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We analyze the details of soft inAationary models, which have two scalar fields: one is the standard
inAaton, whose potential is exponentially coupled to the other field. Such models are derived from both
fundamental theories, and in the conformal frame of generalized Einstein theories. In the latter case, a
nonstandard exponential coupling to the inAaton kinetic term also may arise. We list and discuss the
various theories which give soft inflation, and then consider the satisfaction of the inAationary con-
straints in general models. We then specialize to new and chaotic inAation potentials, with both stan-
dard and nonstandard kinetic terms. The density perturbations are reduced sufficiently so that new
inflation works well, with the coupling constant near the values allowed by grand unified theories. For
chaotic inflation with a massive inAaton, we find successful inflation without any fine-tuning of the cou-
pling constant or initial data.

I. INTRODUCTION: CLASSIFICATION
OF INFLATIONARY MODELS

The inflationary universe model attempts to solve some
long-standing problems of cosmology, and has been the
subject of much investigation during the past decade [1].
However, as yet no fully viable model exists for the
source of inflation. The original model, called old
inflation [2], uses the vacuum energy created by the SU(5)
Higgs field, when trapped in a metastable state, to act as
an effective cosmological constant. As the Universe
cools, this vacuum energy dominates, and the scale factor
expands exponentially. However, tunneling from the
metastable state proved too difficult, and a satisfactory
termination of the inflationary phase was impossible [3].

The new inflationary scenario [4] avoids this problem
by utilizing the Coleman-Weinberg effective potential [5],
whose shape is very flat for small field values. A finite-
temperature effective potential should localize the field to
small expectation values at the start of inflation. The sca-
lar field slowly rolls down this potential at first, with ex-
ponential expansion occurring. InAation terminates
when the field leaves the slow-rolling regime, quickly
evolves to the true minimum, and reheats via oscillations
about the bottom of the potential which couple to matter
[6]. While this model predicted the spectrum of density
Auctuations which would act as the seeds for galaxy for-
mation, these Auctuations were unfortunately far too
large for standard grand-unified-theory (GUT) parame-
ters, and conflicted with the observed isotropy of the
cosmic-microwave-background radiation [7]. To agree
with this constraint, self-interactions and couplings to
other fields would have to be excessively small. Thermal
equilibrium could not be established by the onset of
inAation, and hence the field would not be localized near
zero expectation value [8,9]. Therefore, a sufficient
amount of expansion will not be obtained.

The chaotic inflation scenario [10] showed that
inflation need not occur only in very special field theories.
For a broad range of general potentials, the field evolves

slowly compared to the Hubble parameter, with inflation
ensuing. Although an inflationary model which satisfies
all constraints may be constructed, density Auctuations
again force the couplings to be excessively small. While
these models are not ru1ed out, they do suffer from a
fine-tuning problem.

All models discussed so far have used field theories at
very high energies to drive inflation. We shall call these
models class I. However, inflation may also be generated
by changing the gravitational sector, which we call class
II. One such example is R inAation, in which a term
quadratic in the Ricci scalar is added to the standard Ein-
stein action [11]. However, density fluctuations again
force the coupling of the R term to be inordinately
large. Furthermore, even higher-order terms severely re-
strict the initial conditions which would lead to a success-
ful transition out of the inflationary era [12]. Other ex-
amples of class II models utilize the induced gravity mod-
el [13]and nonminimal coupling terms [14].

Recently, much interest has focused on models which
change both the matter and gravitational sectors, which
we call class III. For example, extended inflation models
[15] use the old-inflation-style potentials with their false
vacuum in the Jordan-Brans-Dicke (JBD) theory of gravi-
ty. While this combination allows the phase transition to
be completed, unfortunately homogeneity afterwards is
achieved only for Brans-Dicke parameters which violate
observations [16]. Hopefully, several variations on this
theme have appeared which may bypass this problem
[17].

While extended inAation uses the JBD theory and vari-
ants to allow successful old inflation, new and chaotic
inflation models [18,19] can also be utilized in class III.
In this paper we consider soft inflation [19],where a stan-
dard new or chaotic inflaton potential is coupled to an ex-
ponential potential, which is conformally related to class
III. Heuristically, the success of soft inflation may be
seen as follows: The exponential potential multiplied by
any coupling constant of the theory acts as an effective
coupling constant, with a value which is constantly de-
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TABLE I. Inflationary theories and their difhculties. The models are classified according to whether their gravitational, matter, or
both sectors are modified.

Class ~gravity

Einstein gravity

~matter

Vacuum energy
(GUT's)

Models

Old inflation
New infiation ( V= Vo —41,1(1 )

Chaotic infiation ( V= ~-Alt, —'m i(j )

Power-law inflation ( V= e P @)

Difficulties

No completion of phase transition
A, ~10 ' while A, -0.5 for SU(5)
A, ~ 10 ', m 10 m

P& v'2 (no realistic model)

Generalized Einstein
theories (GET's)

Usual matter R~ infiation [L „„;,=(1/2a )R +aR ]
Induced gravity inflation
Nonminimal scalar inflation
Kaluza-Klein inflation

a~10'
Quantum gravity at GUT's scale?
~g'~ &10' and /&0
No successful inflationary model

III Generalized Einstein Vacuum energy Extended inflation
theories (GET's) (GUT's) Hyperextended inflation

Soft inflation

co(30 while co) 500 from observation

creasing. Thus, for quite standard values of parameters,
density fluctuations can be suppressed, "softening" the
constraints. Different theories which lead to inflation, as
well as their dificulties, are given in Table I.

