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The possibility that neutral pseudo Goldstone bosons of "enhanced" technicolor theories can imi-

tate neutral-Higgs-boson couplings to the Z is considered in light of p-parameter constraints. A

rough estimate indicates that couplings of neutral pseudo Goldstone bosons to the Z induced by ex-

tended technicolor interactions are unlikely to be of conventional Higgs strength.

I. INTRODUCTION

One facet of the effort to unravel the mechanism of
electroweak symmetry breaking (EWSB) is the search for
physical spin-0 particles associated with EWSB. Possible
pseudo Goldstone bosons' (PGB's) of technicolor
theories, fundamental Higgs scalars, ' and composite
Higgs scalars are probably the most prominent examples
of such particles. In the absence of other input (e.g., the
discovery of superpartners) the discrimination among
these sorts of particles based on the interpretation of data
would have to rely on an understanding of their allowed
couplings and coupling strengths. Couplings to the Z are
of particular relevance in this context given ongoing ex-
periments at CERN LEP and the SLAC Linear Collider
(SLC) and planned experiments at the Superconducting
Super Collider (SSC) and CERN Large Hadron Collider
(LHC). For instance, the coupling Z "Z„Ho has been
used at LEP to search for the standard-model Higgs bo-
son up to masses of about 40 GeV, and will be used at
LEP 200 to search up to masses of about 80 GeV.

In this paper we use "technicolor" to refer exclusively
to theories in which the technicolor interactions are vec-
torlike (as opposed to chiral, as in, e.g. , the "technicolor
limit" of a composite Higgs model), and the technicolor
condensates necessarily spontaneously break
SU(2)L XU(1)r. The results in this paper are to be taken
to apply to such theories. It is possible that a general
chiral theory could behave quite differently, and our re-
sults certainly do not apply in general to composite Higgs
models where the (ultracolor) condensates do not neces-
sarily break SU(2)L X U(1)r. In technicolor theories
without extended technicolor (ETC) interactions, the
couplings of neutral PGB's to the Z are considerably
different than those of Higgs scalars. " By explicit
computation, in general there is no Z„Z"Po coupling
and in a "one-generation" ("n-generation") model of
technifermions there is no Z„PDB Po coupling —see Ref.
10 (Ref. 12). In Ref. 13 the most prominent symmetries
restricting these couplings, present in models with
SU(NTc ) technicolor gauge groups, were identified to be
CP and "doublet parity, " where doublet parity is a prod-
uct of Z2-flavor symmetries. ' Since it is possible to form
CP-even neutral PGB's in technicolor theories in analogy
to K, of the neutral kaon system (see Ref. 15), CP alone is

not sufficient to forbid such couplings in general. The
two symmetries together are sufficient to forbid any
Z„Z"Po coupling. It was found, though, that the
Z„POB~PO coupling can arise at full strength in atypical
models in which neutral PGB's carry nonzero I3 of vec-
tor SU(2), but is otherwise forbidden. (See Ref. 16 for a
recent complementary study of PGB-y-Z couplings. )

In any case ETC interactions (or their analogs) are re-
quired in order to give quarks and leptons mass. ' '
ETC-induced four-technifermion interactions potentially
can make the desired discrimination difficult because they
are not expected to respect CP or doublet parity, and so
can induce couplings "Higgs-like" at least in form. Until
the advent of technicolor theories with enhancement, ' '

ETC-induced perturbations were thought to inAuence
PGB masses by at most -40 GeV, ' ' ' and apparently to
have little effect on PGB couplings. ' Enhancement of
technifermion condensates was proposed in order to raise
ordinary fermion masses above common expectations for
a given ETC scale, and thereby alleviate difficulties satis-
fying fIavor-changing neutral-current bounds. ' ' It was
realized that by the same token PGB masses would be
raised as well. Reference 13 contains a detailed exam-
ination of PGB interactions to j7vst order in ETC pertur-
bations. It was found that neutral PGB-Z couplings,
Higgs-like both in form and strength, even for relatively
light neutral PGB's, might be induced in ETC theories
with enhancement. Furthermore, the 8' and Z masses
were not unduly shifted under the circumstances of
Higgs-strength ETC-induced PGB-Z interactions. Be-
cause the results were obtained from a phenomenological
Lagrangian approach, they are arguably of more general
applicability, in distinguishing the description of EWSB
by means of a nonlinear rather than a linear o. model.

