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We investigate the properties of soliton stars in the Lee-Wick model when a temperature dependence
is introduced into this model. It is found that at some critical temperature T, —100—200 MeV, a first-

order phase transition occurs leading to the formation of soliton stars with characteristics similar to
those considered by Lee and Pang but with a much smaller mass and size. We study the evolution of
these soliton stars with the temperature from the early Universe to the present time.

INTRODUCTION

In 1974, Lee and Wick [1] proposed a simple field-
theoretical model for interacting scalar bosons or for fer-
mions interacting with scalar bosons. In a subsequent
work, Friedberg, Lee, and Sirlin [2] presented a class of
solitonic solutions of these models, the nontopological
solitons. These soliton properties motivated the use of
the Lee-Wick model as an effective theory of interacting
quarks in hadron spectroscopy [3]. The scalar field plays
the role of an effective field which confines the quarks in-
side the soliton. The predictions of this Lee-Wick model
for the hadron spectra are as satisfactory as those of oth-
er effective models for nonperturbative QCD. More re-
cently, in a series of papers Lee and collaborators [4] ap-
plied the Lee-Wick model to astrophysics. In particular
they addressed the question of the stability of the nonto-
pological solitons when the number of fermions inside the
soliton, instead of being a few, becomes extremely large
( ) 10 ). They found that such cold stellar configurations
can exist and they called them soliton stars. They also
showed that soliton stars with a mass —10' Mo and size
—10 ' light years can be formed. However, the proper-
ties of these soliton stars were obtained with a very spe-
cial choice of the parameters in the model, and, as will be
seen, a different choice can lead to soliton stars with very
different properties, more like those of neutron stars.

Although the existence of gigantic stars of the type
found in Ref. [4] does not seem to be compatible with the
present experimental observations, one could contem-
plate the possibility of the formation of such objects at an
earlier epoch of the evolution of the Universe. In the
work presented in this paper we explore such a possibility
and study the relics of these objects at the present time.
Since the early universe was hot we were led to consider
the temperature dependence in the Lee-Wick model and
investigate the possible formation of a soliton star at
finite temperature and then its evolution with tempera-
ture from the early Universe to the present time.

The plan of this paper is as follows. We first recall the
properties of the Lee-Wick model and study the proper-
ties of the soliton solutions, in particular, the stability
conditions, in terms of the parameters of the model and
in terms of the number of fermions inside the soliton
when this number is very large. We also calculate in a
simple way the effects of gravity on the stability proper-
ties of the soliton stars, especially, the limits where they
collapse into black holes. We then make an analysis at
finite temperature and show the possibility of a phase
transition which leads to a model with parameters similar
to those in Ref. [4] but at a nonzero temperature with the
consequence of the formation of a soliton star. We finally
envisage the evolution of the soliton star to the present
time. In the course of this work we derive a very simple
method for introducing temperature dependence into the
Lee-Wick model which can be also applied more general-
ly to other field-theoretical models. The details of this
method as well as the various approximations used in our
paper are presented in the appendixes.

SOLITON STARS AT ZERO TEMPERATURE

The Lee-8'ick model. This model in the version with
fermions [5] is defined by the Lagrangian

r(x) =-,'a„oa~o —U(o)+4) ~a„4—m%' 1—
Op

where the fermions V(x) interact via the scalar field o (x).
The self-interaction of the o. field is usually given in the

form

U(o )=—o + —o + —cr
2 3 4

(2)

where a, b, c are free parameters. This form was chosen
so that the model is renormalizable. For the purposes of
this work we have rewritten it as
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U(o )= —,'m o 1—
op

'2

+B 4
op

3
0—3
op

4

E =(4~+'B)I/4N —+—x'+ex'1 1

x 3

(3) with
1/4

In this form the three parameters o.p, B, and m have a
more direct physical interpretation. For example, with B
positive the constant field configuration o. =o.

p is a local
minimum of U which has an energy density (pressure) B
greater than the energy density at the absolute minimum
at o. =O. This form allows also a more immediate com-
parison with the Lagrangian used in Ref. [4].