The exponential potential of this form arises from two
different sources. Qne is in certain superstring and super-
gravity models [20], in which case the theory may be
class I, where only the matter sector is changed. The
other source is when generalized Einstein theories
(GET's) containing a standard inflaton field are confor-
mally transformed. The power of this approach is that a
wide range of GET's may be modeled with the exponen-
tial potential [21]. Examples are the Jordan-Brans-Dicke
theory [22], the induced gravity model [23], Kaluza-
Klein theories [24], R terms in the action [11],and mod-
els with nonminimal coupling [14]. Models using GET's
plus an inAaton are of class III, where both the matter
and gravitational sectors are changed.

The outline of this paper is as follows. In Sec. II we
discuss the origin of the exponential potential, with care-
ful attention given to conformal transformations in vari-
ous GET s. In particliar, the kinetic term of the inflaton
may pick up a nonstandard coupling to the exponential
field, which will have important consequences. In Sec.
III the constraints on the parameters for general kinetic
coupling are given. These constraints arise from a
sufficient amount of inflation, successful reheating, and
suppression of density perturbations. In Sec. 4 we specify
to the new inflation model, while Sec. V considers chaotic
inflation. The models arising from GET's, which possess
a nonstandard kinetic term, are given special detail. Sec-
tion VI contains comments and plans for further work.

II. TRANSFORMATION OF CLASS III MODEL
INTO SOFT INFLATION

where f and h are arbitrary function of 4& and

L;„f—= —
—,'(V'g)' —V(lt ) (2.2)

is the inAaton piece. These theories include the following
sub classes.

( 1a) Jordan-Brans-Dicke (JBD) theory [22] with an
inAaton:

(2.3)

where observations give the JBD parameter co ) 500 [25].
(lb) Induced gravity model [23] with an inflaton:

f=—N h =—' V(4)= —(4& —g ) (2.4)

where e and g are a coupling constant and the present
value of N, respectively.

(lc) Nonminimally coupled scalar field and an inflaton:

f= ——g@, h =—', V(N)=0,1 1

2K2 2
' 2

(2.5)

where K =SAG. All three of these models could have ad-
ditional potential terms for N.

(2) f(R) theories [26], including R theory [11],with
an inAaton, with the action

S= jd4xv' g[f (R—)+L,„,], (2.6)

(3) (4+D)-dimensional Kaluza-Klein theories with an
infIaton field, in which case the models have two sub-
classes.

(3a) The inflaton is introduced in the effective four-
dimensional theory, in which the action is

In class III, we have the following theories, which may
provide a natural inflationary model.

(1) Theories with a scalar field coupled to gravity, with
the action

S= J'd xV —N R+ (V'@)'X g D

—U,s(4)+L;„r (2.7)

S= d x —g NR —h @ VN —V@ +Ij f

(2.1)
where N—= (b/bo) ~ with b an internal radius and bc its
present value.
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(3b) The inflation is defined in (4+D)-dimensions,
with the action

g= f d4+DXv' —G 1
2

2K(4+ D)
R +L;„f (2.8)

L

where G and a(4+D) are the (4+D)-dimensional metric
and gravitational constant, with D the dimension of the
internal space.

(4) An efFective action from a superstring model [27]
with an inflaton:

via a conformal transformation. It does not give an
inflationary solution; however, such a fundamental
theory is still incomplete and future work may yield ex-
ponential potentials with the desired form.

If U((b ) =0, the model may significantly ease the
inflationary constraints, and hence acts as the soft
inflation potential [19]. We will consider such models in
this paper, first dealing with general p and y, and then
specializing to the cases of y equal to 0 and P/2. We will
comment on the effects of nonzero U((b) in the con-
clusion.

S= d' X —G e R+4 V4 +L;„f (2.9)

where N is a dilaton field, with the ansatz of the rank-
three antisymmetric tensor H„&=0.

Most of the models of class III are conformally
equivalent to those of an extra scalar field with a modified
potential in the Einstein gravity theory [28]. Convenient-
ly, many of these models in the conformal frame have the
Lagrangian form

III. SOFT INFLATION

In this section, we examine the constraints on soft
inflation arising from sufficient inflation, reheating, and
suppression of density perturbations in a general model.
The action considered is (2.10), with U((b) =0. Variation
of this action in a spatially flat Robertson-Walker
universe yields the field equations

S=J d"xi/ g — R ——'(VP) ——'e ~ ~(V'f)
2K

P+3HP+ e r ~P P~e ~'—~V(g) =0,
2

1b+3HQ yap/+—e'~ ~'"~V'(1b) =0,
(3.1)

(3.2)

~ V(1b) —U(y) (2.10)
2

H2 @$2+ 1 e P Pg +e PKPV(g)]
3 2 2 (3.3)

where (b is the scalar field @ redefined to obtain the
canonical kinetic term, U((b) is a modified potential of 4
or a newly appearing potential as in the f (R ) theory, and
)33 and y are dimensionless coupling constants.

In Table II, we list the relation between @ and P, and
the values of p and y for each model. In order to find
power-law inflation due to a flat potential V(lb), p must
be smaller than v'2; this condition is also shown in Table
II. The model based on superstring theory is reduced to
four-dimensional Einstein gravity with two dilaton fields,
aP&=—(61nb —N/2)/i/2 and IrPT —=i/6(21nb+@/2)/2,

where a is the scale factor of the Universe, H=a /a is the
Hubble parameter, an overdot indicates a time derivative,
and a prime denotes differentiation with respect to 1b.

