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Mesons as bilocal fields in the harmonic approximation: A reassessment
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The spectrum and lepton decay constants of the pion, the kaon, and their radial excitations, as well as
the pion decay width in two photons, are computed in a recently proposed framework that combines the
bilocal approach to mesons and the potential method treated covariantly.

I. INTRODUCTION
W,ff[Af, ]=

N,
(JN, K , 'At) iN,—g TrC",

2
The treatment of relativistic bound states is an impor-

tant but notoriously dificult problem of quantum field
theory, especially in quantum chromodynamics (QCD),
where perturbation theory cannot be used for low ener-
gies. In addition, all kinds of nonperturbative ap-
proaches to QCD also have their limitations, so that the
understanding of the dynamics of hadrons composed of
light quarks (u, d, s) is still unsatisfactory.

Over the years there have been many attempts to get a
more precise feeling for the dynamics of bound light
quarks by using the potential approach (e.g. , Refs. [1]).
Recently, Pervushin and co-workers [2—5] have formulat-
ed an improved potential approach which (loosely speak-
ing) amounts to redoing the work of Le Yaouanc et al.
[6,7] covar&antly, and which we use in this work to study
the pion (vr), the kaon (K), and their radial excitations m'

and K'. In particular, we perform a critical reassessment
of their recent application of this method to the case of
harmonic interaction between quarks and finite quark
masses [8] where they claimed excellent results for meson
decay constants, while simultaneously fitting the meson
masses to their experimental values. We disagree with
them and conclude that while this method is indeed ex-
plicitly covariant, more realistic interaction kernels must
be used in order to obtain results of such quality. We
also compute the width for the decay m. ~2@ and reach
the same conclusion.

II. SCHWINGER-DYSON AND BETHE-SAI.PETER
EQUATIONS FOR THE HARMONIC POTENTIAL

Pervushin and co-workers started from a fermion
effective action where quarks interact via an interaction
kernel K(x,y) which is supposed to mimic QCD. By
eliminating quark bilinears q(x)q(x) in favor of bilocal
fields [9—12], they obtained the effective action W,(r[X]
rewritten in terms of quark propagators and bilocal fields
X(x,y) [10]. From it they obtained the Schwinger-Dyson
equation (SDE) determining the classical solution Xo(x,y)
or, equivalently, the dynamically generated quark self-
mass operator X(x,y) and therefore also the "dressed"
quark propagator Gx. The fiuctuations JN. (x,y) around
the classical solution Xo(x,y) represent mesons
[2—5,8,9—13], so that the part of the action pertinent in
this paper is the part containing A(, (x,y), denoted by W,(r..

@(x,y)—=f d z Gz(x, z)AI(z, y),
Tr@"—= tr f d x,d xz. . . d x„@(x,, x2)

X@(xz,x3) . . C&(x„,x, ),
(A/, , K 'At)= f d x d yAt, & (x,y)

XK &. & (X,y)Atp (y, x) .

(2)

(3)

(4)

X r(.b)(q' P)G, P
q +

2
(5)

where I (,b)(q~P) is the vertex function in momentum
space of the quark-antiquark pair a, b and 2q:—p, —pb,
P=p, +pb. Note that this is the BSE equation in the
somewhat improved ladder approximation, since the
quark propagators it contains are not the bare ones, but
6&, containing the nontrivial self-energy function X.

To be able to solve the SDE and BSE, one must restrict
oneself to a tractable interaction kernel. Choosing an in-
stantaneous interaction leads to a potential model. For
the covariant generalization of the potential approach to
the bound states, Pervushin and co-workers [4,5, 13,14]
found that the kernel should be of a special form [15],
K —+K".

[K"(x —y)] ii. I) =[K"(z,X)]

=g. i3 V(z) )&(zp)g. p, ,

where z =x —y, X=(x+y)/2, and g"=P"/"(/P . For
any vector x"=x~~~ +x~, the parallel and perpendicular
components are

x~(~ =exp, xp =x 7)=x P/V P

x"=x"—x" x .P=0

From 8',z one derives the Bethe-Salpeter equation
(BSE) for the bilocal field At(x, y). This BSE Fourier
transformed to momentum space is

&(.b)(qlP) =if,K(q —q')Gx q'+-d4q', , I'
(2~)& (a)
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V(r) is a scalar function of r =z) . Below we shall use

V(r) =(—', ) V()r, V() =const . (8)

For the interaction kernel of the form (6), the dressed
I

propagator in momentum space, G&(q), is conveniently
parametrized through the functions E (k) ) and q)(k2) (de-
pending only on the transversal momentum k) ) as fol-
lows:

Gx (q)= 1

g —X(,)(qt) ) i—e
= —S()(q ) . + S(,)(q) ),

E(,)(q) ) —qz
—ie E(,)(q) )+qt —ie (9)

S(,) (k~)=exp g) p(k) )
—— (10)

where A+=——'(I+I'/VP ). The function E(,)(k) ) plays

the role of the energy of the quark a and the vector com-
ponents along P the role of the time components. Insert-
ing (9) in the SDE yields coupled integral equations for
E (k) ) and q)(k) ). In the rest frame, for the harmonic po-
tential (8) these integral equations reduce to the

differential equations

XGK
(b)

P—q+—
2

=S(,)(q). )g(,b)(q) )S(b)(qx) .

dip P
'P('.b)(q& ) = ~ G& q +—I (.b)(q& lP)

(13)

E(k) =m sinq)(k)+k cosq)(k) —
—,'q)'(k) —

2
cos q)(k),

1

Pervushin and collaborators [2—5,13] have shown that
with kernels of the form (6), this BSE is also manifestly
Lorentz covariant.

To solve the BSE, we should decompose g(,b) over the
Dirac y matrices [4,5,9,13]. Since in this work we are in-
terested only in the pseudoscalar mesons ~,~', K,K', we
simply have

(k y')'=2k3 sinq)(k) —2k m cosq)(k) —sin2q)(k) . (12)
0( b)(q). ) Y5 L 1(q). )+ L2(ql )QP2

(14)

Having solved the SDE for E and y, one can turn to
solving the BSE, conveniently written in terms of the
quarkonium wave function 0'(,b)(q) ):

It is simplest to solve the BSE in the rest frame,
q) =(O, q), P =(M, O), where M is the mass of the bound
system, the pion or the kaon in this case. With the har-
monic interaction, the integral BSE reduces to the
differential eigenvalue equations

d 2 d—ML2(k) = ET(k) — —— +-
dk

2

2
2

Sin
k

L)(k), (15)

d 2 d 1 d %+. 2ML)(k) = Er—(k) — —— +- + sin
k dk

L2(k), (16)

where ET =E(a) +E(b) ~ %a =%(a) ~/2, and %+ =%(a)
—f(b)

Our solutions for q)(k), ET(k), L&(k), and L2(k) (ob-
tained by the Adams-Bashfort method) agree with the
ones in Ref. [8] and in an earlier paper [4], where their
connection with the Croldstone mode (M=O solution) in
the chiral limit and implications for spontaneous chiral-
symmetry breaking in potential models [6,7] were dis-
cussed. In this work we shall use these solutions to calcu-
late some weak and electromagnetic decays to test wheth-
er the harmonic interaction indeed yields results as good
as are claimed [8].

III. DECAY CONSTANTS OF m, It AND THEIR RADIAL
EXCITATIONS m' AND EC'

GF
p

l 75L (x) = —l„y"
2

(17)

In the preceding sections we have talked only about
describing the hadronic structure, which is here deter-
mined by the effective quark-quark interaction kernel
I(. (x,y). In this context, weak and radiative decays can
be described by an external local operator L (x). For ex-
ample, the leptonic weak decay is described by coupling
the V —A quark current to the leptonic current:
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(18)

This matrix element is expressed through the axial-
vector-current matrix element ( 0

~
A „(0)

~
II ), which is in

turn parametrized by the pseudoscalar leptonic decay
constants Fn(II=vr, I(:,m', J '). The computation of (18)
therefore yields [8]

4N, d qi (p( )(q) )+y(b)(qi)
Frr = L2(q) )sin

(2m )'

(19)

The isosymmetric version of this formula [m(, ) =m(b),
i.e., (a) =(b), appropriate for the pion] had already been
obtained in Ref. [4], but Amirkhanov et al. [8] were the
first to present concrete results not only for L and K', but
also for the simpler case of m and m'. Their results are
surprisingly close to experiment, considering that in (19)
they used the solutions 1.2, y, and the eigenvalue M re-
sulting from the usage of the harmonic color-singlet in-
teraction kernel (8), which one would not expect to be
realistic, but just an illustrative and oversimplified, "toy*'
quark-antiquark interaction.

The parameters of the model are the "strength of the
interaction" —, Vo, which sets the overall energy scale
( —', Vo)'~, and the current quark masses m(, )=m (,) ( —', Vo )', where the tilde denotes the dimension-
less quantities out of which we have factored the overall
dimensionful scale ( —', Vo)' . The dimensionless current
masses govern the dirnensionless ratios of dimensionful
quantities.