The energy and mass of the soliton for a large number
of fermions. As in Ref. [4] we want to investigate the
properties of a system with a very large number of fer-
mions (N~ 10 ) interacting through the scalar field cr.
In particular we would like to study the possibility that
stable solitonic solutions exist. We consider a spherical
volume of radius R in which, apart from a surface shell,
we take the mean-field approximation: o.=o p inside and
o. =O outside. In the surface shell, o. changes smoothly
from o p to 0 with a profile that is determined by minimiz-
ing the energy in the surface region. It is not difficult to
show from the Lagrangian of Eqs. (1)—(3) that the shell is
of thickness —1/m and has a surface energy density
s —

—,'I o.p, and for large R, the o. field energy is given by
a volume term and a surface term

s 1

B3/4 N 1/3

If e « 1 the minimum energy occurs for x = 1 and the
surface contribution ex is negligible. This corresponds
to

4m.
3/4

B3/4

3

(9)

N4/3
E =o, +4~$R2 .

R
(10)

Minimizing E with respect to R at fixed N leads to a soli-
ton mass of

%'e will see that this bound plays an important role in
that it governs the properties of the soliton stars.

The Lee Pang -soliton stars [4]. In Ref. [4], the constant
B is taken to be zero and I =o.p=30 CreV so that the
confinement is due only to the surface tension s. U(o)
vanishes for both o =0 and o. =o.p', the vacuum is degen-
erate. In this case the total energy of the system is

E (o ) = 4, ~BR +4vrsR (4)
M —3 2/3( g )

1/3N8/9
2

In the mean-field approximation, fermions become
effectively massless due to their interaction with the o.

field inside the sphere but acquire a large mass m outside
which keeps them inside. For very large N, the fermions
will be uniformly distributed throughout the volume and
their energy density can be evaluated in the relativ-
istic Thomas-Fermi approximation. This gives

,'(9') / (N/V—)"/. The total energy of the interacting
system is therefore

4/3

+4~SR2+ '~ BR 3

with a= '( ')——
2 2

It is easy to see that the minimum energy configuration
of this system has a finite radius and this configuration is
called the soliton star in Ref. [4]. The expression (5) also
shows that the o. field confines the fermions inside the sol-
iton through both a volume and a surface term, although
only one such term is necessary to give an energy
minimum with a finite radius. The relative importance of
these two terms not only depends upon the pressure B
and surface tension s but also on the fermion number N.
For B )0 and N large enough the volume term will dom-
inate the surface term. This can be seen by making a
change of scale

1/4

N' x.
4mB

Then

with a radius

a
8~$

1/3

N4/9 (12)

and a fermion number density

6$, 1/3
P — lY (13)

4/3 4/3 ,

2

E(R) eN +4~sR~ —3 G aN
R 5 R R

(14)

From Eq. (12) the radius increases faster than N'/ for
large N so that the fermion density decreases as N in-
creases; also as pointed out in Ref. [4] the exponent of N
in Eq. (11) is ( 1 ensuring, for large N, the stability of the
soliton against break up into smaller units. Thus stable
soliton star configurations with very large N result from
this model.

Ejfects of gravity For very l.arge N, however, the
effects of gravitation become important and for a critical
value N =N, a soliton star can collapse into a black hole.
The effects of gravitation were calculated by Lee and
Pang [4] using general relativity. With their values for
m and o.o, s =

—,'m o.o= —,
' (30 GeV), this leads to a criti-

cal fermion number N &N, =10 which implies that
M, = 10' Mo and R, —1 light years.

Actually these results can be understood in the simple
approximation of coupling the Newtonian gravitational
field to the energy density inside the soliton, treating this
as constant throughout. Including the gravitational ener-

gy it modifies Eq. (10) so that
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Making a change of length scale
1/3

aNR= X
8m.s

(15)

and defining

e= 'G—(8~s ) a' N
5 (16)

one gets

E(x)=—'(gars)' a N —+x2
2 X X

(17)

Neglecting gravity (e=0) this has its minimum at x =1
and gives the results of Eqs. (11) and (12). For e((1,
gravitational effects will only be a small perturbation in
the neighborhood of this minimum although the
configuration becomes metastable to collapse to small x
(black-hole formation). The condition for the metastable
minimum to exist is that —2/x +2x —3e/x should be
zero for some positive x and this is satisfied if e ( ( —', )

This condition is not met for

break up.
Again we estimate the gravitational effects by coupling

the Newtonian gravitational field to the energy density
treating this as constant throughout the star. Including
gravitational energy it modifies Eq. (19) so that, in con-
trast with Eq. (14),

aN 4 3 3 G aN 4E(R)= +—mBR +—m.BR
R 3 5 R R 3

(22)

