
PHYSICAL REVIEW D VOLUME 44, NUMBER 5 1 SEPTEMBER 1991

Determination of QCD condensates from low-energy hadronic data
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The possibility of extracting the quark and gluon condensates from low-energy hadronic data is inves-
tigated. We propose a new method, which generalizes the usual finite-energy sum rules, taking into ac-
count explicitly the truncation error of the high-energy QCD expansion of the correlation functions.
The method is applied to the e+e annihilation into isospin I = 1 hadrons. Our conclusion is that a pre-
cise determination of the four quark and gluon condensates is not possible unless a better theoretical
knowledge of the high-energy QCD expansion and its truncation error is achieved.

I. INTRODUCTION

The quark and gluon condensates are fundamental
quantities for the description of the long-distance regime
of QCD. They reAect the nonperturbative nature of the
QCD vacuum and are believed to be responsible for
quark confinement.

A pure theoretical calculation of the condensates start-
ing from the QCD Lagrangian is very difficult and only
qualitative estimates were obtained up to now. Also, in
spite of the large number of semiphenomenological analy-
ses based on QCD sum rules, the values of the conden-
sates obtained from experimental data are still ambiguous
[1—10]. Actually, the large dispersion of the existing
determinations is related to the instabilities inherent in
the extrapolation of an analytic function affected by er-
rors [11]. Indeed, the QCD sum rules correlate, via
analyticity, the high-energy expansion of a Green's func-
tion to its low-energy values measurable in hadronic pro-
cesses. In the absence of errors this correlation would be
very strong, but it becomes much looser when errors are
present. In practice, the truncated QCD expansion and
the low-energy values of the physical amplitudes are
affected by uncertainties. Therefore, various types of
QCD sum rules, i.e., various types of analytic extrapola-
tion, which are equivalent in the absence of errors, be-
come in practice strongly inequivalent and give different
results for the same input data. Of course, in these condi-
tions one may ask whether a precise determination of the
condensates from low-energy hadronic data is possible.
In order to answer this question the uncertainties
afFecting the input of the QCD sum rules must be taken
into account explicitly. This problem can be treated with
techniques of analytic extrapolation and functional
analysis [12—14]. In the approach proposed in Ref. [13]
the imaginary part of the polarization amplitude along
the whole timelike axis and its QCD expansion along a
part of the spacelike axis are assumed to be known with a
priori specified error channels, and the consistency of
these input conditions is investigated with functional
analysis methods. In a physical application [14] it is
shown that the allowed range of the QCD condensates
obtained in this way is very sensitive to the error chan-
nels.

II. THE METHOD

We consider a correlation function II(s) defined
through

II„(q)=(q„q —g„q )II(s)

=t fd"x e'~ (O~TJ &(x)I.„(0)~0), (2 1)

where s =q and j„ is a hadronic current with specified
quantum numbers. The function II is real analytic in the
complex s plane, with a physical cut from a positive

In the present paper we approach the study of QCD
sum rules from a similar viewpoint. We started from the
idea that it is of interest to separate the two sources of
uncertainty mentioned above, i.e., the experimental er-
rors affecting the low-energy values of the amplitude and
the theoretical error of the truncated QCD expansion.
Actually, the large next-to-next-to-leading perturbative
contributions calculated recently in the modified minimal
subtraction (MS) scheme [15], the renormalization
scheme dependence of the coefficients [16] and the effect
of the higher terms in the operator-product expansion
(QPE) (Ref. [17]) show that the truncation error of the
QCD parametrization might be considerable. Therefore,
in the present work we concentrate upon the effect of this
theoretical uncertainty on the determination of the quark
and gluon condensates. We propose a new method,
which generalizes in a natural way the usual QCD finite-
energy sum rules (FESR). Namely, we take as input the
imaginary part of the polarization amplitude, supposed to
be known exactly along a finite interval of the timelike
axis, and also the QCD expansion, given together a
specified error channel along a contour situated at high
energies. The consistency of these input conditions,
which can be investigated with methods of functional
analysis, imposes restrictions on the values of QCD pa-
rameters, in particular the quark and gluon condensates.