Reference [8] fixes the parameters in such a way that
the pion and kaon masses take their experimental values
M„=140 MeV and Mz =497 MeV.

m d=m g( —'V())' =0.007( —'V())'ud ud 3 0 ' 3 0

m, =m, ( —', Vo)' =0.21(—', Vo)' =30m„d,

( —V ) =289 MeV',

(20)

FIG. 1. Decay of the meson bilocal JR into a lepton l+ end
its neutrino vI. Dressed quark propagators on the internal lines
are given by (9).

Retracing the steps in the derivation of the bilocal ac-
tion (1) it is easy to see that the presence of such an exter-
nal operator can be consistently introduced by the substi-
tution JK(x,y)~At(x, y)+L (x)5 (x —y) in IV,(r.

The leptonic decay of m* or K* is then caused by the
term (iN, /2)Tr[G x(iaaf, +L)] in the eff'ective action (1)
with L (x) given by (17). More precisely (see Fig. 1),

(I—v, ~ W,~~m. ) =(I*v,~iN, Tr(Gx Jk1,(b, )Gx L)~m). .

where m„d =(m„+md )/2 stands for both u- and d-quark
masses, which are taken to be the same, i.e., isospin sym-
metric. With this potential strength, also used in earlier
potential-model calculations [6,7], the current masses are
m„d =2 MeV, m, =60, MeV, i.e., roughly three times
smaller than most widely accepted values. However,
m, /m„d =30 is close to the widely accepted ratio of 25
[16]. We agree with their solutions (p(qi), E(qi ) for the
quarks and solutions L ()q )), L2(qi), and eigenvalues
M, Mz'. We also reproduce their solutions L,

& 2,L, z
and masses M„.,Mz' for the radial excitations of the pion
and the kaon. We get M„.=1604.6 MeV and Mz. =1653
MeV, which, in our opinion, can be identified as the ex-
perimentally found state m(1300)J =0 + [with a possi-
ble admixture of m(1770)J =0 +] and K(1460)J =0
[with a possible admixture of K(1830)J =0 ], respec-
tively. ~(1770), I(.(1460), and X(1830) still await
confirmation [17].

On the other hand, we strongly disagree with the decay
constants of Amirkhanov et aI. They practically repro-
duce the experimental pion decay constant of 93
MeV, claiming F =90.4 MeV. Experimentally,
(Fx ),„~,= 1.22(F ),„~,= 113 MeV, and they get Fx = 133
MeV, which is still very satisfactory. For m' and K', they
get F ~ =3.4 MeV and Fz'. =52 MeV, in good agreement
with the duality estimates [18,19]F =3—4~ MeV, Fx.=51
MeV.

In contrast with that, for the parameters (20), we find
F =33.8 MeV and F& =47.5 MeV, which is, respective-
ly, three and two and one half times smaller than the ex-
perimental values. Also, F ~ =0.83 MeV and Fz.=12.4
MeV, so that in fact there is no agreement with the duali-
ty estimates [18,19].

We are sure that Amirkhanov et al. (and not us) com-
puted the decay constants erroneously since we
have discovered internal inconsistencies in their results.
For instance, they plotted the quantity
R i (p) =L, (p)F„/sinq)(„)(p) and at p =0 it took the value
R, (0)=1. Since we agree with Amirkhanov et al. that
L) (0)=0.87/( ~3 Vo)' and q&„(0)=m/2, their result

R, (0)= 1 yields F =33.5 MeV, consistent with our result
and not their result.

Is it nevertheless possible to reproduce the experimen-
tal decay constants for some other set of parameters? F„
and Fx are too small for the quark masses (20) or, if we
increase the scale ( —', Vo)'~ to fix this, the meson masses
become too large. However, in this model, M —+0 as
m ~0 [4]. Still more precisely, the correct behavior of a
(pseudo) Goldstone boson such as our vr is that its mass
should behave like Qm„d if F (and (O~qq~O) ) stay finite
as m„d ~0. (See, e.g. , Ref. [16].) It is a pleasing feature
of the present model that it behaves exactly like that as
shown in Table I: M -Qm„d, and F varies extremely
slowly with m„d. Therefore, there is some m„d &0.007
for which the ratio M„/F =(M /F„),„,=1.50 and
then the same scale Vo will reproduce M" ' and F" '.
This indeed happens slightly below m =0.001 and
( —, Vo )'~ =750 MeV. However, although here the
current quark mass has the role of a fitting parameter,
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TABLE I. Pion mass M, pion decay constants F, and the
~ —+yy decay width I (m ~yy) for various values of current
quark masses m„z,' all quantities are in units of MeV and for the
scale ( —, Vp)' =289 MeV. Results for other values of ( 3