Recall that in order for power-law inflation to occur in
a potential-dominated stage, the condition 13 &2 is re-
quired. For large H, the second terms in (3.1) and (3.2)
act to damp the motion of the scalar fields. Any initially
high P kinetic terms are damped rather quickly if we as-
sume y & f3 «6, so that the potential contribution will
indeed soon dominate (3.3) [29]. High 1b kinetic terms are
similarly damped in chaotic inflation [30], while in new

TABLE II. Generalized Einstein theories, the definition of ((, and the values of p and y in the conformal frame, as given by Eq.
(2.10). The last column gives the condition for power-law inflation, p & v'2.

Theory

JBD theory

Induced gravity

Higher-dimensional theories (a)

Higher-dimensional theories (b)

Superstring model

Scalar field P
1/2

K
ln

2
2'+ 3

2
1/2

1n(~&a+)

1/2
2(D +2)

K ln+
D

1/2
2(D +2)

K ln+
D

&((s = —(6 lnb —@/2)
1

S

v'6
«QT= (21nb+C /2)

2

8

2'+ 3

16'
1+6'

8D
D+2

2D
D+2

' 1/2

1/2

1/2

1/2

P/2

P/2

Power-law inflation

CO)—1

2

e(—1

2

No solution

For all D

No solution

No solution
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inflation the high-temperature effective potential localizes
the field and keeps the derivatives small at the onset ofinflation.

In this slow-rolling approximation, the
second-derivative terms will be negligible, while the fact
that the potential will dominate the kinetic contributions
allows us to ignore the terms involving two first deriva-
tives. One point to note is that when

(3.4)
aV

the P contribution to (3.1) and the —,'P term in (3.3) may
be included to give power-law infiation [19,29,31]. How-
ever, this power-law solution breaks down when the two
fields' kinetic contributions become comparable. Our ap-
proach of neglecting the P derivative terms allows us to
treat the full range of behavior without resorting to
different sets of equations for different regimes. The devi-
ation from the exact solution is minor, as will be illustrat-
ed later by numerical results.

With these factors taken into account, the equations
we consider are

density p. The action (2.10) has two coupled scalar fields
and a nonstandard kinetic term; the correct expression
for density perturbations may be found by generalizing
the results of Lyth [32]. From his Eq. (25), we have

2 1 5p
3 1+w p

1+—,(3.14)
3 1+w p

where t0 =P/p—is the pressure over the energy density,
and the subscripts 1 and 2 indicate the times when the
perturbation first left and then reentered the horizon, re-'

spectively. Then at t &,

p
& j2+ 1 j2e i'a/+ V

—Pgcg (3.15)

& j2+ & j2e —r~P Ve PzP—
2 2 (3.16)

while at rz, o =—1+2/[3(1+tU)] is equal to —', during radi-

ation domination and —,
' during matter domination. For

the potential dominated inflationary phase, P= —p, and
so

3HP =@ac ~'~V(i/),

3H Q
= —e '~ ~' & V'( i/),

(3.5)

(3.6)
5p 2

p 2 3o (p+P)
(3.17)

(3.7) Varying (3.15) and using the approximate equations of
motion (3.5) and (3.6) gives

Solving yields the general behavior fip=pop+$oge r & 3H($5$—+/&pe r &) . (3.18)

P —$0= —ln
K ao

ywgo

f(i/)= f(i/j0)—0 p

with the definition

f(P)=~ f d1/j

ao

(3.8)

(3.9)

(3.10)

Dimensional considerations give 5$=H5$, and similary
for the inAaton. From the two-point correlation function
[33],we find

(3.19)

where the latter expression arises from proper normaliza-
tion upon second quantization. With these considera-
tions, we ultimately find

The first constraint to which any inAationary theory is
subject comes from achieving sufficient inflation to solve
the cosmological problems. This requires

a
65

ao
(3.1 1)

in[i+/3ye [f(i/0) f(P~)]J ~ 65 . —
y

(3.12)

In the limit of y =0, the horizon constraint becomes sim-

ply

f($0) f(g/) ~ 65 . — (3.13)

Another constraint comes from density perturbations
[7]. In particular, limits from the microwave background
radiation imply that 5p/p ((5p/p), „-10 on scales the
size of the horizon, where 6p is the perturbation in the

so that scales just entering the horizon today came from a
causally connected region [2]. The subscripts f and 0 in-
dicate final and initial values of the inflationary epoch.
Using Eq. (3.9) above, this condition may be written as

&p cH'(li I+ lile "~")
p /+i/e

(3.20)

where the left-hand side is evaluated at t2 and the right-
hand side at t&, with C a numerical constant of order uni-
ty. This expression leads to two regimes; namely,

lPl ) i@le
i' ~ =. =H /lPl (region A),

P
(3.21)

In these regions, the standard result for one dominant
scalar field is recovered. For the microwave background
constraint, all quantities above are to be evaluated at the
time t& when the perturbation originally left the horizon
such that ln(a&/az ) =af/h 65 for scales currently
entering the horizon. Using the approximate equations
of motion, the density perturbation constraint may be
written as

lfl ( I@le ~'~ — =H e~ ~ /l@l (region B) ./2 ~P 2 a /2

p
(3.22)
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—P]cg~ /2
e " Q Vh (region A),

gp 313

p K3 V3/2

&3Vh

(3.23)

( Vl/2)ii + I+.L3 P
2 3 2

V'"e "/. (3.24)

However, for some potentials, the P terms in (3.1) and
(3.3) become dominant before the above condition can be
met. The approximations under which (3.5)—(3.7) are
valid occurs for

The last constraint we will consider is successful
reheating. We take reheating to commence at the end of
slow rolling of the inflaton, 1( = 3HQ, when oscillations in
the inflaton field should couple to matter. This condition
is equivalent to

temperatures as low as 100 GeV are possible, and such
theories would loosen the reheating constraint according-
ly. Because of the presence of the negative exponential
potential, there will be less potential energy at the end of
inflation than in the corresponding model with just
V(ii/&); however, the larger values of the self-coupling al-
lowed by our model allow for much stronger coupling to
radiation and thus make efficient reheating far more plau-
sible. Also, in the original frame, if the present model
Lagrangian is derived via a conformal transformation,
TRH in (3.26) should be replaced by that with /3=0.