The paper is organized as follows. In the next section
we present the method and in Sec. III we apply it to the
correlation function of the p meson, whose absorbtive
part is known at low energies from the e+e annihilation
into I=1 hadrons. The conclusions of our analysis are
presented in Sec. IV.
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threshold so to infinity. The spectral function
ImII(s +i E) is related, by unitarity, to observable quanti-
ties. Denoting by s,„ the highest energy up to which ex-
perimental data are available we assume that

ImII(s + iE) =o (s), so & s & s (2.2)

IIO (s) =II~"'(s)+ g
C2.

j)2 SJ
(2.3)

where o.(s) is a known real function.
On the other hand, perturbative QCD and OPE [Refs.

[1]and [18])predict an expansion of the form S2 SO lTlQ X

~11(s)—11o'D(s)~ &Eo' (s), sEI, (2.4)

where e~ is a prescribed theoretical error. We choose
a reasonable contour I, consisting from two arcs (Fig. 1):
I

&
is a contour in the complex plane, starting at s =s „

and going to infinity, and I 2 is the infinite interval
s s2 &0 of the spacelike axis. For simplicity, we take in
what follows I, to be the interval, s )s „ofthe timelike
axis. A more general contour lying in the complex plane
can be treated similarly, by using a suitable conformal
mapping.

In general, the constraints (2.2)—(2.4) do not define
uniquely the unknown amplitude II(s). There is, in prin-
ciple, a whole class of "admissible" functions which satis-
fy these constraints. If the input quantities cr, II, and
c~ are consistent, the admissible class contains at least
one analytic function, otherwise this class will be empty.
Thus, in order to check the consistency of the QCD ex-
pansion with the low-energy hadronic data and find, in
particular, the allowed range of the QCD condensates we
must investigate the content of the admissible class.

First, we perform the conformal mapping

Qs,„—Qs,„—s
N =

Qs .„+Qs,„—s
(2.5)

which applies the cut s plane onto the unit disk ~w~ & 1,

which is assumed to represent a realistic parametrization
of the true function II at large ~s~. In Eq. (2.3), II""'
denotes the pure perturbative terms and the coefficients
C2 are proportional to the quark and gluon condensates
which refiect the nonperturbative character of the QCD
vacuum. The explicit form of the expansion (2.3) in the
case of the p correlation function will be specified in the
next section.

In the usual derivation of the QCD sum rules one as-
sumes that the function II (or some of its derivatives)
coincide with the parametrization IIo (or the corre-
sponding derivatives) along a certain contour I in the
complex plane, starting at s =s „.However, at finite s
the expression (2.3) represents only an approximation of
II, obtained by truncating the perturbative series and
OPE. Moreover, in general II~ does not satisfy the
analyticity properties of II in the s plane (for instance, it
has poles at s=0, which are absent from the true function
II). Therefore, instead of assuming that II coincides with
II along I we shall impose the more realistic condi-
tion

FIG. 1. The contours I
&

and I 2 in the complex s plane.

cut along the segment (wo, l), where wo=w(so). The
arcs I

&
and I 2 become, respectively, the boundary of the

unit disk,
~
w

~

= 1, and the segment ( —1, w2 ) (Fig. 2),
while the conditions (2.2) and (2.4) can be written as

ImII(w+iE)=o(w), we(wo, 1),
~p(w)[II(w) —II (w)]~ 1, w EI,UI

where p( w) = 1/EOc ( w ).
Let us consider the extremal problem

E = min //p(II —II )// L~

(2.6)

(2.7)

(2.8)

FIG. 2. The complex w plane, obtained by the conformal
mapping (2.5).

where the minimization is performed with respect to all
the functions II analytic in the unit disk ~w~ & 1, except
for a cut along (wo, 1), where the discontinuity is given by
(2.6), and

~~ ~~
„denotes the LP norm, i.e., the essential

supremum along I (on I 2, which is inside the analyticity
domain, this reduces to the usual supremum).

Since II does not coincide with H along I, the real
number Eo defined in (2.8) will be in general strictly posi-
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tive. Its actual value depends on the input functions
cr, II, and s . From (2.7) it follows that the con-
sistency of these quantities requires that

co (2.9)

A. Lower bound for co

If this inequality is satisfied, there exists at least one ana-
lytic function belonging to the admissible class defined
above. On the contrary, if co is strictly greater than 1 the
admissible class is empty and, in particular, the corre-
sponding values of the QCD condensates are not accept-
able. Thus, by means of the inequality (2.9) we can de-
scribe the allowed range in the space of the QCD parame-
ters.