Making a change of length scale R =( a/4 48r)' /N''/ x
and defining e= ,' GN (—4rraB)'/ gives

9/4 3/2
1 2N&
3 5

1

G 9/4( 8 )3/2 3/4

~4/3
E =a +—mBR,

R 3

one gets a soliton mass of

M =—'a (4mB)'
3

with a radius
' 1/4

a Ni/3
4mB

(19)

(20)

(21)

In contrast to Eq. (11) the mass is now proportional to N
and gravity is now necessary to ensure stability against

and the star will collapse to a black hole. Using this con-
dition we get exactly the same results for N„M„and R,
as in Ref. [4]. A similar conclusion can be reached if one
simply adopts the Schwarzschild criterion that for stabili-
ty, R must be greater than 2GM.

Thus with B =0, a soliton star can reach the mass of a
galaxy before becoming unstable to black-hole formation.
It is the special choice of parameters of Ref. [4], leading
to the vacuum degeneracy, along with the assumption of
massless fermions, that gives this result.

Another type of soliton star. If the condition for a de-
generate vacuum is relaxed and one takes B )0, then for
large N, the surface term is negligible. It can be easily
seen that this occurs for very realistic values of B. For
example, with 8 =(100 MeV), a value generally used in
hadron spectroscopy, and s =

—,'(30 GeV) the lower

bound in the relation (9) is as low as 10 . (The value for
s is not accurately known but we have checked that a11

our conclusions are insensitive to the actual value for s in
the range (1 GeV) —(30 GeV) . In the following we will
therefore take s =

—,'(30 GeV) as in Ref. [4].)
In this case minimizing the energy

E (x)= —,a (4~8 ) N —+x ———+x3/4 1/4 3 3 ~ 3 3

X X X

(23)

Neglecting gravity this has a minimum at x = 1 and gives
the results of Eqs. (20) and (21). Including gravity the en-

ergy minimum becomes metastable, but for e«1 gravi-
tational effects in the neighborhood of the minimum are
small. We find that the minimum becomes unstable to
gravitational collapse if e) 0.046 and taking 8 =(100
MeV) one gets a limit for N, N, —10 which in turn
yields M, -3MO, and R, -25 km. These characteristics
are more like those of neutron stars.

Thus, the properties of soliton stars depend dramati-
cally on the choice of the parameters for the self-
interaction U(o. ) in the Lee-Wick model. The soliton
stars can have a galactic mass in one case, and a few solar
mass in the other case. No stars of the Lee-Pang type
have been identified, so we presume that they do not ex-
ist, at least at the present time. There is still a possibility
that within the Lee-Wick model such stars could have
been formed at an earlier epoch. As seen above, the two
types of soliton stars are a consequence of the choice of
two different sets of parameters. One could envisage a
transition between these two sets of parameters when
another variable, such as temperature, is introduced.
Since the analysis has been made so far at zero tempera-
ture, we are led to introduce finite temperatures into the
Lee-Wick model.

SOI.ITON STARS AT FINITE TEMPERATURE

Introduction of the temperature dependence into the
Lee-Wick model. We are, of course, interested in the situ-
ation where the number of fermions N exceeds by far the
limit 10 at which the volume term dominates the sur-
face term at zero temperature. Thus, in contrast with
Ref. [4] we adopt the case where 8 )0.

At zero temperature, the equilibrium configuration of
the soliton star corresponds to a minimum of the energy
but at finite temperature the equilibrium is given by the
minimum of the free energy. When the methods exposed
in the appendixes are applied to the Lee-Wick Lagrang-
ian, the contribution of the o. field to the free energy den-
sity is given by Eq. (A13):
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f(cr)=U(cr)+ —f ln(l —e ~ +
)

P (2m) kti T, = 1/P, =
1/4

180B
7772

with P= 1/(kii T), and T, =127 MeV for B' =100 MeV .
(28)

2aU
der O0 O0

12B o. 3o

O0 OO O02 (25)

7 2f = — + —(p'p)'P' 180 2
(26)

We will see in the next section that at the time of soliton
star formation, the parameter p p is indeed small, and
this truncated expansion gives an accurate representation
for f.