At this point, proceeding further is difficult without ex-
plicitly stating the model to be used for V(g). In the next
two sections we will consider new and then chaotic
inflation potentials.

IV. SOFT INFLATION —NEW INFLATION TYPE

We will take the new inflation potential to be of the
form

2 2
r~y& «V

e
2V' (3.25) V(P) = Vo ——Q", (4 1)

Once the P terms become dominant, the slow-rolling
condition is no longer valid. Solving the basic equations
with large inflaton kinetic terms, we find that g/3HQ~
becomes order of unity for y =0, as well as for y =P/2
provided P/&6 is small compared to one. Therefore,
when the f terms become important, the slow-rolling
approximation of g quickly breaks down, and again
reheating ensues. We thus take the end of inAation and
the subsequent reheating to occur when either condition
(3.24) or (3.25) is met.

For standard baryogenesis [34] through the decay of
heavy Higgs bosons to account for the observed baryon
asymmetry, the reheat temperature needs to be greater
than 10' GeV [35]. We assume efficient reheating, with
all of the potential energy density at the end of inAation
being converted to radiation, so that

where Eq. (3.24) determines the end of inflation. The
case of general y will be dealt with first, and then we will
specialize to the values y =0 and y =P/2.

Approximating the potential (4.1) as just Vo during the
slow-rolling phase, Eqs. (3.7) and (3.8) yield

1/2 2 /P2
a 1 z

—p~y /2 oV
~e t —t~

ao 2 3
(4.3)

where V0 is the GUT scale. This expression is a good ap-
proximation for the full, more complicated Coleman-
Weinberg CPUT potential [5]. We then find

f(g)=ir Vo/2A, Q and ~P/=[~ Vo/A, (1—P /6)]'

TRH

' 1/4

30e / V(i)/I )
& TRH;„—10' GeV,

where t, is a constant. As expected, the expansion is
power law, with inflation occurring for f3& &2, just as in
the standard one-field exponential potential case [31].
The behavior of P is then

(3.26)

where g, ( T)—100 is the effective number of particle
species. For nonstandard baryogenesis theories, reheat

I

1/2
1 2 PK'Pp /2 VO

P —(ho= ln —P ve
Pa. 2 3

and Eqs. (3.9) and (4.2) give

(t t, ), (4.4)—

1 2Ae

4o A'&'Vo .

1/2
1 2

—pago/2 o

2
Ke

3
(t t„)—2r /P

(4 5)

Now consider the satisfaction of the inAationary constraints. Written in terms of the value of the inflaton field at the
onset of inflation, the horizon, reheating and density perturbation conditions become, respectively,

Po&PH=

1/2
Py&'Vo pea „, y~y,/2-fib I)—i

2A,
(4 6)

Po + 4RH

1/2
3@K'Vp

0

2i.
30V 'r

0 —r&pp T 4r /p
2 RH, min

—1/2

(4.7)
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1/2
/3@v V()

40&)/D =
2A,

e
—y~tt /2

1 1/2 2y/P
$p z 0 —ya.Po+Pya f //

2

e —1
p „P 3

—1/2

(4.8)

q3 O —yhP/2
~V

e (4.9)

at the first horizon crossing, which is almost always true.
For example, with @=0 and using (3.13) and (4.2), this
condition becomes

where the last equation assumes that the Universe will be
in region A, with 6p/P=H /P, at 65 e-foldings before
the end of inAation. Because the new inAation potential
is exceptionally Oat near /=0, i// will generally be much
smaller than (/ until just before reheating, so this approxi-
mation is valid, except for very small P. Explicitly, the
density fluctuations will be dominated by (/ as long as

I

sity perturbations was shown to imply such small values
of A, that thermal equilibrium could not be achieved by
the onset of inAation, the new inAation scenario was
abandoned. However, we will soon see that A, need not be
small in soft inAation; therefore the finite-temperature po-
tential is well defined and i/o should be localized near
zero. However, quantum uncertainty exists, and i/0 may
be calculated from the two-point correlation function
(i/(0)i/(x))[33]. Because of the noncanonical kinetic
term, the usual expression of )/)o=HO must be multiplied
by an exponential factor of (I) in order to maintain proper
normalization. We therefore take, as previously argued
for Eq. (3.19),

1/2
2 V1/2

Pgi/2(2 )3/2
&1.

+f/h
(4.10)

ya(hp/2 K (y —)3)~(hp
o=Hoe ' = Voe (4.1 1)

Next we must address the issue of initial conditions. In
standard new inAation, the natural initial value of the
inAaton field is considered to be the Hubble parameter,
)//o=HO (see Brandenberger in [1]). This value comes in
part from dimensional considerations, as the Hubble pa-
rameter sets a natural scale which i/)0 would be expected
to be near. The more compelling argument comes from
consideration of quantum Auctuations of ((// in a curved
background. For new inAation to be successful, the
inAaton field must start near zero expectation value.
Finite-temperature e6ects lead to a potential which pro-
duces this localization. Indeed, when suppression of den-

as the natural initial value.
With the above choice of i/o, we are now left with three

constraints in terms of A, , Vo, P, y, and $0. Our approach
will be to fix the latter three parameters, coming from the
exponential potential sector, and determine what values
of the GUT potential parameters A, and Vo produce suc-
cessful inAation. We then will discuss how the allowed
regions change when the latter three parameters are
varied. Hence, for a particular new-inAation-type poten-
tial, one may compare the parameters with the successful
values of soft inAation to see if such a scenario is possible.
We plot the SU(5) GUT value as an example.