The extremal problem (2.8) with the constraint (2.6)
can be treated by applying standard techniques of the op-
timization theory for analytic functions [19—21]. A simi-
lar problem was investigated in Ref. [22]. In what fol-
lows we shall first derive a lower bound for the quantity
Eo, by solving an extremal problem in L norm. Then,
we shall present an approximate method, based on L
norm, which gives both upper and lower bounds for co.

remaining part. The segment (so,s,„) of the physical
cut becomes the slit (xo, 1), where xo =z (so ) (Fig. 3). For
convenience, the origin s=0 of the s plane was applied
onto the origin z=O of the z plane.

Let us consider now the modified extremal problem

E' = min ess sup ~p(z)[II(z) —II~ (z)] ~

~zj=i
(2.11)

the minimization being performed with respect to the
functions II, real analytic in the disk ~z~ & 1, except for a
cut along the segment (xo, 1) where, according to (2.6),

lmlI(x+iE)=o(x), xe(x, l) . (2.12)

It is clear that this class of functions is larger than the
class appearing in the initial minimization (2.8), since it
contains, in addition to the functions analytic along the
segment ( —1,wz ) of the w plane, functions having a
discontinuity across this segment, introduced artificially
by means of the conformal mapping. Therefore, the solu-
tion Eo of the new problem (2.11) will satisfy the inequali-
ty

(2.13)

A lower bound for co is obtained if we perform the
minimization (2.8) upon a larger class of functions. Let
us apply the disk ~w~ & 1 with a slit along the real seg-
ment ( —1,wz) onto the unit disk ~z~ & 1. This can be
achieved by two successive mappings;

Q— 4w

(1—w)
(2.10)

Q Qp Q2z=
Qu —u, +Q —u,

where u2=u(wz). In the variable z the contour I be-
comes the unit circle ~z~ =1. The slit (

—l, w2) of the w

plane, i.e., the interval s (sz of the spacelike axis, is ap-
plied onto a part of the unit circle z =exp(i6) ), while the
interval s &s „of the timelike axis is applied on the

11(z)=y(z)f (z)+ —J
1 &+q o(x)dx

77 xo x z
(2.14)

where y(z) is a real analytic outer function (without zeros
in ~z~ & 1), having the same asymptotic behavior in the s
variable as II, g is an arbitrary positive number, and o (x)
for x ) 1 is an arbitrary continuous extension of the input
function o (x) given for x & 1. By construction, the func-
tion f (z) defined in (2.14) is real analytic and bounded in
~z~ & 1, with no cut along (xo, l) and Eq. (2.14) establishes
a one-to-one correspondence between the functions II
and the Hardy class H (Ref. [20]). By introducing
(2.14) in (2.11) we write the extremal problem in the form

The number co, which represents a lower bound for co,
can be calculated by an explicit algorithm.

We first take into account the constraint (2.12), by
separating II into two terms, one of them being analytic
inside the unit disk ~z~ & 1 and the other having in ~z~ & 1

a prescribed nonanalytic part. Of course, this separation
is not unique, but as we shall see below, the final result
will not depend on this arbitrariness. Also, we take into
account the asymptotic behavior of the function II,
which actually coincides with that of the model function
II~ (in the case treated below, II grows logarithmically
at ~s~ ~~ ). We write then

where

min f/pep(f
—h)/[

fEH"
(2.15)

IIO (z) 1 I & cr(x)dx
h (z)=

y(z) mq&(z) xo x —z
(2.16)

FICx. 3. The complex z plane, obtained by the conformal
mapping (2.10).

The problem (2.15) can be solved by applying a well-
known duality theorem, which relates a minimization
problem in a Banach space to a maximization problem in
the dual space [19,20]. According to this theorem we
have
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F(z) =C(z)g(z)F(z),

where

(2.19)

C(z) =exp f .
&

Inp(8)d8
277 —7T e

(2.20)

is an outer function having the modulus equal to p(8) on
the boundary (we assume that Inp is a function of class
L ') and

F(z) = g F„z"
n=0

(2.21)

belongs to the unit sphere of the Hardy class H', i.e., it
satisfies the condition

sup f F(z)h (z)dz
1

F«~ 2~ I
i=i

P

where H is the class of functions which are analytic in
the unit disk and satisfy the condition

d8(, (2.18)
p(8) I q (8) I

on the boundary z =exp(i8).
The maximization problem (2.17) can be solved by an

explicit algorithm. First, we write F(z) as

F„= g gk6„k, n =0, 1, . . . ,
k=0

so that (2.23) becomes

(2.28)

e0 max g Hnkgn —1Gk —1 (2.29)

where the maximization is performed with the con-
straints (2.27) and II is an infinite Hankel matrix [20]
defined as

Hng —h (n+g —]) n, k = 1,2, . . . (2.30)

h „=—f [o (x)—ImII (x) ]C(x)x " 'dx
7T 0

In (2.29) one may recognize the norm of the matrix 0 in
the Hilbert space I of numerical sequences [20]. The ini-
tial functional extremal problem was thus reduced to a
numerical problem. The norm of an infinite matrix is
evaluated in practice by truncating it at a finite range.
Numerical programs which perform this calculation are
available [23] and in our case a good accuracy was ob-
tained with 100—150 coefficients.