Thus for a spherical soliton with fermion number N,
radius R, and at high enough temperature T, Eqs. (24)
and (26) give a total free energy:

F=—P i +4vrsR + vrR 8——9 2 N 4, 7+2

4' 3 180@
(27)

Formation of soliton stars. The term proportional to
volume in Eq. (27) becomes negative at temperatures
greater than a critical value:

At zero temperature, f (cr)= U(cr) and the free energy
density has two minima, one at o =0 (outside the soliton)
and the other at o. =cro (inside). At finite temperature but
k~ T &&M, the temperature-dependent contribution to
f (o), the second term in Eq. (24), is exponentially small
because PM is large both inside and outside the soliton,
and the o. field free energy density is little changed from
its zero temperature values, namely, zero outside the soli-
ton and B inside.

It is the thermal excitation of the fermion field that
provides the important temperature-dependent contribu-
tions to the free energy density, in particular inside the
soliton. Outside we have seen that the o. field is frozen
near to its zero temperature value o. =0 and the fermion
acquires a very large mass. As can be seen from Eq.
(A25) of Appendix A, because of this large mass and un-
less the temperature is very high, the fermion field, like
the boson field, makes only exponentially small contribu-
tions to the free energy outside the soliton. In contrast,
inside the soliton the o. field is frozen near to o. =o.

0 and
the fermion mass is very small; hence, the temperature
dependence becomes dramatic even at relatively low tem-
peratures. It is shown in Appendix B that when mass can
be neglected the fermion free energy density is p times
a function of one dimensionless parameter p p, p is the
fermion number density. It can be anticipated that at in-
creased temperatures the internal fermion pressure will
also increase and inflate the soliton so that p will de-
crease. Hence at high enough temperatures, p p will be
small and a power-series expansion of the free energy
density will be appropriate. Keeping in Eq. (Bl 1) the first
two terms of this expansion, one gets the fermion contri-
bution to the free energy density:

F =—P, +4msR9 2 N 24'
The soliton will stabilize at the minimum free energy

1/5

N4/5
& cF;„=5

(29)

(30)

with a radius

3/5 2/5
p,

4 m. s
~2/5 (31)

The fermion number density is given by

3P,N

4vrR

4 3/20

~—1/5

B3 (32)

This parameter p p is the expansion parameter in Eqs.
(Bl1) and (26). With 8 =(100 MeV)~ and s =

—,'(30 GeV)s
this expansion parameter is less than —,', provided that
X ) 10 . This shows that for the values of N of interest
(N —10 ) the low-density, high-temperature expansion in
Eq. (26) is quite adequate.

The soliton now possesses characteristics similar to
those considered in Ref. [4] [see Eqs. (11)—(13)] but at a
finite temperature T, ; in particular for large N the soliton
is stable against break up [Eq. (30)] and the radius in-
creases faster than N'~ [Eq. (31)] and fermion density
decreases as X increases. Such solitons could have been
formed in the early universe at a time —10 s after the
big bang, corresponding to the critical temperature
T, —100 MeV.

The total energy (the mass) is however quite different;
at the minimum this is M =(B/c}P)(PF) with F given by
Eq. (27). This yields a mass

Hence for temperature greater than T„ the soliton phase
would fill the whole of space. The universe would be
homogeneous with the scalar field o. having the value o.0
and the fermions dispersed. As the universe cools, at
T=T, a phase transition occurs. Bubbles of the phase
o.=0 and no fermions, will be formed. During the phase
transition the temperature remains constant while the en-
ergy for the expansion of the universe is provided by the
latent heat liberated as the bubbles expand. It can be
shown that this latent heat density has a contribution
equal to B from the o. field and 3B from the fermion-
antifermion pairs. The bubbles of the phase o. =0 and no
fermions will eventually coalesce and the phase o. =o0
and with fermions will be left as the isolated bubbles.
The soliton stars are formed. This phase transition is
similar to the cosmic separation of phases discussed in
Ref. [6]. The soliton bubbles will continue to contract at
T = T, until they are stabilized by the small surface term
in Eq. (27) which becomes
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M= 16~BR3+ 27P2N
3 8m

(33)

which with Eq. (31) is

M= BR +8asR16m

3
(34)

At the formation time the effects of gravity can be es-
timated with the Schwarzschild limit R & R, -2GM and
Eqs. (30) and (33) yield a critical fermion X, —10 . This
bound is considerably smaller than that found in Ref. [4]
at zero temperature. On the other hand, the fermion
number NH inside the soliton horizon at T, =100 MeV is
—10, smaller than 2V„so that black holes cannot be
formed in the phase transition. Taking N-10" yields, at
the formation time, a maximum soliton radius of 2 km
and a mass 1.5 X 10 Mo. The radius of the horizon
volume at the time of the phase transition ( —10 s) can
be estimated to be of the order 30 km so that the distance
between solitons would be about ten times the soliton ra-
dius. Thus, the soliton could be considered as giving rise
to high-density fluctuations in the mass distribution in
the universe. It is an interesting consequence of this
model that inhomogeneities of the order of the soliton
size in the energy density of the universe can appear at
this relatively early stage in its evolution.