Using (4.11), the constraints (4.6)—(4.8) become

()3—2y )hPp

)(, (
2(

y f/h
)

3Py ()3—2y)asap
e

2

30Vo
2 2~ ge TRH, min

—ya.Po

(4.12)

(4.13)

3/3y ()3 y )&~p y&~p+ i3y& f /he e
2

1 1/2 2y /P
Sp ~2 Vo

p „ /3 3
(4.14)

respectively. When the quantity in square brackets is
negative in (4.14), this condition will always be met. We
next deal specifically with the two cases of interest, y =0
and y =/3/2.

3/3 13~&pA) e ' ln
2

30Vo
2 ~4~ ge ~ RH, min

(4.16)

A. @=0: Fundamental exponential potential

3 popo
e

2' f /h
(4.15)

In the case where the exponential potential comes from
some fundamental theory, then the kinetic terms may be
standard. Taking the limit of y=0 carefully in Eqs.
(4.12)—(4.14), we obtain

'I —1

(4.17)
v+Vo P

for the sufficient inAation, reheating, and density pertur-
bation constraints, respectively. These conditions on A,

and Vo, for P=O. 1 and $0= 10mp, are plotted in Fig. 1,
with similar results to previous work [19]. A wide range
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0.
0. 6 0. 8

y0/mPl

15 .-.

cD

bQ
C

-2

—4

D

10 .--

5 ~--

-6--

-8-- RH

0 .--

-10 —5 .--

FIG. 1. The constraints from the horizon problem, reheating
temperature ( TzH & 10' GeV) and density perturbations
(5p jp(10 4) for P=0. 1, $0=H~, and po=10mp, . The cross-
hatched regions are not permitted, both here and in all other
figures. The curves RH and D are the constraints from the
reheating temperature and density perturbations, respectively.
The point + corresponds to the SU(S) model with Vo =10'
GeV and A, —~.

0. 2 0 4 0. 6 0. 8

FIG. 2. The allowed region of (PO, P) parameter space for
new inAation with y=0, using the SU(5) GUT values. The
curve H is from the horizon constraint.

of A.-V0 phase space leads to successful infIation, includ-
ing the standard SU(5) GUT values. Especially
significant, these values of X are large enough so that, as
advertised previously, a finite-temperature potential has a
well-defined meaning, and can be used to localize 1(o near
the zero expectation value.

Next, consider the effects of changing Po (see Fig. 2).
As seen from the equations immediately above, an in-
crease in Po eases the sufficient inflation and density per-
turbation constraints, while tightening the reheating con-
dition. Physically, the reasons are as follows. For the in-
itial value of go given by (4.11), an increase in Po pushes
the starting value of the inAaton field closer to zero by de-
creasing the initial energy density and hence the initial
Hubble parameter. Therefore, a much longer period of
inflation ensues, as g evolves very slowly for small expec-
tation value. Consequently, there is a greater amount of
expansion. This same suppression of H acts to decrease
the density fluctuations: From Eq. (3.8), a larger Po leads
to a larger value Ph, especially considering that ah/ao
will also increase. Therefore, the Hubble parameter will
be smaller at the first horizon crossing. Since the density
perturbation is given by H /P in the new inflation
scenario, this smaller HI, leads to smaller density pertur-
bations. In contrast, the smaller energy density makes
the reheating constraint tighter. As Po increases, the pat-
tern of Fig. 1 is shifted so that the acceptable range of
phase space is for higher 2, ; as Po decreases, only lower A,

can meet the constraints. For the values of Fig. 1, how-
ever, these effects on the latter two constraints are only
noticeable when A, is small. Only when P is near unity
will a change by a factor of 2 in Po make an appreciable
difference. The reason is that the horizontal asymptotes
for the reheating and density perturbation constraints in
Fig. 1 are determined by the quantities in square brack-
ets in Eqs. (4.16) and (4.17), which are not strongly Po

dependent. The turning point where these curves begin
to steeply increase is more sensitive to Po, but for a small

P there will not be much change unless Po becomes
several orders above the Planck scale.

Similar to the reasoning concerning Po, a decrease in P
lessens the importance of the exponential potential and
hence makes the horizon and perturbation constraints
more severe, while loosening the reheating condition. As
P gets closer to zero, the standard new inflation model is
recovered, and fully successful new inflation becomes im-
possible. As P becomes larger, the reheating and density
constraints cannot both be met. Furthermore, as f3~1,
which is the limit of validity of our approximation, the
expansion slows significantly, as seen in Eq. (4.3). The
horizon constraint thus also becomes more difficult to
satisfy, and indeed cannot be achieved for P ~ &2.