The input data of the problem, particularly the QCD
condensates, enters in the expression of the coefficients
h „defined in (2.24). Using Eq. (2.16) and the general
expression (2.3) of IIO and applying the residues
theorem we can write (2.24) in the convenient form

277 Izl =
&

(2.22) + y c,jg"', (2.31)

By introducing Eqs. (2.19) and (2.21) in (2.17) and by ap-
plying the residues theorem we obtain

ep= max g F„h („+))
IF„I „=p

(2.23)

where the maximization is performed with respect to the
numbers IF„}subject to the condition (2.22) and h „are
Fourier coefficients:

h „= f C(8)h (8)exp(in 8)d 8
2&

1
. f C(z)h (z)z" 'dz, n & 1 .

2mi Izl = i
(2.24)

The maximization (2.23) can be performed by applying a
factorization theorem [20], according to which we can
write

J 2

where ImH is the absorbtive part of the theoretical
expansion of II and g"' are real numbers defined as

C zz"-'
(2.32)dz .

We notice that the outer function y, the number g and
the arbitrary extension of o(s) above x= 1 do not appear
in the above equations, so that the result contains only
known quantities.

In order to calculate explicitly the numbers g"' we re-
call that the origin s=0 of the energy plane was applied
by the conformal mappings (2.S) and (2.10) into the origin
z=0 of the z plane. It follows that gj("'=0 for n )j, since
in this case the integrand of (2.32) is analytic in IzI (1.
The residues theorem gives

F(z)= g F„z"=g(z)G(z),
n=p

(2.2S)
d~

, [C(z)a (s)z" '],(j —1)t dsj
n j,

where the functions g and G belong to the unit sphere of
the Hilbert space H; i.e., they admit the developments where

(2.33)

g(z)= g g„z", G(z)= g G„z"
n=p n=p

(2.26) a(s)==dz
GS

(2.34)

with the conditions

g g„~l, g G„~I .
n=p n=p

From (2.2S) and (2.26) we obtain

(2.27)

is the derivative of the conformal mapping. In the physi-
cal application of the method presented below, we keep
only terms with j ~ 3 in the expansion of II . By a
straightforward calculation we obtain the expressions

g'"=C,'(0)a (0)+C(0)a,'(0),
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g'2' '=C(0)a (0), ImII(8) =0, OB I"2, (2.37)

(~3"=0.5[C,"(0)a (0)+3C,'(0)a (0)a,'(0)+ C(0)a,"(0)],
(2.35)

g' '=g"'a (0)+0.5C(0)a (0)a,'(0),
g' '=C(0)a (0),
all the other coefficients g"' being zero.

In the above expressions appear the derivatives of the
outer function C(z) at z=O, which can be calculated
from Eq. (2.20):

m.

C(0)=exp —f lnp(8)d8
77 0

I 2 being now the part of the unit circle lzl= 1 corre-
sponding to the region s &s2 of the s plane (Fig. 3). In
this way, the functions H allowed in the minimization are
real along the spacelike axis, having no discontinuity
along the artificial cut introduced by the conformal map-
ping.

The extremal problem (2.11) with the constraint (2.37)
is not easy to solve. However, its solution can be ap-
proached by solving a sequence of problems in L norm.
The same procedure was applied for similar problems in
Refs. [24] and [25]. Using the method discussed in these
papers, one can prove the equality

C,
' = f cos8 lnp(8)d 8,2C(0)

(2.36)

sup min llpg (II—II ) llgea'
llgllL~- ~

(2.38)

C,"(0)= —C,'(0)f cos81np d8
7T 0

+C(0) ——f lnpd8+ —f cos 8d8
'TT 0 'TT 0

and the derivatives of the function a (s) defined in (2.34).
Using the expressions of the conformal mappings (2.5)
and (2.10), we obtain, after a straightforward calculation,

a (s) =z,'=z' w,',
a'(s) =z "(w,') +z' w,",
a "(s)=z„'"(w,') +3z "w,'w,"+z' w,"',

the expressions of the derivatives at the origin being

z' = —uz ', z"=—4u2 '(1+u2 '),
z„"'=—30u2 —48u2 —18uz ',
m,

' =0.25s,'„m,"=0.25s

m,
"'= 15s „/32

[u2 was defined below Eq. (2.10)].
The above equations provide an explicit algorithm for

finding the solution of the extremal problem (2.11) which,
according to (2.13), yields a lower bound for the solution
of the initial extremal problem (2.8).

