.6) are

OO 2(n +1)(n +2)f d [x]d [x ]exp[ I„(x—,x ) ]
n=o

The boundary conditions in each integration are then

x(0)=x(0)=0, x(a)=0,

(2.5)

(2.6)

&J.+i«.k&»

Xnk — ~«&Jn+2««&»
subject to the eigenvalue condition

J„+i(E«a)=0, n=0, 1,2, . . . .

(2.13)

(2.14)

(2.15)

following Eqs. (2.1) and (2.2).
Equivalently, one can follow the procedure of Ref. [2]

and study the eigenvalue equations

VAA' Pm ~m1 mA'& V~A g m
—A, ~Pm„, (2.7)

fA &
—3/2X (&)pnPA g

A'
&

—3/2X (&)p nPA' (2.8)

or

yA —
&

—3/2X (&)a npA y
2' —

&
—3/2X (&)a.npA' (2.9)

Here the pair (x«(r),x«(r)} is an eigenvector corre-
sponding to variation of the action I„(x,x ) of Eqs. (2.4)
and (2.5), obeying

r

d
&nk Enk&nk ~

d7
(2.10)

naturally arising from variation of the action (1.7), sub-
ject to the boundary conditions (1.8). The eigenfunctions
(g",P ~ ) are clearly found by separation of variables, be-
ing of the form

The quantities Enk are clearly real and positive since they
are eigenvalues for the self-adjoint problem (2.12), subject
to boundary conditions x„k(0)=x«(a) =0, and since Eq.
(2.12) involves a positive operator. For a given n, the
coefficients A« in Eqs. (2.13) and (2.14) can be chosen
such that the eigenfunctions x„k(r) are orthonorrnal in
the inner product (u, v )= J Odru(r)v(r), as are the cor-
responding x«(r). For each n, the action I„(x,x ) of Eq.
(2.4) becomes a diagonal sum over the eigenfunctions
x„k,x„k for k = 1,2, . . . . Performing the Berezin in-
tegrations in Eq. (2.5), one arrives at the formal expres-
sion quoted in the previous paragraph:

' 2(n+1)(n+2)

=~rr (2.16)
n =Ok=1 P

where the E„k(k =1,2, . . . ) are the positive eigenvalues
obeying Eq. (2.15).

Following the standard procedure, as, for example, in
Ref. [2], the formally divergent infinite product (2.16) is
regularized by studying the g function for the squared ei-
genvalues

+nk Enk+nkd'T
(2.11) g(s)= g g dk(n)(E„k)

n =Ok =1
(2.17)

subject to the boundary conditions x„k(0)=x„k(0)=0,
x„k(a)=0, where v=( +n', )/r and E« =—i A« For ea, ch.

n, the index k labels the countable set of corresponding
eigenfunctions and -values.

The Gaussian fermionic path integral (2.5) is then for-
mally proportional to the product of the eigenvalues
+„k(A,„k/P) '"+"" '. Here the constant P, with di-
mensions of mass has been introduced in order to make
the product dimensionless [2]. As shown below, the A, „k
are purely imaginary, or equivalently the E„k are real.
Further, the E„k occur in equal and opposite pairs, since
if the pair (x„k(r),x„k(r)) corresponds to an eigenvalue
E„k in Eq. (2.10}, then clearly the pair (x„k(r),—x„k(r))

Here the degeneracy dk(n)=2(n+1)(n+2) is in fact in-
dependent of k. The series (2.17) converges for Re(s) )2,
and can be analytically continued to a meromorphic
function with poles only at s= —,', 1, —,',2. The formal ex-
pression 1n(II HH), with KHH given by Eq. (2.16), is then
evaluated as —

—,
' g'(0) —g(0)lnp.