B. y =P /2: Conformal exponential potential

As seen above in Sec. II, many generalized Einstein
theories, when considered in the conformal frame, have
y =)33/2. En this case, the constraints (4.6)—(4.8) become

4( f/h

1/230V0
2 4~ + TRH, min

1/2
0

3P
4

—popo/2

—i
3P ir 5p
4 P p

—PvQ /2+P af/~ /2
e

(4.18)

(4.19)

(4.20)

respectively. These constraints are plotted in Fig. 3 along
with exact numerical results for the full system calculated
using a fourth-order Runge-Kutta routine [36], and in
Fig. 4. As can be seen, the approximations made are well
justified by the agreement with exact results. The main
difference from the y =0 case is the significant restriction
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Flax. 4. The allowed region of (Po,P) phase space for new
inflation with y=P/2, Vo~ =10'' CreV, and A, =0.01.

caused by the horizon constraint, corresponding to
A, S0.02 for P=0. 1. As mentioned before, l(j will be
greater in the y =p/2 case, and hence inflation will ter-
minate quicker. Therefore, the horizon constraint be-
comes important. The maximum that I, may be is
3/(2af/s )=0.023 for P=O, and changing Po does not
affect this constraint. While A, is thus an order of magni-
tude below typical GUT values, it is still many orders
better than the standard one-field model.

The lack of adequate expansion was previously seen in
the new inAation scenario with Einstein gravity, and
several possibilities exist to raise the allowable value of A, .
One way is to postulate a fine-tuning in the initial condi-
tion (4.11) and place l(o closer to the top of the potential.
Another possibility is that either a different field theory
gives a Aatter potential or a smaller X. Certainly A, on the
order of 0.01 still allows the new infIation scenario from
thermal equilibrium considerations, a dramatic improve-
ment over the standard one-field model. Lastly, when
stochastic effects are considered, the period of slow rol-
ling is lengthened, and therefore a larger A, could still
yield a sufficient amount of expansion. The allowed re-
gion of (Po, P) parameter space is shown for the GUT en-

ergy scale but with A, =0.01 in Fig. 4. In contrast to the
y=0 case, a wide range of parameters lead to successful
inflation.

The above constraints are valid in the frame where
y=P/2. However, this frame is derived using a confor-
rnal transformation, and is usually not considered to be
the physical one. The above conditions must be

transformed back into the frame with GET's present and
canonical kinetic coupling for the inAaton field. As dis-
cussed in Ref. [19], the reheat constraint is the only one
to change significantly; it becomes

4~0 + TRH min30

and is plotted as the dashed line in Fig. 3.

(4.21)

V. SOFT INFLATION —CHAOTIC INFLATION TYPE

We will investigate chaotic inflation [10] arising from
potentials of the form

&(g) = (5.1)

where n is an even integer. Correspondingly,

2

f(g)=ir g /2n and ir rjif = e (5.2)

where Eq. (3.25) now determines the end of inflation. As
with new inAationary potentials, we first derive expres-
sions valid for general y, and then specialize to the cases
of 0 and P/2.

When written as conditions on lto, the constraints be-
come

00+ 0H
2n l3y~f ~h 1 )

pya

1/2
y~gp/2

e (5.3)

2n
PO 1 RH pya.

1/2 2 4~ ge n RH, min

30K.„

2y/(ny —2P) ' ny/(ny —2P)
6K y&4'p

e
n

j. /2
yawp/2

e 7 (5.4)
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—1
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p 3/2
cr

1/2

1/2

n/4 4y/(2P —ny)2' p af/h /2, I3yaf/h ~n/4
—y&4p

e (1 e e
pyK

1/2

4y/(2P —n y)- (n+2)/4
p(p /2+r)~f/h ~ Pr+f/h )(n +2)/4e ji —e2n

pyK

—ya.Pp
1/2

(5.5)

where the density perturbation conditions are for regions
A and B, respectively. The reheating and density pertur-
bation constraints are valid for p) n y /2 and flip inequal-
ity signs when the above condition on P is not met. If a
quantity in square brackets becomes negative, then that
constraint cannot be met for those particular parameter
values. The Universe will be in regime A at tI, when

I

taken as

—PKPy"e '=m4p, . (5.8)

This initial condition on $0 results in some
simplification, as the condition for sufficient inAation may
now be written as

1 ny
ln 1+ (af/h

y 2
(5.6)

—n/2
(P ~r/2)~0, 2n, Pr~f/h

A, n &nmP1e 2ie
pyK

(5.9)

ao

2 2PyK 4o —r.y,=e f'" 1+ e
4n

The ratio of scale factors is given by

2 /P2

(5.7)

Again, we now specialize to the two values of y of physi-
cal interest, as well as to specific n.

A. y =0: Fundamental exponential potential

an expression which is useful in deriving the density con-
straints above.

With standard chaotic inflation, the usual procedure is
to start considering the classical evolution of the
Universe at the first possible instant when this behavior
should be valid, namely at the Planck scale. The heavy
damping of the scalar field rapidly eliminates any initial
kinetic energy, and is usually ignored [30]. We follow the
same procedure here, with our initial conditions therefore

I

n/2

As discussed in [19],when P is small, V(g) will change
slowly compared to the evolution in the P direction. We
therefore find a power-law expansion [31],just as in the
constant-Vo case of new inflation. However, as g in-
creases, the expansion deviates from the power law, and
the expressions without explicit time dependence become
more convenient. From Eqs. (5.9), (5.4), and (5.5), the
constraints for sufficient inflation, reheating, and density
perturbations, respectively, become

13m.(t)p
A,„&nm P1e

K

2n ef/h
(5.10)

4 ~~&p n
30K,„

A,„)nmp, e '(pK)" 2npK(t)o—+2n ln
~ g e RH, min

Pl+n ln
6K

—n/2

(5.1 1)

4n
ln

p2 2

P]CPp
A,„&nm p1e

4n

p2K

5P K ~n

p „P 3n
—1

5p

p 3/2 3

1/2
2n n~/I,

K

' n/4

' 1/2 2' exp/p

K

. (n+2)/4.