B. Approximate solution based on L norm

In this subsection we shall describe an approximate
procedure which allows us to obtain both upper and
lower bounds for the quantity c0. To this end we shall
use the fact that the function II is real analytic [i.e.,
II(s*)=II"(s)] and the contour I 2 is a part of the real
axis of the s plane. We recall that in the modified prob-
lem (2.11) we perform the minimization upon a larger
class of functions, including in principle functions which
have a discontinuity along the artificial cut introduced
along the contour I z (i.e., for s & s2). In order to restrict
the minimization upon the initial class of functions, with
no cut along the spacelike axis, we must solve the ex-
tremal problem (2.11) with the additional constraint

where the minimization must be done upon functions II
real analytic in

l
z

l
& 1 except for a cut along (xo, 1), and

which satisfy the constraints

Imll(x+iE)=o(x), x E(xo, 1),
ImII(8)=0, 8E I z

(2.39)

E,(g) = min llpg (II —II )ll
I HI

(2.40)

It is clear that for every fixed g with the required proper-
ties, E2(g) represents a lower bound for eo. In order to ap-
proach c0 we must perform a final maximization upon g.
We shall treat this problem approximately, using to this
end a particular but very suitable class of functions g. As
shown in the previous works [24,25], such a choice
proves to be

&I—a'
g(z)=

(1—az)
(2.41)

where al &1 is an arbitrary parameter, such that lg(8)l
is the Jacobian of a conformal mapping of the unit disk

l
z

l
& 1 onto itself. Taking g of the form (2.41), the max-

imization in (2.38) amounts to varying the parameter a
and taking the largest value of E2(g) thus obtained, which
is expected to approach c0 quite closely from below. On
the other hand, as we shall see, the optimal function II0
(depending on g), which achieves the minimum in (2.40)
can be explicitly computed. We can use this function to
evaluate the L norm

(2.42)

From the very definition of c0 it follows that this number
represents an upper bound for it. In this way, we obtain
both upper and lower bounds for c0, allowing us to ap-
proach closely this quantity.

In the remaining part of this subsection we shall treat
the extremal problem (2.40) with the constraints (2.39) for

and the final supremum is taken upon arbitrary outer
functions g in the unit sphere of the Hilbert space H . In
practice, we shall first perform the minimization in L
norm with the conditions (2.39) for a fixed g, which yields
the quantity
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f (z)=II(z) ——f (2.43)

which is analytic in Izl & 1 and satisfies the condition

fixed g. First, as in the preceding subsection we shall use
the first condition (2.39) by introducing the function f,

and notice that

f *(q&)
I
C (y)g (y) I

=f*(y)C*(y )g *(p)e'

e
—in cp iN(y)

one e
n=0

Imf (8)= ——Im f e
——. P(8), 8EI 2 .1 i o (x)dx

ox —e" (2.44)
where 4(y) is the phase of the outer function Cg, which
can be computed using the formula [20,24]

In (2.43) we renounced to the outer function g and the
extension of 0. above x=1 appearing in the correspond-
ing equation (2.14) since, as above, they can be shown to
disappear from the final result. Moreover, when H has
the asymptotic properties mentioned above, the function
f defined in (2.43) belongs to the class H in Izl (1,
which we will actually require below.

In terms off the extremal problem (2.40) writes as

@(tp)= f ln cot d8 .
1 ~ p(8) g(8) 8—y

4~ —~ p(q ) Ig (q ) I

(2.49)

L(f, A, )= g (f„—h„) + g h2 „
n=p n=1

Using these expansions in (2.47) we write the Lagrangian
in the form

E2(g)= m»IICg(f —h)ll 2,I 2 7 (2.45)
oo

+—g f„f k(y)e' '~~ '"~dq)
p

where C (z) is the outer function defined in (2.20),

h (8)=11&' (8)——' f '

ox —e' (2.46)

(2.47)

is a complex function given on the boundary of the unit
disk, and the minimization is performed upon functions f
real analytic in Izl (1, subjected to the condition (2.44)
on a part of the boundary.