III. GREEN'S FUNCTIQNS AND THE HEAT KERNEL

The quantity g(0), which gives the divergence and scal-
ing properties of the one-loop amplitude, is evaluated by
studying the heat kernel, defined for T) 0 by
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G(T)= g g 2(n+1)(n+2)e
n =Ok =1

(3.1)
G„(a,r', T)=G„(r,a, T)=G„(0,r', T)

=G„(r,0, T)=0 . (3.6)

This is related to the zeta function g(s) of Eq. (2.17) by

g(s)= f dT T' 'G(T)
r(s) 0

(3.2)

(3.3)

for Re(s)) 2. The heat kernel G(T) has the standard
asymptotic expansion

G„(T)=f drG„(r, r, T)= g e
0 k=1

to the heat kernel

(3.7)

By setting w=~' and integrating, one recovers the con-
tribution

as T~0+, where in particular 84 =g(0) [8].
In the present case of spectral boundary conditions, the

eigenvalue condition

J„+,(E„ka)=0, n =0, 1,2, . . .

G(T)= g 2(n+1)(n+2)G„(T) .
n=0

The Laplace transform of the Green's function,

G„(r,r', o )=f dTe G„(r,r', T),
0

obeys the differential equation

(3.8)

(3.9)

[Eq. (2.15)], with degeneracy 2(n + 1)(n +2), is consider-
ably simpler than the eigenvalue condition
[J„+,(E„ka)] —[J„+2(E„ka)]=0, n=0, 1,2, . . . , with
degeneracy (n +1)(n +2), found in Ref. [2] for a spin —,'

field with local boundary conditions on S . As a conse-
quence, we can use a more straightforward treatment, fol-

lowing (among others) Schleich [8] and Stewartson and
Waechter [9], which involves the Green's function for the
heat equation for each n The .value g(0) =

—,",, which re-

sults is, perhaps surprisingly, equal to that found in Ref.
[2] for local boundary conditions.

One proceeds by considering, for each n =0, 1,2, . . . ,
the Green's function defined for T & 0 by

(n +1) —
—,
'

c)r
0 „(r,r', cr )= —5(r—r') .

(3.10)

Following Eq. (3.6), G„(r,r', cr ) is zero whenever either r
or ~' is 0 or a. It can be found explicitly in terms of
modified Bessel functions (cf. Refs. [8—11])as

I„+i(crr )
0„(r,r~, o.2) (r )i/2(r )i/2

I„+,(oa)

X [I„+,(o.a )K„+,(o r) )—(g 3

G„(r,r', T)= gx„k(r)x„k(r')e
k=1

(3.4) I„+,(crr) )—K„+,(era )], (3.11)

with G„(r,r', T)=0 for T~O. Here the x«(r) are the
eigenfunctions of Eq. (2.12), obeying Eq. (2.12) and
x„k(0)=x„k(a)=0, and normalized according to

fOdrx«(r)x„i(r)=5k&, as described in Sec. II. Here

G„(r,r', T ) is the Green's function for the heat equation
G(r, r', T)= g 2(n+1)(n+2)G„(r, r', T),

n=0

in the form

(3.12)

where r& (r&) is the larger (smaller) of r and r'. This
gives a splitting of the Laplace transform C(r, r', cr ) of
the function G ( r, v', T ), defined as

(3.5) C(r, r', o )=0 (r, r', cr )+C (r, r', cr ) . (3.13)

It obeys the boundary conditions Here

G (r, r', cr )= g 2(n+1)(n +2)(r&)' (r&)' I„+i(or&)E„+i(or&)
n=0

(3.14)

is the "free contribution, "which corresponds to the boundary conditions of vanishing at the origin and at infinity. The
"interacting contribution" is

0 (r, r', cr )= —g 2(n+1)(n+2)(r&)' (r&)' I„+i(err&)I„+i(crr&) .
n=0

n+ 1& n+1 (3.15)
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By studying the large-cr behavior of these functions,
or the corresponding small-T behavior of G(T) as in Eq.
(3.3), one finds g(0).