Evolution of soliton stars When th.e phase transition is
completed the temperature will fall, the term proportion-
al to volume in Eq. (27) will no longer be zero, and it will

contribute to compress the soliton. By arguments similar
to those leading to Eq. (9) it can be shown that the
volume term will play the dominant role in compressing
the soliton if

These formulas hold so long as our expansion parameter
P p is less than 1. As the temperature cools this condi-
tion is eventually violated.

A soliton star formed at T = T, could undergo several
processes. They could evaporate into hadrons either
from its surface [7] or bubbles can be nucleated inside [8].
Estimates of the evaporation rate from the surface can
be made [7]. For nucleons the number of evaporated par-
ticles would be —10 . This estimate does not include
reabsorption of hadrons into the soliton so that 10 can
be considered as an upper limit. The rate of bubble nu-
cleation inside the soliton can also be estimated [8]. It is—8' /T
proportional to e ' where 8' is the maximum of the
free energy needed to form a bubble. One can show that

16~ s
B 77r /180—p

(39)

CONCLUSIONS

and for the parameter values considered here, bubble nu-
cleation is completely negligible. This qualitative
analysis suggests that soliton stars formed at T =T, with
X & 10 could survive to the present epoch.

Neglecting any evaporation or nucleation which would
change X, and if the star were to cool uniformly then the
thermodynamics can be analyzed numerically. Figure 1

shows the evolution in radius as a function of tempera-
ture until the cold configuration of Eq. (21) is reached. It
can be seen that most of the soliton shrinking takes place
for T very close to T, . At T = T„R ( T, ) = 174R (0), and
at its cold configuration, the soliton would have a very
small mass —10 Mo.

1/5
T, —T 90 27@,s)) p, s

T 7m

and for X =10 this will be so when

&10

(s =
—,'(30 GeV), P, =10 MeV '} . (36)

The Lee-Wick model at zero temperature can provide
soliton stars with very different properties depending on
the choice of the parameter values. We have examined
the possibility of a transition between these different
types of solutions by introducing temperature depen-
dence into the model. It is indeed found that at some
critical temperature a phase transition takes place and
soliton stars with characteristics considered by Lee and
Pang could be formed, although the values for their mass
and size are drastically modified. These solitons induce
significant inhomogeneities in the mass density of the

3 5
2/3 (37)

It is interesting to observe that the volume term dom-
inates when the temperature has fallen from the critical
temperature by only 1 C. After this small temperature
change the surface term can be neglected and, minimiz-
ing expression (27) for F with respect to R yields

9-
8
7

R(T) 6
R(o)

and a mass

a
PF 4~R, B+ 7~' + 27 P X'

BP 3 60P' 1P
' 10 ' 10 10 10

T/ Tc

'lO

16~
3

(38)' FIG. 1. Evolution of the soliton star radius with tempera-
ture.
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APPENDIX A

In this appendix we introduce finite temperatures into
the Lee-Wick model and consider its thermodynamics.
Most of the formulas derived in this appendix are to be
found in other literature [9] but we believe our method to
be more simple and can be applied to other field-
theoretical models.

Boson fields

We first consider the o. field in isolation, and as with all
scalar fields the theory can be considered to be that of an
infinite set of coupled harmonic oscillators.

