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Planned collider experiments will decisively test the color SU(5) model of Foot and Hernandez, in
which an extended QCD group is broken at the TeV scale. Constraints from cosmology and from
neutral-kaon mixing imply that exotic charge-% fermions of this model cannot all be given masses above
about 1 TeV. These “quirks” carry a new strong confining force, from the surviving unbroken gauge
symmetry. Searches for the leptonic decay products of quirkonium at CERN LEP II will probe quirk
masses up to near the beam energy, while searches at planned hadron colliders will be sensitive to quirk

masses all the way up to the TeV upper bound.

I. INTRODUCTION

A basic belief which underlies much contemporary
particle physics is that a new level of physics will emerge
in the TeV domain. The best-motivated schemes are
those which address the origin of the weak scale. Howev-
er, the elaborate and well-studied schemes of technicolor
and supersymmetry may not be correct. It is then of in-
terest to pose another question: are there extensions of
the standard model which are sufficiently simple that
they can be tested in the near future? Although such
models do not give answers to presently perceived
theoretical difficulties of the standard model, they do pro-
vide pictures of how physics in the TeV domain may ap-
pear. The vast majority of such models add new fermions
or scalars within the framework of SU3)®SU(2)® U(1),
or extend the SU(2)®@ U(1) electroweak gauge group. In
this paper we follow a much less traveled route: that of
extending the color SU(3) interaction. In the course of
our investigation, we encounter new primordial relics:
glueball-like metastable states whose cosmological impli-
cations are interesting in their own right as well as serv-
ing to constrain the model.

We study the color SU(5) model of Foot and
Hernandez [1]. Under plausible assumptions, those au-
thors show that SU(5) is the uniquely favored choice for
such an extended color group. Models of this sort can
arise from Planck-scale models through the breaking
of a fundamental gauge group -containing SU(5)¢
®SU(2),®U(1), as has been discussed elsewhere [2], but
our emphasis will be confined to accessible or near-
accessible energies throughout this paper.

An interesting feature of the model is that the color
SU(5)-breaking scale can be roughly the same as the
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weak-breaking scale. Despite the presence of new gauge
bosons and fermions, whose interactions are largely con-
strained by the theory, present experimental data do not
provide stringent tests of the model. For example, the
model contains a heavy neutral Z’' gauge boson that can
be much lighter than typical Z' bosons from such
schemes as Eg4 unification. Precise electroweak experi-
ments provide only very mild constraints on the Z’ be-
cause it naturally has a small mixing angle with the Z and
because it couples predominantly to quarks and not lep-
tons [2]. Searches for bumps in the dijet spectrum at
hadron colliders provide the best constraints on the Z’
mass [3]: M, > 100 GeV from Collider Detector at Fer-
milab (CDF) and M, >280 GeV from UA2, which are
quite mild. Furthermore, it is natural in this model for
the Z' to be heavier than the Z: the Z' originates
predominantly from the SU(5) color group, so its mass is
proportional to the strong gauge coupling constant.

In this paper we argue that the masses of the new
gauge bosons and fermions of the color SU(5) model can-
not all be made very large. We show that there are exotic
fermions of charge 1 which lie in the TeV range or below.
We consider production rates and signatures for such
particles at CERN LEP II and at hadron colliders.

The first constraint on the spectrum of the new physics
comes from primordial nucleosynthesis. When the ex-
tended color SU(5) group breaks at the weak scale it
leaves two gauge groups which are never broken: the
usual color SU(3) and a new SU(2) force which is also
confining. This new force produces glueball-like states
which are long lived because there are no light fermions
which carry this SU(2) force. If the lifetime of these glue-
balls exceeds 1 sec they contribute to the energy density
of the Universe during the nucleosynthesis era and ex-
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clude the model. A shorter lifetime can only be achieved
if the new heavy gauge bosons and fermions are not too
massive.

A complementary constraint can be imposed from
kaon mixing, since the exotic quantum numbers can also
run around an internal loop between asymptotic neutral
kaon states. Here the forbidden combination is heavy
fermions [which preclude a Glashow-Iliopoulos-Maiana-
(GIM) like cancellation between flavors] in conjunction
with light broken gauge generators (whose propagators
fail to suppress the loop diagrams). Since flavor-changing
neutral currents are so highly suppressed, this test is
stringent enough to rule out very-low-energy symmetry
breaking for any tolerable fermion masses, in the absence
of some unexplained family symmetry that would make
those masses nearly degenerate. Better still, in conjunc-
tion with the cosmological limit, it completely ties down
the fermionic sector. If the color gauge group is extend-
ed in the way envisaged by Foot and Hernandez, then
there must be exotic fermions in the TeV range or below.
Tracking them down at LEP and the Superconducting
Super Collider (SSC) is then an exciting possibility.

The organization of our paper is as follows: in Sec. II
we review the particle content of the model, and propose
some new nomenclature; in Sec. III, we find expressions
for the mass of the lightest confined bound states under
various assumptions. In Sec. IV we examine the evolu-
tion of these states in the early Universe, and delimit the
conditions under which their energy density is cosmologi-
cally troublesome. In Sec. V we study their possible de-
cay modes, and in each case find a region in parameter
space for which the decays are fast enough to save the
standard nucleosynthesis results. In Sec. VI we discuss
the limits from the neutral kaon system. In Sec. VII we
examine the fate of heavy fermion pairs produced at col-
liders, and argue that they form nonrelativistic bound
states which are usually forced to decay to visible parti-
cles of sharply defined energy; the characteristic signa-
tures of these decays are compared to their standard-
model backgrounds in Sec. VIII. Finally, we sketch out
the progress that has been made in understanding these
models, and speculate briefly about directions for future
research.

II. THE MODEL

Foot and Hernandez [1] have speculated that the stan-
dard model (SM) arises from a larger gauge group,
specifically

SU(5)-®SU(2), @ U(1) . (2.1)

The reader is referred to previous work [2] for details
about this model and its low-energy implications; we
shall only summarize the contents of the model in this
section. The theory contains three families of fermions,
each of which transforms under the gauge groups as

QL:(S’Z)I/IO’ UcRi(g,l)_S/5, 5 CRZ(§,1)2/5 N
Ip:(1,2) ), eg:(1,1); .

(2.2)

It also contains two scalars, which transform as
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Xx:(10,1), 5, ¢:(1,2); 5 . (2.3)
The Yukawa interactions take the form
VM, = V2My o
Lyw= XQ 0O+ XUrD g
w w
V2My, = V2M, - _
+ 90, Up + $0.Dx
VM, _
+ ¢1LeR +H.c. (2.4)

v

When ) acquires a vacuum expectation value w at
some large scale, it breaks the group structure of the
theory down to

SU(3).®SU(2),®SU(2),8U(1)y . (2.5)

[Hypercharge arises from a linear combination of SU(S)
and U(1)’ generators.] Under this group, the fermions
transform as

915(3,1,2)1 5 ug:3,1,1) 5/,
d§:(3,1,1) 5, 1.:(1,1,2) .,
eg:(1,1,1);, 0;:(1,2,2,),

Uri(1,2,1); 5, Dp:(1,2,1)_1 ), .