Io(y) =I,(y),

nI„(y) = [I—„,(y) —I„+,(y) ],
(4.4)

(4.5)

IV. DETAILED CALCULATION OF THE
INFINITE SUMS FOR SPIN

q

Following the calculation of Schleich [8], taking the in-
verse Laplace transform term by term and integrating
with respect to r as in Eqs. (3.7) and (3.8), the free part of
the heat kernel is found to be

one has

f g nI„(y)e «dy
n=1

=f g [I„,(y) —I„+,(y)]—e 'dy
n=1

a2y2T ~
G~(T)= f' y n(n+1)I„(y)e "dy .

n=1
(4.1) a /2T ,2' T dI0

,' f—ye«Io(y)dy+ —,
' f ye «dy

0 0 dp

Using the integral representation of the Bessel functions,
[11]one obtains the identity , -a y2T

2
2 2

2 2T 2T

g nzI„(y)= —e«, (4.2) + ,' f—e«(2y —1)IO(y)dy . (4.6)

which implies
OC a4
g f n I„(y)e «dy=

n=1 16T

Moreover, using the relations [11]

(4.3)

The problem of computing G ( T) is thus reduced to that
of computing the right-hand side of Eq. (4.6). Using
again the identity Io(y) =I&(y), together with
I'~(y)=ID(y) —y 'I&(y), one has the relations among the
indefinite integrals:

I1fye «Io(y)dy = f ye «(Io+I& ) ye —«(Io+I& )+y~e « I&+ID

=y e «(Io+I&)—fye (ID+I, }dy,

giving

3fye Io(y)dy=y e (ID+I, ) ye Io+—f Ioe «dy .

In addition,

(4.7}

(4.8)

I1f Ioe «dy= f ye « I&+Io— +(Io+I, )(e « ye «) dy =y—e (ID+I& }, (4.9)

Hence the integral on the right-hand side of Eq. (4.6) is
found to be

f e «(2y —1)IO(y)dy

e 'z I&(z)- —— +0
2~ 8 2m. z

(4.13)

[ ', [y Io+(y +y )I—, ] y(ID+I, ) ] . —(4.10)
The Laplace transform of the kernel of the interacting

part is given by

The relations (4.1)—(4.6) and (4.10) imply that, as T~0+,

GF( T) T—2+ T—3/2
GI(cr2)= —a g n f(n;oa) —a g nf(n;oa),

n=1 n=1
(4.14)

+0(&T ) . (4.1 1)
where

In deriving Eq. (4.11) we have used the following asymp-
totic relations [11]valid as z ~~:

pg
2f(n;oa ) = 1+ I„(oa)EC„(oa).

g a

e 'z Io(z)- +— +0
2m. 8 2' z

(4.12) I„'(oa )
I„'(cra )K„'(cra }——

o aI„era (4.15)
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is the function defined in Eq. (S.9) of Ref. [8], and in Ref.
[9]. In fact (see Kennedy [12]) the sums g„, in Eq.
(4.14) diverge because of the factors of n and n. This
occurs because we are attempting to take the Laplace
transform of a function 6(T) which is singular as T~O
[see Eq. (3.3)]. This difficulty can be avoided by first com-
puting the sums g„,for large o. , using the asymptotic
expansion of f ( n; o a ) valid uniformly [8—10] with
respect to n at large o.a, and then taking the inverse La-
place transform before taking the limit N~ ~. The first

series in Eq. (4.14) has already been studied in the case of
scalar fields [9]. In the case of the second series, the Wat-
son transform used in Refs. [8,9] is a source of complica-
tions, because nf (n;o.a ) is not an even function of n. In-
stead, we take the inverse Laplace transform of the large-
o expansion of nf(n;oa), and compute the sum (as an
asymptotic series valid as T~O+) with the help of the
Euler-Maclaurin formula [13].

Setting r =n/+n +o a, one has the asymptotic
series [8,9]

r 1 —r r (1—r )(1—12r +1Sr )+
n n 3

P

n+n+oa r 1 r-nf(n;oa)—
~2a 2 n

r (1—r )(2—53r +168r —125r )

16 n
(4.16)

valid as o.~~, uniformly in n Th.is is derived from the uniform asymptotic expansions of I (z),K (z),I'(z), and
E' (z) described in Refs. [10,11]. Denoting by I.I the inverse Laplace transform, one thus has the asymptotic series