Vp)'

can be obtained by trivial rescaling.

mud

0.289
2.023
2.89
6.647

18.9

53.6
140.4
167.1
249.3
479.3

32.9
33.8
34.2
36.1

47.0

r(~' r r
0.088 X 10

1.6 X 10
2.7 X 10
9.0X 10

79.0 X 10-'

this is such a small value (m„z =m„z( —', Vo)' =0.75 MeV
is ten times smaller than the standard value from [16])
that one would have to invoke additional, rather exotic
possibilities that the standard current mass assignments
might be far too large. Actually, this is not impossible:
for instance, Kaplan and Manohar [20] pointed out that
even a massless u quark could not be excluded. In the
next section, however, we shall show that such small
current quark masses lead to the so catastrophic m ~yy
decay width that even this exotic assumption cannot sal-
vage the claim of Ref. [8] that the covariant generaliza-
tion of the potential approach in the harmonic approxi-
mation can yield a roughly good description of pseudos-
calars.

A, o =() (k o )7 (k o )lW, [JN+L]l,~'(P)) . (21)

More precisely, this decay is caused by the term
i (N, /3)Tr[Gz(A. +QA )] because it contains subterms
with one meson bilocal AL and two photon fields 2", so
that

IV. DECAY WIDTH FOR m ~yy
m. ~yy is the simplest radiative decay that we can

calculate in this model [when L (x)=QA (x),
Q =diag( Q„,Q&, Q, ) =e diag( —', , ——,', —

—,
'

) ], so we do it as
a further test of the harmonic approximation. It is al-
ready so well described by the Adler-Bell-Jackiw anomaly
and PCAC (partial conservation of axial-vector current)
that even computations with better kernels probably can-
not compete with it. However, anomaly and other com-
putation always contain the step when one actually
parametrizes the unknown hadronic structure with the
pion decay constant F . In this respect, the present cal-
culation is more microscopic, not parametrizing but try-
ing to describe the pion structure. We actually hope that
we shall ultimately be able to tackle the two-photon de-
cay of kaons (IC&) in this way, in order to elucidate the
role of long-distance nonperturbative QCD effects in this
case where PCAC does not work so well, and the calcula-
tion of m —+yy is a necessary prerequisite for this.

We carry out the explicit computation of the transition
matrix element (where P, k, k' are the pion and photon
momenta, and cr, cr' photon polarizations):

4a„.„=&@(k,~)y(k', ~')liN, tr f + d x;AL(x&, xz)Gz(x2 —x3)QA(x3)Gz(x3 xp)QA(x4)G (x x&)lvr (p)) .
i=1

(22)

By transforming to momentum space, one sees that A p corresponds to the triangle graph in Fig. 2 and its crossed
'IT rr

mate (k~k', cryo '). Note, however, that it is not the usual perturbative y5 triangle graph. Indeed, in many respects it
is very different. Not only do the propagator lines emanate out of a bilocal bound-state vertex, but these propagators
are not free fermion propagators but dressed ones, given by (9) after solving the Schwinger-Dyson equations (11) and
(12) for the energy E and the function p. In other words, it is not bare quarks that appear on the internal lines, but
quasiparticles which resulted from quarks being bound in our (albeit modeled) hadron.

Since we work in the isosymmetric limit, we take u and d propagators and vertex solutions I to be equal. Then

(2m) 6' i(P+k+k')
A. p

Q(2' ) 2 Pok ok 0

=2iN, e — e (k, o. )e„(k',cr')I"',
Q2 Q2

"yr '
2

where

d4qr& = f q tr[I (q, l—P)Gz(q P)y"G, (q+k')y—'G&(q)] .
(2n. )

Inserting I and 6&, rearranging, integrating over the parallel component qz, and performing the spinor trace,

PJpv 4 aPpv

(23)

(24)

(25)

(26)

d qj L2(qi)[E(qj )+E((q+k')j)] L, (q~)(M„ 2/)—
(2~) [E(qi)+E((q +k')i)] —M /4

(27)
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3
gl

ImIf3= ——J cP&(qt, k j,p) 5 E(q~ )+E((q +k')t)+(2'�)
M„

[L t(qi)+L2(qt)]

M—5 E (q~ )+E((q +k')~) — [L,(q~ ) L—2(qt ) ] (28)

[(q+k')j]p (q~)p
(q 'k 'y)

l
+ ' ' cosy q sing q+k '

I

cosy((q +k')~)sing(q~) .
I

The vector integral I& is a function of the four-vector
(k~)& and the pion mass M, and is a functional of the
Schwinger-Dyson solution (11), (12) and the Bethe-
Salpeter solutions (15), (16). (L&, L2, y, and M depend
in turn on the quark masses. ) Except for the integration
variable qj, (kt)& is the only four-vector in the integral
l&. Thus I& must be proportional to (k~ )&.