The first five fields are those of the standard model
(SM); the remaining three are new fermions which feel a
new colorlike force. We will call these fermions quirks,
and their new quantum number hue.

At the first stage of symmetry breaking, all twenty-five
gauge bosons of SU(5)-®U(1)" will acquire mass except
for the eight gluons g of SU(3)., the three huons 4 of
SU(2)y, and the linear combination which generates hy-
percharge. The orthogonal linear combination will be
(up to small mixing with the Z) a heavy Z-like particle
which we call the Z’. The remaining twelve degrees of
freedom are massive gauge bosons

X:3,2,1)_,

(2.6)

2.7

which mediate quirk-quark transitions. Of the twenty
real degrees of freedom of ¥, thirteen become the longitu-
dinal pieces of the X’s and the Z’, one becomes a heavy
Higgs-like particle which couples only to quirks, and the
remaining six form a heavy scalar

X3:(3,1,1)_1/3 . (2.8)

The other scaler ¢ is just the standard Higgs doublet. It
acquires a vacuum expectation value v ~246 GeV, giving
quarks and quirks SU(2), -breaking masses. The symme-
try breaking at this stage is identical to the SM except
that the Z and Z' mix to a small degree. If the end, the
unbroken gauge group is SU(3)c®SU(2)y®U(1)y; the
SU(2);, acts nontrivially only on the nonstandard parti-
cles.

The quirk mass terms are of the form

_ M, M, | |Df
—_ c

Linass=ULDR) \pr) M, | |UR

mass

+H.c. (2.9)
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For three generations, the entries in the above matrix are
themselves 3X3 matrices. My and M, are simply the
SM up and down mass matrices, while M; and My, are
arbitrary except that M; must be symmetric in an SU(2),
eigenstate basis. We denote the 6 X 6 mass matrix of (2.9)
by /M, and observe that /M can be diagonalized by unitary
transformations U and V, so that

My=UkM Vg, , (2.10)

where My are the masses of the physical quirks.
III. CONFINEMENT AND THE HUEBALL MASS

Since there are fewer then eleven flavors of quirks,
SU(2)y is asymptotically free but confining at low ener-
gies, so it will be useful to determine the confinement
scale A,. We start with the experimentally determined
value of the strong-interaction gauge coupling a; at the
100-GeV scale, and use the renormalization group to
evolve it up to the SU(5). unification scale. We then
match the SU(2), and SU(3), gauge couplings, and run
the former down below the lightest quirk mass to deter-
mine A,. We relegate the details of this straightforward
but lengthy calculation to Appendix A, where we find an
expression (A.4) for A, in the modified minimal subtrac-

J

—1/11 —5/44 2/11

m,; X mQ

A,<0.7 GeV

a5(MX )
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tion (MS) scheme in terms of the various masses and
gauge couplings.

To estimate an upper bound on A, we will assume that
all of the quirks have perturbative Yukawa couplings,
which guarantees M, /w S V4w, Since the X mass is
given by Lgsw, this translates into the bound

My 4

M2 < alMy) (3.1)
In writing as(My) we can neglect the fact that a, and a;
run at different rates between My and M,,, where the ex-
tended color group is no longer unified. This follows
from (3.1) and the renormalization-group equation, since
their ratio at My is one up to corrections of order
alna. For the same reason we will set a,(My)
=a3(M,)=as(My)=as(Mgy). The top quark is at most
a factor of 2 above 100 GeV, so we can set
a3(m,)=a;(100). The y; scalar is not likely to be lighter
than 100 GeV, and in any case hardly influences the re-
sult. Finally, a;(100) is measured [4] to be approximately
a;(100)=0.110+0.010, so we can conservatively assume
a;3(100) <0.125. Combining these estimates we find that
the confinement scale for SU(2)y is limited by

a(m ) —89/968
22 3.2)

—159/616 [

100 TeV TeV 0.125 0.125

Since no quirks have a mass below or near the confinement scale A,, we expect the lightest particles in the (long-
distance) SU(2); spectrum to be bound hue-singlet states of the massless huons. We call these hueballs H, in analogy
with the glueballs of QCD. Lattice gauge calculations [5] indicate that the lightest hueball has J*°=0"" and a mass
my =(3.60+0.35)A,, Where A ., the value of A in the momentum regularization scheme, is related to the MS

value by [6] Apom=3As5s. We therefore find, using (3.2), the upper bound

—1/11 —5/44 2/11

m, X mQ

as(My)

—159/616 —89/968

az(mQ)

my <8.3 GeV

100 TeV TeV

Equation (3.3) is valid if there are four heavy quirks and
two light ones. If there are five heavy quirks and a single
light quirk the dependence on My becomes very weak, so
we may set My =1 TeV and obtain

1/11 —801/19360

az(mQ )
0.125

Mo

<10 GeV
"MH Y | Tev

(3.4)

IV. HUEBALLS AND COSMOLOGY

Because the 07 T hueball is the lightest particle in the
SU(2)y sector, it cannot decay strongly [here “strongly”
means via SU(2)y interactions]. Its decay, through loops
of quirks or heavy gauge bosons, will be considerably
suppressed. If its mass is a few GeV, and if it is long
lived, then it could dominate the Universe at the time of
nucleosynthesis. The cosmological constraints on this
model follow from the requirement that the highly suc-
cessful predictions of primordial nucleosynthesis calcula-

0.125

(3.3)

0.125

tions not be upset by the contribution of the hueballs to
the energy density of the Universe. We first calculate this
contribution relative to the contribution of one neutrino
species, using the various entropies to relate the tempera-
tures in the SM and hueball sectors. We then impose
agreement with the astrophysical determination of *He
abundance to set an upper bound of 1 sec on the hueball
lifetime.

In the big-bang scenario at very early times, all parti-
cles are in thermal equilibrium. In particular, at temper-
atures above the lightest quirk mass mg, quirks can
mediate energy exchange between photons and huons, as
shown in Fig. 1. While the lightest quirks annihilate, the
temperature 7' of the hue sector tracks the temperature
T of ordinary matter, 7'=7. As the temperature drops,
ordinary particles eventually decoupled from the huons.
Suppose that this occurs at a temperature of 30 GeV,
which is roughly correct if the lightest quirk weighs a
TeV. We can calculate the entropy present in the two
sectors:
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FIG. 1. Typical diagrams leading to quirk-mediated energy
exchange between huons and photons in the early Universe.