P $0 P af/h

PKPo/2+P af/—h /2

—n/2

—n/2 (5.12)

with the density conditions for regions A and B, in that
order, and p af/h ) n l2 the condition to be in region A
at the first horizon crossing. Both the reheating and den-
sity constraints also have a A,„ term on the right-hand
side; however, as the logarithm is taken, its elf'ects may
easily be accounted for by an iterative procedure. The al-
lowable region of A, „-P space is plotted in Figs. 5 and 6,
for the cases of n =2 and n =4, with tI)o= 10mp). Unfor-

I

tunately, only a small region of parameter space is al-
lowed. While the permitted region does occur for the
desirable values of the coupling constant being near uni-
ty, the narrowness of this region makes this scenario of
chaotic inflation with canonical coupling highly unlikely.

Changing the initial value $0 is of little avail, as the
pattern of the figures is merely shifted, with a slender re-
gion of phase space remaining. When $0 is increased, the
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FIG. 5. The inAationary constraints for n =4 chaotic
inflation with y=0 and (fp= 10mp, .

FIG. 6. The inAationary constraints for n =2 (massive)
chaotic inflation with y =0 and Pp

= 10m p, .

density constraint is loosened, while the reheating condi-
tion becomes more severe. As mentioned earlier, a larger
Po produces a smaller effective coupling, and hence a
much larger A,„can still suppress density perturbations.
Concurrently, the smaller exponential potential at the
end of the inAation results in less energy density and
hence greater diSculty in reheating. Furthermore, even
if a much lower reheating temperature is allowed by a

different mechanism of baryogenesis, there is little change
in the reheating constraint due to the logarithmic depen-
dence in Eq. (5.11).

B. y =P/2: Conformal exponential potential

From Eqs. (3.5) —(3.7), the time dependence is found to
be

y(4 —n)/2 4 nk

2K 3
1/2

2 4
lfro exp

K 3

1/2 2/(4 —n )

(n&4),

(n =4),
(5.13)

for the inAaton and hence the scale factor is given by

'P /2a
ap

1/2 4/(4 —n ~

nA, „ y(n —4)/2(r t )
p K —pnpp/2

e
4n

—1='
Pal( o

4

I

2 1/2
—P~go/2 4 ~4

e '
1 —exp

K 3

(n&4),

(n =4) .
(5.14)

By fixing, say po and n, we may plot the allowable range of A,„-p parameter space as given by the implicit Eqs. (5.4)
and (5.5). Below we give special attention to the renormalizable cases of n equal to 2 and 4. When n =4, a more careful
treatment must be made. The constraints then become

A,,» moog,

4
TRH, min

(5.15)

(5.16)

3P 5p
64 p

A,4 (
3 5p
64 p

2

(e " —1) (region A: p af/h & 21n2),—2

cr

(e / " —1) (region B: P af/i, (21n2),Pa &&/2

cr

(5.17)
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for the horizon, reheating, and density perturbation con-
straints, respectively. That the reheating condition has
no dependence on any parameters is not surprising, re-
sulting from the fact that the n =4 case is conformally in-

FIG. 7. The inflationary constraints for n =4 chaotic
inflation with y=p/2. The results are $0 independent, due to
conformal invariance.

variant and hence independent of the exponential sector.
For the other conditions, the appearance of a dependence
on p results from the initial condition (5.8), whereas the
amount of reheating only depends on the final values.

These results are plotted in Fig. 7. Disappointingly, the
density perturbations force A,4 to be excessively small,
around 10 ', in contrast with the natural values possible
in the @=0 case. While this scenario certainly is not
ruled out, there is little benefit compared to standard
n =4 chaotic inflation. Because the inAaton evolves fas-
ter compared to the y=0 case, inAation will terminate
sooner, and thus P will evolve less, resulting in little
change to the effective A.„. Changing $0 is of no avail; be-
cause of conformal invariance, there is no Po dependence,
as Eqs. (5.15)—(5.17) show.

The case of n=2, corresponding to a massive scalar
field, is also of physical interest. Along with the n =4
case discussed above, these are the only powers of if

which both lead to chaotic inflation and are renormaliz-
able in standard field theory. Writing k2= m, we find

mph

2a(Q2 p
f ~0

(
f f/h 1)

—1/2 (5.18)

mp1

Sg,
5

1/4
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mpi
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)
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'
'I2

(5.20)

for the horizon, reheating, and density perturbation con-
straints. These conditions are plotted in Fig. 8, along
with numerical computations, for $0=10mp&. There is
an improvement of several orders of magnitude over the
standard chaotic scenario, with the mass being as high as
0.01 times the Planck scale. Thus, when soft inflation

arises from conformal transformations of GET's, quite
reasonable values of the mass are possible.

The n =2 case is further successful under a wide range
of $0, as illustrated in Fig. 9. Thus, chaotic inflation in
GET's can be realized for a massive potential with quite
natural values of all parameters, including the mass itself.
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FIG. 8. The inAationary constraints for n =2 (massive)
chaotic inflation with y=P/2 and $0=10mp, . Exact numerical
results are given by dots and X's as in Fig. 3.

-20

Flax. 9. Inflationary constraints on (PO, P) space for n =2
chaotic inflation with y =P/2 and m = 10
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Just as with the new inAation scenario, the main change
is the softening of density perturbations due to the simul-
taneous rolling of two fields.