We shall solve this constrained extremal problem by
applying the general method of Lagrange multipliers
[21]. It is convenient to write the Lagrangian of the
problem in the form

L (f, A, ) = II Cg (f —h ) II,+—f ( Imf f) I Cg llA ( y )—d y,

——f g(y) I c(q )g (g ) Id' . (2.50)

=0, n =0, 1,2, . . .BI.
n

which gives

(2.51)

f„=h„— A(y)e' '~~ '"~dy, n 0 .
2m'

(2.52)

We must now use the condition (2.44) in order to find the
Lagrange multiplier A, . As we shall see, A, will be ob-
tained by solving an integral equation. First, using Eqs.
(2.48) and (2.52) we obtain the expression of the optimal
function f (z) for any Izl (1:

The unconstrained minimization upon the functions f
can now be easily performed. We impose the conditions

where the real function A, is the I.agrange multiplier and
the real factor

I Cgl was introduced in the last integral for
the simplicity of the subsequent calculations. Since we
deal with real analytic functions [i.e., Imf ( —y)= —Imf (y)], we can assume without loss of generality
that A, is an odd function, the contribution of an even part
vanishing in the integral along the symmetric interval I 2

(Fig. 3). Further, we can write

f ( ) C i
( )

]
( )

1 f ~ h ( q& )C ( y )g ( y )d
2m 1 —ze'+

X(g )e'~'+'dq
l

1 —ze'P

(2.53)
Imf =if* i Ref—

and notice that only the first term contributes in (2.47),
due to the same argument.

We use now the expansions in power series,

C(z)g(z)f (z)= g f„z",
n=0

We set now in this expression z =re', take the limit
r ~1 and use the constraint (2.44), which can be written
in the equivalent form

Imf (8) I C(8)g (8) I

=@(8)I C (8)g (8) I
.

By applying the Plemelj relation [26]

f„= f C(y)g (p)f (y)e
1

C(z)g (z)h (z) = g h„z",

h„= f C(tp)g (q))h (q&)e '"~dp,

(2.48)

1
1 u(q)dq 1

8
1 u(V )dq

21T I' 1 —re' + 2 2w i

(2.54)

where the Cauchy principal part appears in the last in-
tegral, we obtain after a straightforward calculation the
following integral equation for the Lagrange multiplier k:
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1
&

sin[4&(8) —C&(y)+(9—y)/2] d
1I,q, ~e~f ~ h (tp)C(y)g(y)dq

2 sin(8 —y)/2 1-e'" +)

(2.55)

In deriving this equation we took into account the fact
that

Imh (8)=g(9), 9& I 2

since the @CD expansion is real along the spacelike axis.
The properties of the integral equation (2.55) depend

on the behavior of the function N and ultimately, as fol-
lows from (2.49), on the smoothness and the zeros of the
product p~g~ along the contour I z. If 4 is Holder con-
tinuous, the equation is of Fredholm type [26], and can be
solved easily with numerical methods. If, on the other
hand, 4& is discontinuous, Eq. (2.55) is singular and can be
solved by reducing it to a Hilbert-Riemann boundary
value problem for piecewise analytic functions [26].
Once the Lagrange multiplier is found by solving this
equation, we use it in order to evaluate the optimal func-
tion f written in (2.53) and the minimal L norm (2.45).
It is convenient to use the expression

s22(g)= g (f„—h„) r "+ g h „r " for r~ 1,
n=0 n=1

(2.56)

where we introduce f„ from (2.52) and h„as defined in
(2.48). Using the fact that the quantity

f —h = — f A(y)e' '~' '"~dq&, n ~0
n n

is real, we write the first term in (2.56) in the form

1 1 i NPy) —i N( 0)

f A.(8)d 9 f A,(q&), , dy

for r~1 .