I. [nf(n oa)]— ne " r ' — n e " r~' + ne " ~4' — n3e " r~' + n e
2 2 2T 2, 2 T 2 2 3T 2 2 5 T 2 2

2a 3&7ra ' 8a4 4a' 16 as

ne " ' — ne " '+ n ea' 3o &ma' 1o5 &era'

50 T 7 2T/ 2
n e

189 v ~a" (4.17)

= ——'B2F'(0)—
2

Note that, when each term on the right-hand side of Eq.
(4.17) is summed from n =1 to N, the resulting function
of T does not always converge uniformly to the sum

, ( ) in a neighborhood T E:(0, 5 ) [see Eqs.
(4.19)—(4.21)]. Nevertheless, a study of the error terms
shows that it is valid to take the limit X~ ~ as in Eqs.
(4.19)—(4.21), and then examine the small-T behavior of
the resulting contributions to 6 ( T).

In order to compute sums of the type

,n' +"e " ' where m =0, 1,2, . . . , we can use
the Euler-Maclaurin formula [13]

—'F(0)+F(1)+F(2)+ . —J F(y)dy2 0

84
4t

F"'(0)—

5e —n T/a
3

n=1 T
1

252
+ (4.21)

a4
6( T) — T +a' T—- 3/2

8

T ' + +O(&T ),
256 360

(4.22)

and so on.
Combining the resulting contribution to the asymptot-

ic expansion of G (T) as T~O+ with the other piece,
arising from the first term in Eq. (4.14), given in Ref. [9],
as well as the expansion (4.11) of 6 (T), one finds the
asymptotic expansion of the heat kernel:

(4.18)

for the function F(y)=ye ~ ~' . In Eq. (4.18), the B;
denote the Bernoulli numbers. Thus we get

valid as T—+0+. In particular, this yields

g(0) —11 (4.23)

ne
—n T/a2 2 a

2T
1 T

120a
T +

504a

for the spin- —,
' field with spectral boundary conditions on

the sphere.

(4.19)

The other sums arising from Eq. (4.17) are obtained by
differentiating Eq. (4.19) with respect to T. This yields

oo z 2 a4
gn e " ~' = + + + (4.20)

120 252a

V. CALCULATION OF g(0) FOR THE
SPIN-3 FIELD WITH SPECTRAL

BOUNDARY CONDITIONS

In this section we sketch the corresponding calculation
of g(0) for a linearized spin- —,

' field subject to spectral
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eAA. &y "& 0, eAA——,Jy "', =0 . (5.1)

If in addition we require that the dynamical variables
(g";,g ";) obey the linearized supersymmetry constraint
equations [15] on the family of three-spheres centered on
the origin, then the expansion of (g";,g ";) in harmonics
[16],analogous to Eqs. (1.2) and (1.3) for the spin- —,

' field,
takes the simplified form

boundary conditions on a three-sphere of radius a. As in
the original quantum-gravity calculation of Schleich [8],
we work only with physical degrees of freedom by impos-
ing a gauge condition and constraints. This will exclude
the contribution of gauge and ghost modes which appear
in the full BRST-invariant path integral. {For a BRST-
invariant approach to computing g(0) for a spin- —,

' field

with local boundary conditions, see Ref. [14].) The value
g(0) = —',~ found here for spectral boundary conditions
is again identical to that found using the natural local
boundary conditions [1],working with the same physical
degrees of freedom inside the three-sphere.

The spin- —', field, as appearing, e.g. , in X=1 supergravi-

ty, is described by a potential (g „,P "„)in the Euclide-
an regime (@=0,1,2,3). In a Haniiltonian treatment [15],
the quantities (f";,g",) are the dynamical variables
(i=1,2,3), while (g"0,$ 0) appear as Lagrange multi-
pliers. The gravitational field is correspondingly de-
scribed by the tetrad e „. Taking the geometry to be
flat, and x =~ to be the radial distance from the origin,
while x' (i = 1,2,3) are coordinates on the three-sphere, we
impose the gauge conditions

boundary conditions for spin —,
' are

m„(a)=0, r„(a)=0, Vn, p . (5.6)