In this article we examine constraints on PGB cou-
plings from the p parameter, working to second order in
ETC perturbations. Technicolor without ETC was ar-
gued to give p=1 at the outset. Analysis of deviations
from p=1 begins with Ref. 24, and includes Refs. 25 —27
in enhanced theories. Many analyses have appeared re-
cently, which bound also weak-isospin symmetric radia-
tive corrections. We will argue that p-parameter con-
straints imply that it is unlikely that neutral PGB's can
mimic Higgs particles through ETC-induced couplings in
Z interactions. Thus in the event of experimental obser-
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vation of neutral spin-0 particles with Higgs-strength
couplings to the Z, we expect that the particles will not
be PGB's of technicolor.

II. THE BOUND

Our goal is to relate the strengths of neutral PGB-Z
couplings in a given theory to 5p, computing to lowest
order in electroweak couplings. For simplicity, we work
with technicolor gauge group SU(XTc), with ND weak
doublets of left-handed and 21VD weak-singlet right-
handed technifermions. Our reasoning should be valid in
any (vectorlike) technicolor model because our con-
clusions follow basically from simple symmetry con-
siderations and power counting, in factors of 4~ as well
as dimensional scales. The ETC-induced four-
technifermion operators of most interest are of the form
Jg'JB„where Jg'~B~ is formed from left- (right-) handed
technifermion fields. Here, "techniflavor" indices have
been suppressed. At first order current-current operators
of this form alone induce couplings of the Z to one or two
(color and charge) neutral PGB's in theories without ex-
otic hypercharge assignments. ' Also they are the only
current-current operators which, as argued later, give rise
to low-energy effects which almost certainly can be
enhanced strongly. Perturbations corresponding to
operators of the form JpJB„cannot aff'ect the p parame-
ter until second order when working with corrections
lowest order in electroweak gauge couplings. In the limit
g'=0, this is evident from the fact that JgJB„ is EI = 1

or 0 while, e.g. , m + —m & is BI=2 (cf. m + —m o).
The isospin referred to is the vector (custodial ) SU(2)
related to SU(2)L. The p parameter, here defined as the
relative strength of charged and neutral weak currents at
q =0, is approximately '

p, (0)= 1 — 5m(0),
Pl ~

where 5'(0) =n»(0) —m. »(0) is the difference of vacuum
polarizations for the 8'3 and O', . Clearly,
5p, (0)=p, (0)—1 can be calculated here by working in
the limit g'=0.

It is unlikely that custodial-SU(2)-violating interactions
can be nonperturbative while 5p, (0) is ~1%, unless
there is some form of fairly extreme fine-tuning. There-
fore, it will be assumed that b,IWO interactions can be
treated perturbatively.

Although we do not take this route here, we point out
that in order to calculate 6~, in principle we could
proceed by calculating vacuum polarization to all orders
in weak-isospin-conserving interactions, and then include
two insertions of AI = 1 interactions of the form
(1/AETC)[Jg'JB„]~~

~
(bI = 1) into it. Notationally,

[J"J ]~~ ~
is a current-current operator renormalized

ETC

at scale AE~c. In the vacuum-insertion approximation
the dominant dependence of [JgJB ]~~ ~

(XI =1) onZ~ (WE~c)

AE&c arising through anomalous scaling is the same as
that of [[TT]t~ ~] under the circumstances of

ETC
enhancement, T representing a technifermion field.