For a single oscillator the partition function
Z=g„" oe

~'"+'~ ' where e=fico is the level spacing.
The free energy F defined by Z =e ~ is

F = —+—ln(1 —e ~')e 1

2

and the internal energy

(A 1)

universe at an early stage. One speculation could be that
these small local mass Auctuations will be amplified in the
course of time to form much larger condensations of
matter. We follow through the evolution of those of the
soliton stars which would have survived until the present
time without modification and find that they would be
condensed objects with a mass —10 Mo.

ever, if the field can be considered to be executing only
small Auctuations about a fixed mean value, then the free
field method yields useful approximations. For example,
in the A,o. theory

2 2 ~ 4X=—,'B„o8"o —
—,
'm~o' — —o y—o . (A6)

The field configuration of minimum energy has

m 2 I, 4
2

2 4
o. +—o +yo. =0 . (Aj)

We have included in X the interaction of the o. field with
an external variable force y which is chosen to constrain
this minimum to be at o.=o., a static uniform field. Now
write

o —o +cT (A8)

The lowest order in o' the Lagrangian density is that of a
free field

Ek 1 —PEk+—ln(1 —e ")
2 P

d kd k
(A 10)

(2~)

with Ek =+M + k =+m + 3A,o. +k and, with the
removal of the external force (y =0)

2m 2 A, 4

2 4

cr ——o. —yo +—8 o.'8"o.™o. (A9)
m 2 k 4 1, , M
2 4 2 " 2

with M =m +3go . If the Auctuations o ' are small
this is a good approximation to the full Lagrangian and
yields a free energy

2

F —V
m -2+A-4+

4

E = (/3F) = —+
aP 2 et"—1

(A2)
d k

(2m. )

—PE+—ln(1 —e ")
2 P

(Al 1)

For a free scalar field theory with Lagrangian density

X=—8 o.B"o.— o.=1 m

2 " 2
(A3)

we have the field equation 8 o. ldt =V o.—m o. and the
Fourier components qk obey the harmonic-oscillator
equation d qk Idt = EI, qk with Ek =—+k +m .

The total free energy is the sum of the harmonic-
oscillator free energies, normalized in a volume V,

In thermal equilibrium the mean field o. would adopt a
configuration to make F a minimum. This result is the
same as that found in Ref. [9] in the one-loop approxima-
tion. Also the contribution of the zero-point energy to
the free energy density (the first term in the integrand) is
temperature independent. It was shown in Ref. [9] that
this term corresponds to a renormalization of the param-
eters of the Lagrangian (A6) and can be discarded.

For the Lee-Wick model with a scalar field only

Ek 1 —f3Ek+—ln(1 —e ")
2 /3

and the total internal energy

E=&f d k k+
(2~) 2

(A4)

(A5)

1 2 ~ 3 C 4=—8 o 8"o' ——o — cr ——o—
4

(A12)

the same method leads to the free energy

F= V —o + —o. +—o +— ln(1 —e )
—2 ~ —3 C 4 1 d k —IBEk

4 // (2m )'

For an interacting field theory there are no simple ex-
act expressions for the thermodynamic functions. How- with

(A13)
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3a 2+b 3+C 4+I d k
2 3 4 IBE~ + 1

e

EI, =+k +M, M = U(cr)=a+2ba+3ccr2= a'
ao

and the total internal energy

E== a
a

with the introduction of a chemical potential p by adding
a term pN into the Hamiltonian, or equivalently by modi-
fying the Lagrange density into

X=%(y~d„m—)%+pq y'q . (A18)

%'y 4 is the fermion number density and the chemical
potential p appears as a Lagrange multiplier.

Including the chemical potential the partition function
Z is related to the grand potential Q by

(A14) Z=e ~" (A19)

In Eqs. (A13) and (A14), we have discarded the zero-
point energy contribution for the same reason as that
used in the case of A,o. theory.

Fermion fields

with

d k
13 (2m. )

(A20)
We now turn to the fermion field and consider first the

free field case. For fermions of Inass m we have the Dirac
Lagrange density

X=%(y"8„—m )~p (A15)

1

Z= g e "=1+e "=e
n =p

(A16)

and the field equations (y"8„—m)4=0. Now the
Fourier components qI„(p&, ) corresponding to fermions
(antifermions) in their two spin states obey the
Schrodinger equations

dqk, dr ks
Ekqks& ~

d Ekr ksdt dt

corresponding to fermion oscillators with energy Ek
=V k +m . For a single oscillator the partition func-
tion is

an =pV .
ap

(A21)

The free energy

F =n+pN (A22)

and is generally considered to be a function of P and p [du

is eliminated in favor of p through Eq. (A21)]. The inter-
nal energy

E = (PF)= a
(A23)

Turning to the complete Lee-Wick model we have

The first term in the integrand is the fermion contribu-
tion, the second is from the antifermions; the factor of 2
takes account of spin. The fermion number N and num-
ber density p are determined through the relations

The total free energy is the sum of the free energies for
the individual oscillators and so is

+I' ryan m 1 ——

op
0+p%yp% . (A24)

4 d k —PE„F= ——V ln 1+e
f3 (2'�)

(A17)

The factor 4 comes from the fermions and antifermions
in their two spin states.