7T2

2

S=%geﬂrT3 and S§'= 24i5
where g+ and g4 are the effective number of degrees of
freedom in the two sectors at decoupling. If we count the
top quarks and Higgs boson as contributing only about
half their normal amount and the W and Z particles as
contributing about two-thirds their normal amount (be-
cause T =m,~my =my;=>=Mmy;,), then g.4;=98 and
g.¢=6. Since T=T" at this point, the ratios of entropy
will just be

g7, 4.1)

S' 8 3
L - 4.2
S geff 49 ( )

From now on the two sectors are never again in thermal
contact. As the Universe expands, the entropy per
comoving volume will remain constant in each sector, as-
suming that thermal equilibrium is maintained at all
times within each sector. This is probably false, but not
because the interactions involved are too slow. Rather,
we recall that during a first-order phase transition the
sector undergoing this transition is briefly out of thermal
equilibrium while the false-vacuum state is maintained
(“supercooling”), and then entropy is increased in the
transition to the true vacuum (“reheating”). The QCD
phase transition is probably first order while a pure-gauge
SU(2) theory is believed to be second order [7]. Hence S
(but not S') may be increased by some factor £ during the
transition era: below both critical temperatures the ratio
of entropies will be given by
S’ 3
S 49 (4.3)
By the time the temperature has dropped to about an
MeV, the SM sector consists primarily of photons, elec-
trons, and positrons, and three generations of neutrinos,
yielding g.=10.75. At this temperature the neutrinos
decouple. Each neutrino species contributes an entropy
density S, and an energy density p, given by

(4.4)

The ratio of entropy in the SU(2) sector to the entropy
per neutrino species becomes

S _S'S_ 3 1075 3

4.5)
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Let us now focus on the hueball sector. As we drop
below the SU(2)y confinement scale, the huon energy is
clumped into hueballs, and as the temperature drops fur-
ther eventually only 01 * hueballs remains. These cannot
annihilate strongly into lighter particles (we will discuss
hueball decay below), though three of them can annihi-
late into two. Such number-changing processes ensure
that the hueball field will not acquire a chemical poten-
tial. As the Universe expands the temperature of the
hueballs drops until they may be treated as a nonrelativis-
tic, noninteracting gas of spinless particles, for which the
entropy and energy densities are given by

I — m;/ZTll/z mH [ — ’ ’
S —Wexp | p'=S8'T". (4.6)

Hence the ratio of energy density in hueballs to that in
one-neutrino species at or below an MeV may be ex-
pressed as

_— T O~ —— =

p, 3 TS

4.7

Using our previous expressions for S, S’ and S'/S,, we
can relate the temperature in the two sectors:

- 172

my 60V'2 mpy my
=—"F&|— — 4.8
el T e v T’ @8)
[Note that this formula has no solution for

T>T,,, =0.456" my, while for T~T,, it gives
T'=2my for which our nonrelativistic approximation
fails. If we are to use this expression we must demand,
say, T'(T) < tmy which means we can only consider neu-
trino temperatures, T <0.149&'3my,. In particular, at
the onset of nucleosynthesis we will consider only hue-
balls of mass my >4.76" /> MeV.] Eliminating T’ be-
tween (4.7) and (4.8), we find

’

p _"Mu

my
py, 5TE

+0.61 .
o7 | TO-6InE+0.21n

fi]’

(4.9)

which can be solved recursively for the desired ratio
p'/p, at any desired temperature 7. Recall that this
equation assumes that 77<MeV <<A,A’ and that the
hueballs have not yet decayed.

Examination of (4.9) shows that the mass density of
hueballs compared to neutrinos increases as the tempera-
ture decreases. Indeed, setting T'=T, (the present neu-
trino temperature) shows that hueballs of mass
mpy=2.76(1+0.09In§) keV would have just the critical
density at the present to close the Universe: they would
comprise the dark matter. However, from the scaling of
a, we learn that such a small A, requires the six quirks to
have masses of order 107 !2My, which drives the
unification scale w to the grand-unified-theory (GUT)
scale. Such a scenario would have few low-energy phe-
nomenological consequences, and Yukawa couplings of
order 10~ !? seem unappealing. We prefer to insist that w
be far below the GUT scale; as a result the hueballs must
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weigh more than a few keV and therefore must decay if
only to avoid overclosing the Universe.

How quickly must they decay? That depends on the
mass of the hueball and the factor £ of entropy dumping
that occurs in the SM sector. One critical time is during
nucleosynthesis, when the Universe is approximately 1
sec old and has a temperature of ~0.7 MeV. This is
when the processes which interconvert neutrons and pro-
tons freeze out. The freeze-out temperature is increased
if the energy density is increased because the Universe ex-
pands faster and so freeze-out is reached sooner, that is,
at a higher temperature. A higher freeze-out tempera-
ture implies more neutrons are left, which in turn raises
the predicted “He abundance. The increase in p that
would result from an additional neutrino species already
strains the agreement between the calculated and ob-
served abundance of “He in the Universe [8]. Hence, the
hueball density must satisfy

L (T=0.7MeV)S1 .

v

(4.10)

The value obtained for the ratio in (4.10) depends both
on my and on §. Demanding p’' <p, and T=0.7 MeV in
(4.9) translates approximately into
(0.85)

exp

my
MeV

6.9MeV

>0.0
£>0.09 o~

(4.11)

for my of at least 10 MeV. The actual value of £ is very
difficult to determine. For our purposes, however, a
crude estimate will suffice. Such an estimate can be made
by requiring that the degree of supercooling during the
transition be insufficient to inflate the Universe, since
such inflation would leave most of the Universe today in
the QCD plasma state [9]. From this requirement it fol-
lows that entropy is at most doubled during reheating.
Of course, since our knowledge of the dynamics involved
in the QCD phase transition is far from complete, various
unexpected complications may have arisen during this
period of the early Universe, such as condensation of
quark matter matter droplets [10] or formation of pri-
mordial black holes [11]. Barring such ‘“‘nonstandard”
conjectures, however, we can take as a conservative
upper bound £ <10. From (4.11) we see that we cannot
meet this bound; i.e., we will have difficulties with pri-
mordial nucleosynthesis, if the hueball mass is heavier
than about 250 MeV. These problems can be avoided if
the hueball rots in less than 1 sec.