It is convenient to use now the integral equation (2.55)
satisfied by the function A, , so finally this term writes as

g (f„—h„) = f A(9)d8 Ime ' ' 'f . ——$(8)~C(8)g(8)~n n 2~
(2.57)

As concerns the second term in (2.56), we can use the ex-
pression of the negative-frequency Fourier coefficients
h „ from (2.31), with the only difference that everywhere
the outer function C (z) is now multiplied by the weight
function g (z). After a straightforward calculation we can
write this term in the compact form

f'f' ~x~& dxdy
"p ~p 1 —~y

J =2
C2 y g(k)

k=1

b(x)=[o(x)—ImII (x)]C(x)g(x),
and Mk represent the moments of this function:

(2.59)

(2.60)

By summing Eqs. (2.57) and (2.58) and taking the square
root of the result, we obtain the L norm e2(g), which
represents, for a fixed g with the required properties, a
lower bound for the quantity co. Actually, the inequali-
ties

3

+2 g C2 g Mkg"', (2.58)
j=1 k=1

where C2~ are the QCD condensates, g."' are the
coefficients defined in (2.32) and calculated explicitly in
(2.35), with p(8) replaced by p(8) ~g (8) ~, the function b, is
defined as

e', (g) ~ 1 (2.61)

which follow from (2.9), represent a family of rigorous
sum rules which must be satisfied by the input quantities
cr, IIOcD, and s~c . In particular, (2.61) describes explic-
itly an allowed domain in the space of the QCD conden-
sates C2j, when all the other quantities are fixed. Obvi-
ously, the final maximization upon the functions g
amounts to taking the intersection of all these domains,
which yields the optimal domain described by the in-
equality (2.9).

On the other hand, knowing the optimal function f (z)
from (2.53) we can reconstruct the optimal II using (2.43)
and then evaluate the L" normal (2.42), which gives an
upper bound for co. Thus, the above procedure allows an
efficient approximation of co both from below and from
above.

III. APPLICATION

We applied the above method to the correlation func-
tion of the

p
meson. In this case the physical cut starts at

so=(2m ) and the spectral function ImII is related to
the total cross section of the e+e annihilation into iso-
spin I= 1 hadrons. Experimental data are available up tos,„=4.0 GeV . We used a parametrization of these data
by the p(770) and p' resonances [27]. The experimental
data, expressed in terms of the ratio

R =cr(e+e ~I =1 hadrons)/o(e+e ~p+p, )
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R lI

8—
in order to take into account the strong-coupling uncer-
tainty when u, =1, and the nonperturbative one of the
order 1/s . More precisely, the error corridor was taken
of the form [14]

E~'D(s)=, 1 — +V7 2
'

C8

pi& Is l
(3.4)

with [14]

0
0 0.5

vs GeV

I

'l.5

V7 =8R2/p, ,

Cs=maxl C4lm„, IC6lm„) .
(3.5)

FIG. 4. The input experimental data below s,„=4.0 GeV,
expressed in terms of the ratio R as a function of energy.

ln2~+1 ~4
3

ln2r+ 1 ln2~+ 0.5+ V51nzr 2
+ V6

4 + 6C C
2 3

(3.1)

with

~=0.5 ln
S

A—2
MS

Vi =2/p„p, = 11—2nf /3=9,
V3 =2( —153+19nf )/(3pi),

V4 =R2 Vq, R2 = 1.9857—0. 115nf,

V5 =2( —153+19nf )/(9p, ),
~6 =2R2 ~2 ~3 —~S ~

(3.2)

In (3.1) we neglected terms of order 1/s which are pro-
portional to the squared quark masses. The nonperturba-
tive terms are related to the quark and gluon condensates
by [14]

C4= (a, /EGG)+4m. (m„(uu )+md(ddd )),
C6=896ir a, (%%) /81,
where a, (s) is the strong running coupling

a, (s)/~=2(1+. . . )/(Pir) .

(3.3)

The perturbative error was chosen of the order
(a, /~), amplified at low energy by a factor (1—a, /vr)

are shown in Fig. 4. Along the contour I we adopted the
usual QCD perturbative prediction in the MS scheme
with nf =3 flavors, plus the nonperturbative one,
parametrized by the lowest dimension condensates [14]:

m.2
II~ (s) = —2r+ Vi —2 lnr+

12~

The coefficient C8 was assumed to be related to a typical
instanton or hadron size rn.. . which will be specified
below. Also, the specific choice (3.5) ensures a narrow er-
ror corridor when the input values of the lowest-order
condensates C4 and C6 are small and a large error for
large C4 and C6. We adopted the above parametrizations
following Ref. [14].

The theoretical parameters used as input in our
analysis are the QCD scale AMs, the hadron mass m„
and the QCD condensates C4 and C6. According to the
above discussion, we have to calculate the minimal norm
Eo for various sets of values of the input parameters. The
values yielding an c.o less than or equal to 1 will be con-
sidered acceptable, while those for which co is larger than
1 must be rejected.

