BRIEF REPORTS

Brief Reports are accounts of completed research which do not warrant regular articles or the priority handling given to Rapid Communications; however, the same standards of scientific quality apply. (Addenda are included in Brief Reports.) A Brief Report may be no longer than four printed pages and must be accompanied by an abstract.

Precision electroweak experiments and heavy physics: An update

D. C. Kennedy and Paul Langacker University of Pennsylvania, Philadelphia, Pennsylvania 19104 (Received 15 March 1991)

We update our previous global analysis of weak neutral current and Z and W data in which the parameters h_V and h_A associated with new heavy physics were constrained, by incorporating recent results on Z properties and M_W . We obtain $-0.93 < h_V < 0.33$, $-1.9 < h_{AZ} < 0.27$, and $-2.5 < h_{AW} < 1.5$ at 90% C.L., considerably better than the previous limits.

Recently a number of authors have discussed the implications of types of new heavy physics which only affect the Z, W, and weak current observables [1-7] through gauge-boson self-energy diagrams. In particular, we performed a global analysis [5] of all available data as of August, 1990 to obtain the experimental constraints on the three relevant parameters h_V , h_{AZ} , and h_{AW} . Since then, a number of new results have become available. The Z mass, width, and partial widths from experiments at the CERN e^+e^- collider LEP are now more precise. We use here an average of the ALEPH, DELPHI, L3, and OPAL results that incorporates all 1989-1990 data and properly deals with common systematic errors [8], which yields $M_Z = 91.174 \pm 0.021$ GeV, $\Gamma_Z = 2.487 \pm 0.009$ GeV, $\Gamma_{l\bar{l}} = 83.3 \pm 0.4$ GeV, and $R \equiv \Gamma_{had} / \Gamma_{l\bar{l}} = 20.94 \pm 0.12.$ There are also measurements of the Z-pole forwardbackward asymmetry in $e^+e^- \rightarrow \mu^+ \mu^-$, $A_{\rm FB}(\mu)$ = 0.0154 ± 0.0048 [9], and a new absolute determination $M_W = 79.91 \pm 0.39$ GeV from the Collider Detector at Fermilab [10]. In this work, we update our previous analysis to incorporate these new results.

From a fit to all data one obtains

$$\begin{split} h_V &= -0.30 \pm 0.49 , \\ h_{AZ} &= -0.90 \pm 0.86 , \\ h_{AW} &= -0.6 \pm 1.6 , \\ \sin^2 \hat{\theta}_W (M_Z^2)_{\overline{\text{MS}}} &= 0.231 \pm 0.002 , \\ s_*^2 (M_Z^2) &= 0.231 \pm 0.002 , \end{split}$$

which are much better constrained than in [5]. ($\overline{\text{MS}}$ denotes the modified minimal-subtraction scheme.) The upper limits are $h_V < 0.33 (0.50)$, $h_{AZ} < 0.27 (0.59)$, $h_{AW} < 1.5 (2.1)$ at 90 (95)% C.L. If one assumes

 $h_{AZ} = h_{AW} \equiv h_A$, then $h_A < 0.14$ (0.44). The 90% C.L. lower limits are $h_V > -0.93$, $h_{AZ} > -1.9$, $h_{AW} > -2.5$. All of these results assume $m_t = M_H = M_Z$. As described in [5], h_V and $h_{AZ,W}$ describe the effects of different values for m_t and M_H and also of non-standard-model heavy physics. The 90% C.L. regions in (h_A, h_V) from various inputs are shown in Fig. 1. The allowed region is considerably smaller than in [5] both because of the inclusion of $A_{FB}(\mu)$ and also because of the smaller experimental errors in M_Z , Γ_Z , and $\Gamma_{\overline{\mu}}$.

The upper limit on h_V can be interpreted as an upper limit on the top-quark mass m_t , most easily using the simplified quadratic form for the m_t dependence of h_V (Eq. (8a) of [5]). For $m_t < 200$ GeV, however, the

FIG. 1. 90% C.L. regions in (h_A, h_V) from simultaneous fits of M_Z with various other observables, as well as *all data*. The fit to *all data* assumes $h_{AZ} = h_{AW}$. The fit to (M_Z, M_W) involves h_{AW} , while the others use h_{AZ} alone.

1591

<u>44</u>

simplified form is not correct, and it is better to fit the standard model directly to data with the top-quark and Higgs-boson masses as the only unknowns and to include the complete m_t dependence in the radiative corrections (i.e., including the subquadratic terms). This yields [11] the central value $m_t = 124\pm 34$ GeV, with upper limits $m_t < 174$ (182) GeV at 90 (95)% C.L., no useful limits on the Higgs-boson mass, and $\sin^2 \hat{\theta}_W (M_Z^2)_{\overline{\text{MS}}} = 0.2334 \pm 0.0008$. Allowing the tree-level $\rho_0 \neq 1$ (nonminimal

B. W. Lynn, M. E. Peskin, and R. G. Stuart, in *Physics at LEP*, LEP Jamboree, Geneva, Switzerland, 1985, edited by J. Ellis and R. Peccei (CERN Yellow Report No. 86-02, Geneva, 1986), p. 90.

- [2] M. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990).
- [3] M. Golden and L. Randall, Report No. FNAL-PUB-90/83-T (unpublished).
- [4] W. Marciano and J. Rosner, Phys. Rev. Lett. 65, 2963 (1990).
- [5] D. C. Kennedy and P. Langacker, Phys. Rev. Lett. 65,

Higgs bosons), one obtains [11] $m_t < 294$ (310) GeV at 90 (95)% C.L., $\rho_0 = 0.992 \pm 0.011$, and $\sin^2 \hat{\theta}_W (M_Z^2)_{\overline{\text{MS}}} = 0.2333 \pm 0.0008$.

This work was supported by the Institute for Theoretical Physics of the University of California at Santa Barbara and by the Department of Energy, Contract No. DE-AC02-76-ERO-3071.

2967 (1990).

- [6] G. Altarelli and R. Barbieri, Phys. Lett. B 253, 161 (1991).
- [7] B. Holdom and J. Terning, Phys. Lett. B 247, 88 (1990).
- [8] S. Lloyd, presented at the 1991 Aspen Winter Conference in Elementary Particle Physics, 1991 (unpublished).
- [9] This value is derived from the average \overline{g}_{V}^{2} and \overline{g}_{A}^{2} presented in [8].
- [10] F. Abe *et al.*, Phys. Rev. Lett. **65**, 2243 (1990); Phys. Rev. D **43**, 2070 (1991).
- [11] P. Langacker and M. X. Luo, Phys. Rev. D 44, 817 (1991).