As will be demonstrated in the next section, the hue-
ball decay rate scales as at least the seventh power of its
mass, so light hueballs will last much longer than heavy
ones. If the hueball weighs ~250 MeV —10 GeV, then it
must decay in 1 sec or less, for the high value of & that
would be needed to avoid nucleosynthesis problems
seems highly implausible. If it weighs a few hundred
MeV or less, then perhaps it is allowed to live longer than
a second without upsetting the neutron-to-proton ratio.
However, 10* sec later, when the temperature drops to 10
keV, 250-MeV hueballs would certainly dominate the
Universe and spoil later nucleosynthesis calculations.
Moreover, the decay of such a light hueball into yy or

pions will distort the microwave background unless it
occurs before 10° sec. Because of the strong dependence
of the lifetime on the mass, forcing a 250-MeV or lighter
hueball to decay in less than 10* or even 10° sec is a much
stronger constraint than demanding that a hueball in the
upper part of the 250-MeV to 10-GeV mass range decay
in less than 1 sec. Since the hueball could weigh as much
as 10 GeV we can only impose this weakest constraint,
namely 74 <1 sec.

V. HUEBALL DECAY

The hueball decays only through loops of heavy gauge
bosons and quirks. Some of the diagrams which contrib-
ute to hueball decay are shown in Fig. 2. At low energies
hueball decay is mediated by effective interactions of the
form

0,~Higq, O, ~H;7giy"dq , )
Oge~H2G2, and Opp~H2F?, ’

where H,, G,, and F are the huon, gluon, and photon
field strengths, respectively.

Since the first of these is of lower dimension, it presum-
ably dominates the decay rate. However, it also violates
SU(2),, and hence must have an amplitude proportional
to the SU(2); -breaking masses which may suppress it rel-
ative to the other operators through small masses and/or
small mixing angles. The lowest-order diagram contrib-
uting to (an is shown in Fig. 2(a). We assume that at
least one of the six quirks is lighter than the X, and per-
form the calculation in four steps: integrating out the X;
scaling down to the quirk mass; integrating out the quirk;
and scaling down to the hueball mass. We treat the
external quark legs as massless to be conservative. For
concreteness, we also assume that the external quarks are
down type; a similar calculation can be used to determine

p 29900 a
(a) Q X + crossed
h 29000 g q
h Qoo Q Y
(b) Q Q + crossed
h 29000 5 v
h X 4
(c) X X + crossed
h g
X

FIG. 2. Loop diagrams which lead to hueball decay into (a)
quark-antiquark pairs, (b) photons, or (c) gluons.
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the decay rate to up-type quarks. The various steps are
carried out in detail in Appendix B, with the result
— . mglpo)?

I'(H—d;d;)

= ‘/M’l—l 2a (m )24/23
i 120M} M Pestmyy

X az(mH )2a3(m, )lé/lﬁlaz(mQ )3/4

Xas(My )%, (5.2)

where ¥(0) is the overlap wave function for the two
huons.

What do we substitute for |1(0)|?? Presumably this
will be something like the reciprocal of the “volume” of
the hueball. Lattice calculations [12] indicate that the
hueball has a charge-density radius of at least 4/my, so
assuming a hydrogenlike wave function, we can expect
that the decay rate will be something like

- Fm}],
F(H-’d‘dj )= —M—f |m;1 zag(mH )24/23a2(mH )2
X

Xa3(m, )le/wlaz(WlQ )3/4a5(MX )3/28 ’
(5.3)

where F~10"% Note that (5.3) displays the advertized
seventh-power dependence on the hueball mass.

If the quirk masses are large compared to the quark
masses, then M ; ! will tend to be small. Since m, <250
GeV and my >43 GeV we can use mé >m,m, to expand
M~V in powers of M quark /Mg. To leading order,

MG =MD (M) (Mg Yy (5.4)

By far the largest mass in the up-quark mass matrix is the
top-quark mass. The magnitude of M ; ! will depend on
the masses and mixing angles of the quirks, but we can
get a bound on this matrix element by noting that no
mixing angle can be greater than unity, so that

1— m,(mQ)

MGt <mp ' mmp = , (5.5)

2
mg

where m; and my are the lightest eigenstates of the ma-
trices M; and My and mé is their product. We see that
for this mode of hueball decay to be efficient, there must
be at least two light quirks. There must also be large
mixing between the generations—although this seems
unlikely, we must allow for this possibility.

In (5.5) we need to evaluate m,(u) at the quirk mass;
because of renormalization, this will not necessarily be
equal to the physical top-quark mass m,. The relation
between the two is given by

4/7 3/8

a5(Mx)

as(m,)

a(mgy)

ay(M,) (5.6)

m,(mg)=m,

Substituting Egs. (5.6), (5.5), and (3.3) into Eq. (5.3), we
find
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4
I <5.6X10° sec™! e o —_— o
) 100 My
30/11
TCV a3( mH )24/23(12( mH )2
mg
—218/484 115/88
az(mQ) az( mQ) (5.7)
0.125 as(My) '

Since my; is several times the confinement scale, substitu-
tion indicates that a,(my) is much less than one. How-
ever, the lightest hueball is, by definition, in the nonper-
turbative regime for the SU(2), theory, so we conserva-
tively estimate a,(my)<1. Since we are approximating
a3(100)==0.125, we also use a;(mp)=0.2. Finally, we
assume m, <200 GeV and I'>1 sec”! and obtain the
limit

7/4

MX _ —1
<1 [for T'(—gq)>1sec™'].

10 TeV

mo
2 TeV

(5.8)

This limit can be strengthened considerably if we as-
sume that small angles occur in M; and My connecting
the top quirk with the down (or strange) quirk. Our ex-
perience with quarks implies that such small mixings are
likely. If all of the angles are less than twice those ap-
pearing in the standard Cabibbo-Kobayashi-Maskawa
matrix (0.12 or smaller), this limit is improved to
7/4

My _ 1
<1 [for T'(—gq)>1sec™'].

10 TeV

mo
90 GeV

(5.9)

This is the limit if hueballs decay predominantly by di-
agrams of the type in Fig. 2(a). To calculate the rate
through diagrams such as those in Fig. 2(b) requires two
steps, which again we leave for Appendix B. The result-
ing decay rate, calculated using the same assumptions as
before, is

Falmy)aymy)’mp

T(H—yy)= , (5.10)

mg

where we expect ' =~2.7X 1072 Note that for this de-
cay we need only one light quirk, and that no mixing an-
gles are involved. Substituting (3.4) for the hueball mass,
we find

—79/11
LCH —7v)<2.2%X1073 sec™! |22
vy ) TeV
(m ) —7209/19 360
a
ekl 21N (5.11)
0.125

Assuming the hueball decays in less than 1 sec, this gives
a limit
mgy <430 GeV [for T(—yy)>1sec™']. (5.12)

We have also made an estimate of the decay rate using
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the dashed line will be accessible to CERN LEP II, whereas the
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ready excluded by collider results.

diagrams such as those in Fig. 2(c), where the hueball de-
cays into two gluons which must then hadronize. If this
is the decay mode chosen by the hueball, then its lifetime
is less than 1 sec if

M, <1.7 TeV [for ['(—gg)>1sec ']. (5.13)

It should be emphasized that only one of the inequali-
ties (5.8), (5.12), or (5.13) need be satisfied for there to be
no conflict with big-bang cosmology. These three limits
[together with the strengthened limit (5.9)] are graphed
together with Fig. 3.