IP=(kt )PC[E,L„L2,P, M ], (30)

where C is a dimensionless Lorentz-scalar functional of
L„L2 and a function of M [and of (k~)&, i.e., of M
again]. C must be extracted numerically from (30). After
noting that

e ~"'P (k' ) = e~" k—k'
a i P a P (31)

what remains is totally standard for any calculation of
the 2y decay via the yz triangle. One sums ~A 0 ~

over
m' rr

the polarizations o., o' and integrates over the phase
space of the two outgoing photons to finally get the decay
width

1(~'~yy) =a'M. 8~1~1' . (32)

The value of I as a function of the average current
m„d quark mass is given in Table I [for ( —', Vo)'~ =289
MeV]. Generally, the consistency with experiment,
l,„p,=(7.7+0.5) eV, is of the same quality as for meson
masses and decay constants. For instance, for
( —, Vo)' =750 MeV, the third line in Table I
( m„d =0.010) would yield the almost experimental
F =89 MeV and reasonable 1(m. ~yy)=7 eV for a
very acceptable [16] average u, d quark mass m„d=7.5

MeV, but then M„ is three times too large. On the other
hand, I (m. —+yy) eliminates the exotic possibility that
nonstandardly small quark masses (rn„d -—0.001), which

fit M'" ',F'" ', save the harmonic approximation since
then I (m. ~yy)=0. 23 eV=I"" '/30.

At first sight, the dependence of I (~ ~yy ) on quark
masses seems peculiar: although the only dimensionalful
quantity I"(m ~yy) is proportional to M, I (n ~yy )

varies much more rapidly ( —m„d~ ) than M itself
( —m„'d~ ). However, this is only a concrete manifestation
of consistency with PCAC; namely, the standard calcula-
tions use current algebra to express the unknown hadron-
ic structure via the experimentally measured F, yielding

2 (MexPt )3
I (nyy )

.= =7.6 eV .
64 2 (Fexpt )2

However, our 1 (n. ~yy)=a 8aM ~C ~, when divid-
ed by our model (M /F ), is roughly constant over a
wide range of quark masses (see Table I) showing that the
behavior of C is consistent with current algebra.

V. CONCLUSION

We have shown that the covariant generalization of the
instantaneous potential model proposed in the framework
of the effective bilocal Lagrangian [4] in the harmonic ap-
proximation does not yield such good results for the
pseudoscalar-meson spectra and decay constants
F,Fz,F .,Fz, as claimed in this model in the first con-
crete computation of measurable quantities [8]. We have
found an improvement of only 50% over F obtained in a
noncovariant case with quark masses equal to zero [6,7].
We have also computed the decay width for m ~yy and
found results of a similar quality. This is what we would
expect. It would actually be very surprising if such a
naive imitation of the QCD interaction as the simple har-
monic potential should yield good results. One must use
more sophisticated interactions. Of course, then one
must solve integral equations, but this will not prevent a
systematic improvement of interaction kernels. Along
with covariance and some technical merits, this possibili-
ty of systematic improvement makes the perspective of
this approach quite good. Before examining nonsinglet
spin and color structures, one should first add the simple
funnel (Coulomb-plus-linear) potential

k'

4 ~s
V(r) = —— +ar

3 7

(34)

YQ

FIG. 2. Decay of the pseudoscalar bilocal (representing ~ )

into two photons. Internal lines are dressed quark propagators.

since (i) the short-distance interactions are dominated by
the Coulomb interaction [where the momentum depen-
dence a, =a, (Q) can also be taken into account] and (ii)
in the long-distance (or k ~0 ) regime, a, ( k ) times the



1590 R. HORVAT, D. KEKEZ, D. KLABUCAR, AND D. PALLE

gluon propagator seems to behave as 1/k [21,22], from
where a term linear in coordinates can arise [23] by
Fourier transformation. Then we can hope to obtain
simultaneously the approximately correct masses, pseu-
doscalar decay constants, and I (m. ~yy), which would
in turn indicate that our solutions of bound-state equa-
tions are of sufficient quality to be used for calculating
the long-distance effects in other electroweak decays of
light hadrons.
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