We first took m„=m and A=0. 1 GeV and computed
cz for various sets of condensates C4 and C6 suggested by
previous analyses [1—14]. It turned out that the values of
Eo (actually, in many cases even of the lower bound Eo de-
rived in Sec. II A) were systematically greater than 1. As
an illustration, for C4=C6=0 we obtained co equal to
28.0, for the "standard values (Ref. [1])"C4=0.4 GeV,
C6=0.06 GeV co was 23.5, while for the pairs C4=0.5
GeV, C6=2.0 GeV and C4= —0.5 GeV, C6= —2.0
GeV co was, respectively, equal to 9.0 and 7.7. Accord-
ing to the above discussion, this indicates an inconsisten-
cy between the low-energy data and the QCD parametriz-
ation and its associated error, for these values of the pa-
rameters.

For A=0.300 GeV the values of co turned out to be
considerably lower, remaining however still greater than
1. Thus, E,o was equal to 8.3 for C4=C6=0, 3.8 for the
"standard values" mentioned above, 1.74 for C4=0.5,
C6=2.0 and 2.2 for C4= —0.5, C6= —2.

When the hadronic mass scale I„was lowered
(m„=0.300 CxeV) the values of Eo were larger than the
results quoted above, by a factor of at least 2. This
feature was noticed also in Ref. [14], and shows that for
this mass scale the nonperturbative error in (3.4) is un-
derestimated. Actually, the results mentioned above sug-
gest that the perturbative part of the error channel (3.4) is
underestimated too. We recall that, following Ref. [14],
we took the scale V7 of this error equal to R2, i.e., to the
coefficient of the (a, /vr) term in the perturbative expan-
sion of H. In fact, if the recent calculation of the a,
coefficient [15] is confirmed, this choice is really an un-
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derestimation, since R3 =67, while R2 =1.6. Therefore,
we repeated the calculations (with m„=m ) for gradual-
ly increased values of Vz. It appeared that values of cp
below 1 could be obtained only if V7 were multiplied by
at least a factor of 5. In this case, for A=0.300 GeV (a
value which seems to be favored with respect to 0.100
GeV), we obtained an allowed region in the C4, C6 plane,
including near the boundary the "standard values, " and
excluding, for instance, the origin C~ =C6 =0. Our re-
sults are in agreement with those obtained in Ref. [14].
Thus, while values of cp below and around 1 were ob-
tained for pairs C4)0, C6)0 and C4(0, C6&0, much
greater values were yielded by condensates of opposite
signs. Moreover, the results indicate a correlation be-
tween the allowed values of the quark and gluon conden-
sates, very similar to that noticed in Ref. [14].

We recall that in our analysis the absorbtive part of the
polarization amplitude was assumed to be known exactly
below s,„. The results discussed above were obtained
for the experimental curve shown in Fig. 4. When the ex-
perimental data were increased or decreased by 5%, the
values of Ep increased in a significant way. Thus, for
A =0.300 GeV, m „=m and the perturbative error
channel amplified by 5, as discussed above, we obtained
for the "standard values" C4=0.04. C6=0.06 cp equal
to 1.1 using the data of Fig. 4, 4.6 for data decreased by

5% and 4.3 for data increased by 5%. A similar increase
was obtained for other values of the condensates.

IV. CONCLUSIONS

In the present paper we proposed a rigorous method
for testing the consistency of the low-energy experimental
data on the imaginary part of a correlation function with
its high-energy QCD expansion given with an associated
truncation error. The method is suitable for cases when
accurate experimental data are available at low energies.
In particular, in Sec. II 8 we derived a family of rigorous
sum rules for the QCD condensates, which generalize the
usual FESR, taking into account explicitly the truncation
error associated with the QCD parametrization, while in
the usual treatments this error is out of control.

In Sec. III we analyzed with this method the data on
the e+e annihilation into I=1 hadrons. The results are
in qualitative agreement with those obtained in Ref. [14],
where the same data were analyzed with a similar tech-
nique. However, our results indicate that the error chan-
nel (3.4) is underestimated, which is in agreement with a
large coe%cient of the e, term in the perturbative expan-
sion. Our analysis shows that, even with accurate experi-
mental data, a precise determination of the QCD conden-
sates is not possible without a better knowledge of the
QCD expansion and its truncation error.
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