VI. KAON MIXING

Many extensions of the standard model have potential-
ly detectable effects in the kaon sector, and the SU(5)¢
model is no exception. Several diagrams contribute to
the K, -K mass difference. In general these lead to quite
complicated expressions for this difference. To help sim-
plify the expressions, we will assume that all quirks are
heavy compared to the quarks, but much lighter than the
X. If the quirks are much heavier than the quarks, then
the mass matrix (2.9) takes on an essentially block-
diagonal form, and the quirk sector decouples into
separate Q; and Q mass eigenstates. The matrices U
and V which diagonalize the full quirk mass matrix will
also have a nearly block-diagonal form. These assump-
tions are not essential to estimating kaon mixing, but
they make the equations manageable.

Several diagrams contribute to kaon mixing, but the
contribution which is naively the largest comes from box
diagrams of the type shown in Fig. 4, where a Q; goes
around one side of the box and a Qy appears on the other
side. These diagrams lead to an effective four-quark in-
teraction:
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FIG. 4. The quirk and X contribution to the K;-Kg mass
difference.

Aﬁa%m<wdiéag |2,
M3 I=1J=1 _yJ Yy

6.1)

where £;= US,UM, &, =ViVy, x;=M}; /M}, and

y;=M};/M%. The sum on I (J) runs over only the three

mass eigenstates of Myz(M;). Because of unitarity,
> &, =36;,=0, so that if all of the x;’s or all of the y;’s
are equal, this expression will vanish. Such a degeneracy,
however, is difficult to arrange naturally. If we use the
vacuum saturation approximation, and treat the strange
quark as heavy compared to the down quark but light
compared to the kaon, then the operator (6.1) will con-
tribute to the kaon mass difference an amount

2222
_ 2aafkmk o S S

X
g2 €
m;My I J X=Xy

Am
K Yy

(6.2)

We cannot reliably evaluate this expression because we
know nothing about the masses or mixings of the quirks.
If the quarks are any guide, it would be surprising if §; or
&, were always very small. In the quark sector, we have
values of order £;=0.2 coming from the Cabibbo angle.
Suppose we assume that at least one of the Q; and Qy
has a mixing of at least half the magnitude of that in the
standard Cabibbo-Kobayashi-Maskawa matrix connect-
ing the first two generations, so that £;{; > 0.01 for some
I and J. It is easily shown that

x

Yy

X Vs
Xr— Vs

In >min(x;,y;) . (6.3)

Then assuming there is no accidental cancellation occur-
ring, there should be a contribution to the kaon mass
difference of at least

0.02a%fém13<'mé

(6.4)
mMyx

>
Amyg R

Assuming this does not exceed the measured kaon mass
difference, Amg =3.5X 107° eV, implies that the quirk
mass is limited by about

MX
10 TeV

mQ <1

TevV ™ (6.5)

This limit is also graphed in Fig. 3. Note that the limits
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graphed in Fig. 3 imply that the quirks are lighter (prob-
ably much lighter) than the gauge bosons. Experimental-
ly, this implies that it is much easier to pair produce
quirks than it is to look for the Z' resonance in hadron
colliders. If we use both the kaon limit (6.5) and the
strengthened decay limit (5.9), then the lightest quirk
must be lighter than 420 GeV.

VII. QUIRKONIUM

The most promising way to probe the SU(5) model at
accelerators is to pair produce the lightest quirks. Since
these are long lived, they will bind to form quirkonium
resonances. In this section we first discuss the signatures
such resonances might produce, and then estimate the
relevant event rates at e Te ~ and hadron colliders.

It can be seen from Fig. 3 that it is possible for all the
quirkonium resonances to lie above 10 TeV, and be inac-
cessible. However, the kaon naturality constraint strong-
ly suggests that some will lie below 2 TeV, and probably
below 0.5 TeV. These are very conservative bounds. If
the heaviest quirks are not much heavier than the Z’ then
the renormalization-group scaling gives a lighter hueball
and cosmology then forces the lightest quirkonium
beneath about 1 TeV. Furthermore, if the central value
for the strong gauge coupling is used for input,
a,(my,)=0.11, the lightest quirkonium will be lighter
than about 200 GeV, and will be accessible to LEP II.
Thus while it is not possible to exclude the possibility
that all the quirkonia of this model are above 10 TeV, it
is highly plausible that the lightest quirks will not be
more than a factor of 2 heavier than the current limit
from Z decay.

For simplicity we assume that one quirk is significantly
lighter than the others. It is a Dirac fermion of charge 1.
Its mass is the smallest eigenvalue of the matrix in equa-
tion (2.9). We assume that this mass eigenstate is
predominantly a “left quirk” Q, =(U.,Df) or a “right
quirk” Qp =(Dg,Ug). [Of course, the handedness sub-
scripts here serve only to denote the field degrees of free-
dom enumerated in Eq. (2.6). Each mass eigenstate has
both chiralities as required for a Dirac fermion.] This
occurs naturally if the mass splitting between the lightest
eigenvalues of M; and My is large compared to the top-
quirk mass, or if the top quirk does not mix much with
the lightest quirks. These assumptions are to simplify
our calculations of the signatures; we do not expect our
conclusions to be much changed if there were several
light quirks with each mass eigenstate a mixture of left
and right quirks.

What happens when a quirk pair is produced in a col-
lision? Suppose that the pair-invariant mass is well above
the threshold of ~2mg, but below 4m,. The case of a
heavy-quark pair is not analogous at all: the gluon string
between the pair fragments by light-quark pair produc-
tion. This cannot happen with quirks: there are not
lighter quirks and hence the huon string cannot break.
The system can be viewed as a highly excited quirkonium
state. The deexcitation of this quirkonium will occur in
two distinct stages. In the first stage the string is longer
than A, ! and the quirkonium is in the linear regime of
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the potential. Deexcitation will begin by hueball emis-
sion. There is little we can calculate here; the string is
long and the multipole expansion breaks down. Howev-
er, since the string is made out of hue, we clearly expect
huon emission to dominate, and to occur rapidly. Since
the string is extended, the hueballs can carry away
significant angular momentum leaving the quirkonium
with very high J. Our expectation is that many hueballs
will be emitted from the oscillating string and as many in
any given direction as in the opposite one, so that there is
no significant change in the laboratory velocity of the
quirkonium. The hueball emission will lead to substantial
missing energy but only small missing transverse momen-
tum. Once the excitation energy drops beneath the hue-
ball mass, E ., <my, deexcitation occurs by photon emis-
sion from the oscillating charged quirks. As long as
E_, > A, the picture is still that of a string with large J.
The linear potential has energy spacings characterized by
the scale Ay(Ay/mg )73, We are not sure whether many
soft photons or a few photons with energy a sizable frac-
tion of my will be emitted. Fortunately, this is not im-
portant since the signature we expect will come from the
visible annihilation of the quirk pair. Such annihilation is
very unlikely to occur during the era of a long oscillating
string.