The requirement that the physical fields be bounded
near the origin ~=0, in the Hartle-Hawking path integral
for the linearized spin- —, theory, implies that

p r p p?l p r„vanish Vn,p at v.=0. The Euclidean ac-
tion IE for the linearized spin- —, field, working only with
the physical degrees of freedom given in Eqs. (5.2) and
(5.3), is analogous to the spin- —,

' expression in Eqs. (2.3}
and (2.4):

{n + 1)(n +4)
IB= g g [1„(m„,m„)+1„(r„z,r„)],

n =0 p=1
where

(5.7}

I„(x,x)= I dq. —,'(xx+xx)—
n+—

XX (5.8)

d
Xnk ~nkXnk (5.10)

The resulting Berezin integration for the Hartle-Hawking
amplitude KHH gives the formal expression

2(n + 1)(n +4)
oo 00

=rr n (5.9)
n=Ok=l . P

The P„k(k =1,2, . . . ) are the positive eigenvalues of the
system

7
—3/2

gai„'q[m„(~)p"q" + r„(~)p "q" ]e
npq

(5.2)

d
Xnk ~nkXnkdv

subject to x„k(0)=x„k(0)=x„k(a)=0,
'i&= (n+ —', )/~. The solutions are of the form

(5.11)

where

—3/2

y
A' ga&q[m„(r)p" " + r„(r)p" " ]e

npq

(5.3)

x.k =&.k v'& J.+2«.k&»

x„k = B„k&~J„—+(3P„rk),

(5.12)

(5.13)

In the summations, n runs from 0 to ao, and p and q now
run from 1 to (n + 1)(n +4). For each n, a~q is a matrix
again block diagonal in the indices pq, with blocks
(', ', ). Here

pnq ABB' nq( ABC) B'
nc (5.4)

nqB A 'B' nq( A 'B'C') Bn (5.5)

ere the harmonic o." '" ' symmetric in its three
primed indices, also has positive eigenvalue —,'(n +—,').
The harmonics P "q" and P "q " are given similarly
in terms of harmonics P" A and p" A, whic
have negative eigenvalues —

—,
'

( n + —,
'

) of the three-
dimensional operator.

Just as in the spin- —,
' case, the simplest natural spectral

where n ""=i,n" is the Lorentzian normal [2,7], and
the harmonic p"q' ', symmetric in its three unprimed
indices, has positive eigenvalue —,'(n +—,') of the appropri-
ate three-dimensional Dirac operator. Similarly

with the eigenvalue condition

J„+i(P„ka ) =0, n =0, 1,2, . . . , (5.14)

and degeneracy 2(n + 1)(n +4).
The formal expression (5.9) for KHH is then evaluated

by studying the corresponding g function and heat ker-
nel, by analogy with Secs. II—IV. The formulas in Sec.
III can be straightforwardly modified to allow for the
different degeneracy 2(n + 1)(n +4), different differential
equations (5.10) and (5.11), and eigenvalue condition
(5.14). In particular, Eqs. (3.14) and (3.15) should be
modified by replacing the factor of (n +2) by (n +4),
and by changing the order n +1 of each modified Bessel
function I„+1or K„+1to the order n +2.

For the sake of brevity we consider only the constant
part B&=g(0) in the expansion (3.3) of the spin- —', heat
kernel G(T) as T +0+. The results of Eqs.—(4.2) —(4.13)
show that the free part G (T) of the heat kernel for spin
—,', given by Eq. (4.1) with the factor (n +1) replaced by
(n +3), gives no contribution to g(0). The only contribu-
tion to g(0) for spin —', arises from the interacting part



1720 PETER D. D'EATH AND GIAMPIERO V. M. ESPOSITO

0 (o. )= —a g (n —2)f(n;oa) —a g nf(n;oa),
n =2 n=2

—a g (n —2)f(n;oa)
n=2

a dv v —2 v;o.a cotmv . 5.16
4i c' —g

Here the contour of integration O' —Q (compare with
Fig. 1 of Ref. [8]) encloses all poles along the real axis, ex-
cept for those at v=O, +1. Using the uniform asymptotic
expansion of f(v;oa ), and computing the contribution
from the poles at v=O, +1, one finds from the large-o. be-
havior of Eq. (5.16) that the first term in Eq. (5.15) con-
tributes ——",,' to g(0). Using the results of Sec. IV, the
second term in Eq. (5.15) is found to contribute —,", to
g(0).