VI. CQNCI. USIQN AND REMARKS

We have investigated the effects of an exponential po-
tential multiplicatively coupled to the standard new and
chaotic inAation potentials. When the kinetic terms are
standard, the inAaton coupling constant can be near unity
[19]. If the coupling is found in the conformally
transformed frame of generalized Einstein theories, or
GET's, then the inAaton kinetic term also contains ex-
ponential coupling. For new inflation, this coupling
tightens the horizon problem constraint, although not to
a severe degree. With either kinetic term, a successful
new inAation scenario is achieved. For n =4 chaotic
inAation, the above nonstandard kinetic term forces the
self-coupling to near the same excessively small values of
the standard one-field case, removing the advantages
found with canonical coupling. One may find comfort
that GET s, which arise in many string theories and re-
normalization of quantum field theories in curved space-
time, are still compatible with A,4P inflation; nonetheless,
the continued need for fine tuning is a disappointment.
In the n =2 (massive) chaotic case with this kinetic term,
all constraints can be met for a mass as large as 10 mp&.
Furthermore, such natural values are found in a wide
range of parameter space, as seen in Fig. 9. Table III
gives a summary of the results found in this paper. The
successes of soft inAation seem to merit further inquiry
into this theory.

As noted above, our results are all derived in the "Ein-
stein" frame, with standard gravity. However, if our
Universe has nonstandard gravity, then the "GET"
frame is the physical one. Upon transforming back to the
GET frame, only the reheating condition is expected to
change significantly [37], and this constraint should be
loosened. In addition, the initial condition for chaotic
inAation will also change, as the effective Planck scale in
the GET frame should be used to set the initial energy
scale. Since the reheating and density perturbation con-
straints are determined by values at the end of inAation,
and the horizon condition is usually not a problem in
chaotic inAation, we expect little change in our results. A
full discussion of the relations between quantities in the
two frames will be presented in a later paper.

One promising avenue for future research with soft

inAation is the formation of large-scale structure. While
we have considered the constraint from suppression of
density perturbations at current horizon scales, inAation
produces these Auctuations at all scales. The standard
new and chaotic models predict an almost scale-free spec-
trum [7]; however, models with exponential potentials are
known to give a spectrum with increasing power at larger
scales [31]. Observational evidence is starting to indicate
more structure at large scales than previously thought.
Furthermore, as soft inAation proceeds, the dominant
contribution to 5plp will change [see Eqs. (3.21) and
(3.22)], setting natural scales at which the behavior of
large-scale structure will change. Thus soft inflation con-
tains a greater richness of structure formation than stan-
dard one-field inAation models.

An examination of the R theory, which we expect not
to soften the inflationary constraints [38], is instructive,
as it illuminates what is required in a successful model.
In order for the soft inAation scenario to ease the con-
straints arising from density perturbations, both fields
must be slowly rolling at horizon crossing. The potential
in the conformal frame contains two pieces [11,28]. The
U((t)) term fixes the value of the exponential field, corre-
sponding to R =0, in the f(R) theory, in contrast with
the continuously rolling P of the JBD theory. Once P be-
comes fixed, the softening of the constraints will cease,
and behavior similar to the conventional inAation
scenarios will ensue. If the f(R) sector is initially such
that P rolls for a sufficiently long time, then the inflation
P may become fixed first. With only P evolving, the fine-
tuning problem of f(R) gravity [11] still exists. Both
fields must end their evolution at roughly the same time,
or else excessive density Auctuations will exist, and such
an occurrence seems dif5cult to imagine except by con-
trived means.

The difference with the models considered in this paper
is the absence of a U((()) piece. Hence P rolls throughout
inAation, which ends when the inAaton nears its potential
minimum. There is no separate U(P) potential to contin-
ue the rapid expansion after the inAaton stops its evolu-
tion. In some string models or extensions of GET's po-
tentials are added to fix the value of P. These potentials
must not end the evolution of (() until inflation has ter-
minated, or else the softening effect will be mitigated.

If the minimum of V(f) is zero, then after the termina-
tion of inflation, (3.1) implies that P behaves like a
damped oscillator without a driving term. Its kinetic en-

TABLE III. Summary of results, for new and chaotic inflation potentials with both usual and non-
standard kinetic coupling. Both compatibility and naturalness are considered.

Potential

New inflation
(v= v, —

—,'xq')
GUT's: compatible
fine tuning of initial data

)' =0&2

A, ~0.02 (not extremely small),
but simple SU(5}: excluded
no fine tuning

Chaotic inflation
( v=-,'xy')

A, —I: compatible
fine tuning of A. for given P

X ~10-"

Chaotic inflation
( V= —'m'g')

m ~ m». compatible
fine tuning of m for given P

m ~ 10-(2-3)m»
no fine tuning
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ergy decreases as a, and quickly becomes negligible.
However, if the minimum is not zero, then the potential
term acts as an effective decaying cosmological "con-
stant. " The effects of such a term on the subsequent evo-
lution of the Universe and the possibility of it acting as
dark matter was examined in detail for a negative-
power-law potential in [39], with the exponentially de-
creasing case also discussed. Our preliminary work indi-
cates that the energy contained in the sealer Geld will
grow faster than radiation until it dominates. For the
matter and scalar contributions to be of the same order
today, the minimum of V(g) must be fine tuned to a very
small value. However, if this value is related to some
other energy scale, for example the schizon mass [40],
then the scenario of a scalar field rolling on an exponen-
tial potential today becomes more attractive. Such work
is currently in progress.

Finally, we note that while we took Pc as being near
unity for "naturalness, " there is in fact no real argument

for determining this value. Perhaps the transition from
quantum to classical gravity in a more fundamental
theory such as superstrings will be able to predict plausi-
ble values of $0. Another possibility is to utilize quantum
cosmology.
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