When E, drops beneath Qa%mQ /64, where
a,=a,(mg), and the spatial extent of the system becomes
less than A, !, the second stage begins: the quirks are
now moving in the one-huon-exchange Coulomb poten-
tial —3a,/4r. The size restriction translates into a limit
on the quantum numbers: nl Sa,my/A,. Throughout
this section it will be useful to consider typical values of
parameters as az(mQ )=0.1, mg =100 GeV, and A,=100
MeV. For these values nl <100 characterizes the
Coulomb region.

Prior to entering the Coulomb region the discussion
was qualitative; once in the Coulomb region calculations
can be made. The picture we have sketched for the string
era serves to justify the assumptions which we need for
the initial conditions as the quirkonium enters the
Coulomb domain. In particular we assume that the
quirks have survived and not annihilated, that they have
a high orbital quantum number / and that the spin states
are statistically populated with the ratio of S =1t0o S =0
states being 3:1. We now turn to the deexcitation in the
Coulomb domain.

Annihilation of quirks to huons QQ — h#h is small for
high-/ states because ¥,;(r) = (azmQr)’ near the origin and
the annihilation is proportional to |¢,(r l/mQ)|2. We
find that annihilation from a quirkonium state / gives

T, (hh)~a3"*m, (7.1)

which is to be compared with a typical E1 electromag-
netic transition rate

I'(El)=~aa3my . (7.2)

Annihilation is unimportant for / =2 and need be con-
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sidered only for the S and P states. The dominant E1
transitions have |Al|=1, so that multiple emission occurs
before the P states are reached. The crucial question then
is what happens to quirkonia in the states n>3P and n 'P.

One might worry that the eventual fate of the vast ma-
jority of all quirkonia is annihilation to invisible hueballs,
so that the dominant signature is missing energy together
with some soft transition radiation photons. This is com-
pletely incorrect: there is a parity which forbids many of
the quirkonium states from annihilating to any number of
huons. Charge conjugation, C, on the huons can be
chosen to be (h,h,,h3)—>(—h,h,,—h;3). Define R to
be a rotation by 7 about the T, axis of SU2)y. The A;
have the same R quantum numbers as C quantum num-
bers so that all are G =RC even. The quirkonia are all
SU(2)y singlets and therefore R even; hence, they have
G =C=(—1)""S. Quirkonia with odd / +s cannot decay
to only huons. The G-odd singlet P states, n 1p, cascade
predominantly to the singlet S states which are G even
and are lost to hueballs. The important remaining ques-
tion is the fate of the triplet P states, n3P. These are G
even and could annihilate to Ak or cascade to the S states
via an E1 transition. In this latter case they will end up
annihilating visibly via virtual ¥ and Z.

The fate of the nP, states requires a more careful cal-
culation than the estimates of Egs. (7.1) and (7.2). As-
suming equal populations of the (J,m;) states we find
average decay rates

rCSs—-wtrw )=

7a?|P(0) 2P} (4mG +20mjmE +3my,)
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2
T(n’P—hh)=1 22 |R: (0)2,
8 ml
(7.3)
I‘(n3P—>13S)——-— K3 (1lrin)|?,

where k is the energy of the emitted photon, and R, (0)
is the derivative of the radial wave function at the origin.
Evaluating the matrix elements and taking the ratio, we
find T /T, = F(n)a /a3, where F(n) varies from 1.9 for
n=21to 1.2 for n =o0. So the electromagnetic transition
always dominates the huon decay. We conclude that the
majority of 3P states will eventually become 3S states.
These are G odd and cannot annihilate to hueballs, and
will instead eventually give annihilations primarily via
virtual ¥ and Z.

In the above discussion we have ignored M1 spin-flip
transitions because for all nl states we find the M1 transi-
tion is much smaller than the E1 transition. This is espe-
cially true for high n and / so that we can take the S
quantum number to be fixed during the Coulomb deexci-
tation. We conclude that 75% of the total quirk pair-
production rate will result in the annihilation of a quir-
konium resonance involving standard-model particles.
When the decay is to pairs of visible particles, the invari-
ant mass of the resulting pair will be 2m,, to an accuracy
much better than the detector resolution.

The decay rates of the 3$ states are given by

22 2 2—2C
2mg—mz sin“Oy

6m[(4m5—m3)*+m3T%](C

r'’s—Z° Higgs)=

—sin?0y,)?

2ma?|Y0)|X(P2+3m2)P

2m5—mj,

3my[(4my—mZ ) +mZT%](C—sin?6y, )

2__
res—nhy)=" 2 alaly(0)?,

(7.4)

mo
2_ C —cos?6
LCS —hhz%=T—2 g2a|p(0)* | — .
2m} C —sin%gy,
- 161ra2m2| (0)/? mi Ty, —C
rCS—7f)= : v s Qf e Y fo ,
3[(4mg— 2+miry] mg C —sin“0y,

where the last two expressions do not include threshold
effects, h stands for a huon, P is the momentum of either
of the decay products, the sum in the last term is over
colors and chiralities of the outgoing fermions, and
C=0 (C=1) for quirkonium made from Q, (Qg). Fig-
ure 5 shows the various branching ratios for quirks of
mass up to 1 TeV. The easy identifiability of lepton pairs
whose invariant mass will be consistently twice the quirk
mass, together with the relatively large branching ratio,
implies that lepton pairs will be the most easily identified
signal of quirk production.