Combining these results we find

g(0) — 289 (5.17)

for the linearized spin- —,
' field subject to spectral boundary

conditions on the three-sphere, working only with physi-
cal degrees of freedom in the gauge (5.1). Just as in the
spin- —,

' case of Sec. IV, the value of g(0) is equal to that
found previously for the spin- —,

' field subject to the natural
local boundary conditions [1,2]. Specifically, the value
g(0)= —

+',
' was also found for spin —,', working only with

physical degrees of freedom subject again to the gauge
conditions (5.1), with the local boundary conditions

(5.15)

where f(n; oa) is given by Eq. (4.15). As in Sec. IV,
these sums diverge, and the calculation should strictly
proceed by first computing the sums g+ i for large o,
taking the inverse Laplace transform, and finally taking
the limit X~~. The contribution from the first term in
Eq. (5.15) is found, following Refs. [8,9,12], by using a
Watson transform:

respectively,

and

[J,+i(Ea)]'—[J„(Ea)]'=0, n =0, 1,2, . . . ,

degeneracy (n + 1)(n +2), (6.1)

J„+i(Ea)=0, n =0, 1,2, . . . ,

degeneracy 2(n +1)(n +2), (6.2)

J„+2(Ea)=0, n =0, 1,2, . . . ,

degeneracy 2(n + 1)(n +4) . (6.4)

The eigenvalue conditions for fermions, subject to
spectral boundary conditions on the three-sphere, are in
fact similar, but not identical, to the eigenvalue condi-
tions for bosons, subject to local (Dirichlet) conditions on
the three-sphere. For example, in the case of a scalar
field [9,12], Dirichlet conditions give

J„+i(Ea)=0, n=0, 1,2, . . . ,

degeneracy (n + 1) . (6.5)

For a Maxwell field, taking only physical degrees of free-
dom [17],Dirichlet (magnetic) boundary conditions give

offer no obvious explanation of this equality —although
they suggest an alternative approach through studying
the asymptotic distribution of eigenvalues. The same
holds for the value g(0) = —

—",„' found for the spin- —,
' field

(taking only physical degrees of freedom), both for local
and spectral boundary conditions. There the eigenvalue
conditions are, respectively,

[J„+2(Ea)] —[J„+3(Ea)]=0, n =0, 1,2, . . . ,

degeneracy (n + 1)(n +4), (6.3)

aIld

2'qA y
A' (5.18)

J„+2(Ea)=0, n =0, 1,2, . . . ,

degeneracy 2(n + l)(n +3) . (6.6)

where @=+1. These local boundary conditions are part
of a locally supersymmetric family of boundary condi-
tions for diff'erent spins [1,2,5, 14], which includes the lo-
cal boundary conditions (1.1) for spin —,'. Of course, as
remarked earlier, the results of g(0) calculations for gauge
fields such as spin —, will be modified by the contribution
of gauge and ghost modes in a complete BRST-invariant
calculation.

VI. COMMENTS

Analogous equations hold in the spin-2 case [8]. Because
of the equality of the g(0) values for fermions with both
local and spectral boundary conditions, one might then
ask if there is some connection between g(0) values for
fermions and bosons with adjacent spins (taking local
boundary conditions), reminiscent of supersymmetry.
One would also like to understand whether the equality
of the local and spectral values for g(0) is a feature pecu-
liar to the highly symmetrical example of a three-sphere
surrounding a region of Hat four-space, or whether there
is an extension of this result to a more general context.

It is striking that the same value g(0) =
—,",, is obtained

for a massless Majorana spin- —,
' field on a ball in Euclide-

an four-space, bounded by a sphere of radius a, whether
local boundary conditions (1.1) or spectral boundary con-
ditions are imposed. The different eigenvalue conditions,
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