The above simple form is obtained by treating the fer-
mions and antifermions in exactly the same footing but is
inappropriate for situations in which one has a net con-
served fermion number X. In this case one can proceed

I

This Lagrange density corresponds to a set of coupled
boson and fermion oscillators. For an approximate eval-
uation of the thermodynamic functions one can proceed
as for the o. field alone by considering only small fluctua-
tions about fixed mean values of the fields o. =o.+o',

+%'.
The contribution to the free energy of the o' field alone

is identical to Eq. (A13). The fermion field alone contrib-
utes

2 d kFf„;,„=@X+VV m 1 — 4 ——f [ln(1+e " )+ln(1+e " " )]
cro (2')

with

Eq=+k +mf, mf=m 1—
op

(A25)

A special case of this formula corresponding to p=O is
given in Ref. [9]. The free energy is also modified by the

terms %' o'%" and 4'o'4 which couple Bose and fer-
mion fluctuations. Including these modifications would
require the solutions of the coupled, but still linear field
equations for o' and %". One can anticipate that they
would give rise, for example, to a temperature-dependent
renormalization of the fermion mass parameter m. We
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do not consider further these terms since, in the tempera-
ture range of interest here the fluctuations o' of the o.
field are highly suppressed and give rise to negligibly
small effects.

APPENDIX 8

( p)'
3P p=13p+, +O((13@) )

which on inversion gives

PiM
=3P p — (3P p ) +1

(89)

(810)

In this appendix we derive the relevant formulas used
in the body of the paper in the low-density, high-
temperature approximation and for different limits of the
fermion mass.

The lou-density, high-temperature expansion

Inside the soliton we take the fermion mass to be zero
and then, by a change of scale Pk =x, Eq. (A20) becomes

V x dx [ln(1+e '"+P"')

V p4
7 2

(p3 )2 (p3 )4+
180 2 ~ 4~2

(811)

Finally from Eq. (A23) the internal energy density

(812)

From Eq. (A22) the free energy density as a function of
temperature and density p is

+ln(1+e ' "')] (81)

G(a)= x dx ln(1+e ("+')=g a",
0 nt (82)

In this work we are particularly concerned with the soli-
ton characteristics at the time of formation and at this
time the fermion density p = N /V is small or more partic-
ularly 13 p is small. This corresponds to Pp being also
small and then an expansion of 0 in powers of Pp is ap-
propriate. To this end consider the function

The fermion free energy l-arge mass limi-t

In thermal equilibrium the fermions outside the soliton
have the same chemical potential as those inside. Since p
is small both inside and outside and because cr =0 the fer-
mion mass m is large. For the temperatures relevant to—p(.Ek+p) .
this work, Pm »1, and the exponentials e in Eq.
(A20) are very small. Expanding the logarithm gives, to
first order,

go=G(0)= x dx ln(1+e ')=
0 360

this is a standard result [9].
More generally,

g„=f x dx ln(1+e ")
dx"

on integrating by parts

~ X dx
g2 22

0 x+1

(83)

(84)

(85)

4V „d'k tiQ ', +—k'
cosh p 3

e
(2m )

(813)

2Vm03
2

cosh13p x dx e ™~1+x
p~ o

2Vm03

m 2 —mx /2cosh(/3p)e ™f x dx e
Prr 0

(814)

(815)

The angular integral is trivial and making a change of
scale k =mx gives

and, for n ~4,
dn —4—2

n —4 1+ex evaluated at x =0 . (86)

' 1/2
cosh(i' )(13m ) e ™

(816)

In particular g4 = 1 and g6 =0 and we have the expansion
Outside the soliton the fermion number density [Eq.
(A21)]

=7' '
~ 1G(a)+G( —a)= + a + a +O(a ), (87)

180 6 12
1 BQ &6 3r2 —pm

t uut=
V ~

=
i m ) pinsideV ap

(817)

hence

+ '~"' + '~"' +o((p )')
f3 180 6 12~

(88) (Pm ) e ~ f;„„d, . (818)

and the free energy density [see Eq. (A22)]
1/20 6 10

faut V+pp

From Eq. (A21) the fermion number density is given by Both are exponentially small.
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