VIII. EXPERIMENTAL SIGNATURES

The unpolarized cross section for quirk pair produc-
tion is given by

ra’s(3—B2)B

e 50)=
clff—e0 glls —m3)?+miry]
T,,—CQ, |’
X2 fmz Sf.fo , (8.1)
C —sin“0y,

where s is the square of the center-of-mass energy, 3 is
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FIG. 5. The various branching ratios of the 3S quirkonium state. The solid (dashed) lines correspond to left-handed (right-handed)

quirks.

the velocity of the outgoing quirks, and the sum is carried
out over the two chiralities of the fermions. If the quirks
are light enough, they will appear in Z decay. Its partial
width into quirks is 4(C —cos?0y,)? times that for one
neutrino species if the quirks are not too close to half the
Z mass. All quirk events would result in quirkonium,
which would decay primarily to pairs of particles with a
mass twice the quirk mass. If the quirk mass is not much
bigger than about 43 GeV, these events should be
numerous and easily separated from standard Z decays.
There is no significant physics background to worry
about. We therefore conclude that LEP puts a limit on
the lightest quirk of

mgy>43 GeV . (8.2)

When LEP II begins operation at V's up to 200 GeV,
higher quirk masses will be easily detectable. For quirk
masses in the range 40-95 GeV, the cross section to
quirks is between 1 and 3 pb. When we include the 75%
probability that the quirkonium ends up in a S state, to-
gether with the branching ratio to muons, the effective
cross section to muons lies in the range 0.03-0.10 pb,
which should be easily detectable. The background from
W pairs decaying to like-type leptons is only about 0.16
pb, and the cross section from Z pairs, one of which de-
cays invisibly while the other decays to leptons, is only
about 0.01 pb. The cross section for 7 pairs which then

both decay to muons is roughly 0.07 pb. All these back-
ground events should be readily distinguishable from
quirk events. If candidates are detected, the collider
could be run in the neighborhood of twice the quirk
mass, looking for the large resonance from the 1S state.

For larger quirk masses, only hadron colliders have the
energy to produce quirks. Unlike a lepton collider, a
hadron collider produces a large background from stan-
dard Drell-Yan production at all energies. The signal of
quirk pair production would be a peak in the invariant
mass of muon (or electron) pairs. Figure 6 shows the
cross section for quirk pair production times the branch-
ing ratio to muon pairs at the Fermilab Tevatron and the
SSC. The integrated luminosity for these machines is
effectively doubled if electron and muon data can be com-
bined. For left-type quirks, the Tevatron may be able to
detect quirks with a mass in the range 55-70 GeV if the
expected 14%/V E (GeV) resolution can be obtained on
the mass of the lepton pairs and an integrated luminosity
exceeding 50 pb~ ! is reached. No effective improvement
on the mass limit for right-type quirks is likely at the
Tevatron.

In contrast to the Tevatron, the SSC can easily discov-
er or exclude quirks of both right and left type. If the
SSC can attain design luminosity, and if 1% resolution
can be attained on the invariant mass of muon and elec-
tron pairs, there is no reason the SSC could not detect or
discover quirk pairs throughout most of the probable
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range of parameter space. Within a decade, we could
convincingly confirm or exclude this model.

IX. CONCLUSIONS

The phenomenological successes of the standard model
at currently attainable energies carry with them no
guarantee of uniqueness. Models such as color SU(5)
demonstrate that even surviving unbroken symmetries
can be concealed if their quantum numbers are not car-
ried by the light fermions, and that natural hierarchies of
symmetry breaking can occur at TeV scales without fine-
tuning in the scalar sector. There is ample room for new
and surprising physics far below the hypothetical GUT
scale.

In earlier work on these models attention was focused
on the gauge bosonic sector, which has proved so helpful
to our quantitative understanding of the standard model.
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FIG. 6. Cross section times branching ratio into muons for
quirk production at the Tevatron and at the SSC, as a function
of the dimuon invariant mass. The solid curves are o X B for
left-handed quirks in pb, the dashed curves are the correspond-
ing curves for right-handed quirks, while the dotted curves
show the expected Drell-Yan background (do /dm) in pb/GeV,
where m is the invariant dimuon mass.
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However, the results of the current work suggest strongly
that the quirks will be the lightest carriers of net hue, and
that their production (or absence), will be the first and de-
cisive test for models of this type.

If, on the other hand, and in defiance of our expecta-
tions, the exotic gauge bosons turn out to be as light, or
nearly as light, as the lightest quirks, this will signal a
cancellation between quirk masses (to evade the kaon
bound). Such a cancellation might be a clue to some new
underlying symmetry in the quirk mass matrix, and since
the off-diagonal blocks of this matrix are simply the
SU(2) -breaking quark masses, this symmetry might also
explain why the first two generations of quarks are so
light compared to the electroweak scale.

The color SU(S) model provides a simple extension of
the standard model at the weak scale. The interactions of
the new fermions and gauge bosons are predicted by the
theory, but their masses are not. Masses in the range of
the weak scale are to be expected, but the form of the in-
teractions is such that it is not surprising that the new
particles have not yet been found.

In this paper we have argued that cosmological and
flavor-changing constraints on this model imply that it
will be tested at planned colliders. Big-bang nucleosyn-
thesis implies that the heavy new fermions and gauge bo-
sons cannot all be made heavy. Mixing of the neutral
kaons further indicates that the new fermions will be
lighter than the new Z' gauge boson, and will be the most
visible consequences of the theory. These quirks have
charge 1 and are bound together by a new strong
confining force. Searches for the leptonic decay products
of quirkonium at LEP II will probe quirk masses up to
near the beam energy. Planned hadronic colliders will
extend this search into the TeV region for quirk masses.
Either quirkonium will be found or the model will be-
come untenable.
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APPENDIX A. CALCULATION OF THE SU(2)y
CONFINEMENT SCALE

In this appendix we use various experimental and
theoretical inputs to determine the low-energy running
of the SU(2), gauge coupling constant, and hence
the hue confinement scale A,. This is, of course,
renormalization-scheme-dependent quantity. We choose
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to work in the MS scheme. The gauge coupling
a=g?/47 depends on the renormalization point u ac-
cording to

3
d alp) - a(p) alp)
dinu? | 4m 41 41
4
+o | |&u) ] (A1)
47

where for an SU(N) theory with 7, fermions and no sca-
lars [13], a=4N—3%n, and b =%NZ—‘—33an+nf/N.
We define A by the approximate solution to the two-loop
equation (A1):

~a In(u?/A?)+ gln[ln(;ﬂ/m ]

alu)
~atn(p2/A?)— 2 | o | H8) (A2)
a 4
or
4r A2 | (a7
— ~ | 2 b/a
exp ) 2 ar a®’? .

At any scale u we will adopt an effective theory by
keeping only those particles with masses less than u.
Matching the theories below and above u=M involves
matching the values of a in the two theories at the scale
M. If the theory above (below) M has coefficients a |
(@_)and b, (b_) in Eq. (Al), making a continuous at
the threshold M requires the two A’s to be related by

A%
MZ

a_

a4

((l+)

Az
M2

b+/a+: b_/a_

(a_

b_/a_—b_, /a
a(M) o

. (A3)

By iteratively applying this formula at successive thresh-
olds we can calculate the value of A at any scale. Sup-
pose for simplicity that the quirks lighter than the X bo-
sons have a common mass mg, while the rest have a com-
mon mass My, so my S My =M,. We being by calculat-

ing A for QCD with five flavors, using the measured
J

I

H (hueball)
o o

h q
(c) Eg‘;;g.@ .
h q

FIG. 7. The varous steps in deriving the effective operator
leading to hueball decay into a quark-antiquark pair.

value of the QCD coupling. We then match at the top
mass to obtain A for six-flavor QCD. The next threshold
for QCD is at My, above which the running of the cou-
pling is due to all the gauge bosons of SU(5) with six light
flavors. Now above M, both the SU(3)¢ and SU(2)4 cou-
plings run as an SU(5) with six flavors, so if they are to be
equal they must in particular match at M. That is how
we arrive at the value of A in the SU(2), sector just
below M,. From M, down to My the hue sector cou-
pling also runs like an SU(S), but with only the light-
quirk flavors. At My we match to SU(2)y with the same
small number of quirks, and finally at mg we obtain the
A, appropriate to SU(2), without any light quirks; that
is, the desired confinement scale.

For concreteness, assume that four of the quirks are
heavy and two are light. Then the value of A, at low en-
ergies can be expressed as

A, . 3 B 51/121 100 |V M, 4/11 mg 2/11 s/44 My, 1/44 3(100) —87/253
100 P | T1ay(100) | |22 m, M, 100 My 100 4
107/1181 —7977/16555 —1842/8041 4747 /7480 —89/968
a3(m,) a3(Mx) a5(MQ) az(Mx) aZ(mQ) (Ad)
41 4 47 4 47 ’

where we have included the one-loop dependence on the mass of the colored scalar Y5 (and 100 means 100 GeV).

APPENDIX B. EFFECTIVE HUEBALL DECAY OPERATORS

We first evolve the quark-antiquark decay operator @ 4,7 Shown to lowest order in Fig. 2(a). At energies below the X
mass, the X interaction appears an an effective four-point interaction of the quarks and quirks, as in Fig. 7(a). We keep
only those terms which connect to d;;dp;, since only they can contribute to (f)qa, and obtain the four-fermion interac-
tion
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—g?

(04—fermi0n( MX )= 2M§

ViU, (8,P_y*d,)(d,P,y,Q)+H.c.

4 (B1)
_ 4mas . _ -

__M—I%I/‘-IUJJ'(QJP_QI )(d,P+dJ )+H.C. N
where P, (11+7y5)/2 is the chirality projection operator, d; is the down-type quark field for family i, Q; is the Ith quirk
field, and g5 is the gauge coupling of the X boson on the scale M.

At lower energies, we need to renormalize this effective interaction by considering the effects of attaching huons and
gluons to the quirks and quarks. To one loop this operator runs according to

d 1n(94*fermi0n . 9 1

— —Za,. B2
d Ing? 1672 7% (B2)

With six quarks and two quirks lighter than the X, the couplings a; and a, run according to

d Ina, 3 d Ina, 7
S=—5-a, and ———=———aqa;, (B3)
dlnu 27 dInu 4
sO
d1InO,_¢mion=12d Ina,+4d Ina; . (B4)

Hence, O4_ . mion at any scale u < My is given by

AT

e ay(w)* Ty () fas(My ¥V U, (Q,P_Q,)(d,Pd;)+H.c. (BS)
X

(94 - fermion( 122 )=

Next, we integrate out the quirk which appears in the one-loop diagram of Fig. 7(b) to obtain the operator connecting
two external huons to two quarks. Because we are interested in the decay of the 0" " glueball, we keep only the scalar
part:

viu, -
0, (mo)= 3 ——L(d,P_d)ay(mg HEH,s(mg V¥ Ty (mg ) fas( My )%+ H.c.
T 12M M3
-1
:(./I/L )ij 5 2 4/7 3/8 3/56
12M2 (le—dj )az(mQ )Haa3(mQ) az(mQ) a(Mx) +H.C. (B6)
X

Finally, we run this operator down to the hueball mass according to loops such as those shown in Fig. 7(c). As
demonstrated by Grinstein and Randall [14], the product of the  function with H 2 does not rescale. To leading order,
this means that HX(m H)=Haz(mQ)-a2(mQ) /ay(mg). When we also take into account the rescaling of the external
quark lines, we find

(m=h,;

O, (my)=
T T M

- (d;P_d;)H}ay(mp )y (my) > Pay(m, ¥ % ay(m, 3%a(My)*/**+H.c. (B7)

The effective interaction (B7) will contribute to hueball decay, but it is difficult to determine the matrix element of H?
between the 07 hueball state and the vacuum. If we treat the hueball as a weakly bound state of two on-shell huons,
then the decay rate to quarks will be given by

m|$(0)]?

T(H—d,d,)= .
127 M3

|./M,,71 2a3(mH )24/23a2(mH )2a3(mt)16/161a2(mQ )3/4a5(MX )3/28 , (B8)

where 1(0) is the overlap wave function for the two huons. This approximation is not necessarily very accurate, but it
does give us some idea of the decay rate.

We proceed similarly for the two-photon decay operator O of Fig. 2(b). We integrate out the quirks, and then re-
scale the operator down to the hueball scale. After the first step we find the effective interaction

almg)ay(mg)

Opp(my)=
ree 180m

[L(F,, F*)(H 4opHZP)+ (F, HY P+ L€

mBFWH;‘B 2+ i(emBFWFaB )€,y HIPHI] -

32 a

(B9)

where a is the electromagnetic coupling.
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Rescaling this operator down to the hueball mass is nontrivial because the effective Lagrangian contains several
operators which rescale in different ways.
We first decompose the various interactions into irreducible parts, as follows:

— 1

2 €uvapl €7V F, F, )+ (two-index tensor piece)+(four-index tensor piece) .

(B10)

FquaB=T12(g,uang_g,uBgva )(FapFaP)

The product of two H’s can be similarly decomposed. Each of these operators will renormalize multiplicatively, and
they will not mix with each other.

The symmetry properties of the pseudoscalar and four-index pieces assure that they cannot annihilate the 0" * hue-
ball, but the two other operators can. The product of the two-index tensor parts gives zero, however, when we calculate
thg matrix element between a hueball and two on-shell photons. Hence we need only keep the scalar parts of F? and
H*:

az(mQ )az(mQ )

HZF? .
480m} ¢

@Fp(mQ )=

(B11)

It is relatively simple to rescale these, since a(u)F*(u) and a,(u)H2X(1) once again do not rescale:

HZ!F?* .
480m} ¢

@FF(mH)=

(B12)
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FIG. 3. The two-dimensional parameter space spanned by
the quirk and X masses, showing the various astrophysical and
experimental constraints. The shaded regions are excluded by
nucleosynthesis bounds, by requiring perturbativity, by kaon
mixing or by UA2 jet data. The region below and to the left of
the dashed line will be accessible to CERN LEP 11, whereas the
regions below and to the left of the axes in this figure are al-
ready excluded by collider results.