(Note that in the same approximation [JgJL„] and

[JgJB„]have vanishing anomalous dimensions. ) Though
one cannot trust the precise form of the result yielded by
the vacuum-insertion approximation, beyond the
vacuum-insertion approximation there is no known
reason to believe that the dominant dependence on AE~c
will differ appreciably, i.e., that strong cancellations
occur in the calculation of the anomalous dimension of
[JgJB„]to leave a net dependence on AETc much weaker
than the above. Therefore, assuming that vacuum polar-
ization at zero momentum is controlled by momenta of
order ATC, the dominant scaling of 5p, (0) with AETC is
roughly

5s.(0)-[&oil &r)I0&~~„,~]'/«ETCATC) . (2)

Remarks of this type first appear in Ref. 26. This form
can be inaccurate in theories with PGB's if the AI =0
component of PGB masses is due predominantly to ETC
interactions, because perturbative expansion in PGB
masses of the relevant diagrams is infrared singular. See
Eq. (4) below for illustration. At present, it is not possi-
ble to calculate 5p, (0) directly in terms of technifermions
and technigluons in a systematic approximation; there
are, however, calculations in the Pagels-Stokar approxi-
mation ' which provide useful information.

Instead, we adopt the following strategy. Because
5p, (0) is a low-energy quantity, its calculation can in-
stead be framed in terms of a phenomenological Lagrang-
ian X h. X h contains terms characterized by
AI =0, 1,2, . . . , which are to be used both for tree and
loop calculations. From the point of view of calcula-
tions using the elementary fields, i.e., technifermions and
technigluons, loops of PGB's are associated with virtual
modes which can propagate over relatively long dis-
tances. Now, we do not propose to calculate all contribu-
tions to 5p, (0) in a general or specific model. Rather we
will repeatedly take recourse to the position that different
contributions to 5p„(0) which are theoretically unrelated
cannot cancel appreciably. Of course there is a danger in
such an attitude in that two things theoretically unrelated
today may be related tomorrow. So, being mindful of
this type of possibility we shall proceed. What we do
wish to estimate are contributions to 5p which follow
purely from chiral symmetry and the presence of ETC-
induced neutral PGB-Z couplings in the phenomenologi-
cal Lagrangian. Then this will provide a rough lower
bound on 5p because we are assuming no substantial can-
cellation from other contributions.

The calculations will be done to second order in elec-
troweak couplings. Writing explicitly just two terms in
the ETC-induced phenomenological Lagrangian, which
are first-order refiections of ( I/AETc)[Jg JB„]-type opera-
tors,

(ETC)
Xph A ABCD UBC UDA

~BCD( " )BC( ~ )D~

where A, B,C, D = 1, . . . , 2ND are "techniflavor" in-
dices. ' The first-order ETC-induced PGB masses are
contained in A ~BCD. m (ETc)2

( 1 /f ) A with
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representing typical ETC-induced PGB mass squares.
Using Dashen's theorem and the vacuum-insertion ap-
proximation on the resulting vacuum matrix elements of
four-technifermion operators gives the ETC-induced
PGB mass-squared matrix proportional to squares of
(0~[TATB]~0)(A ). Tree-level PGB-Z couplings are

ETC

contained in interactions such as the second term B. The
chiral-symmetry-breaking scale, denoted AcsB, is charac-
teristic of the derivative expansion in X h, roughly,
8 —A /Acsi). ETC-induced PGB —gauge-boson cou-
plings then are typically enhanced in essentially the same
manner as PGB masses, and it is in enhanced theories
that one might expect that these couplings could be large,
perhaps of Higgs-like strengths.

As mentioned earlier, in the limit g'=0 in which we
can work to calculate 6p, the operators such as the B
operator which contain the neutral PGB-Z couplings
have only EI =0 or 1 pieces. Thus at the tree level the
chiral symmetries implicit in the use of the phenomeno-
logical Lagrangian cannot link the presence of neutral
PGB-Z couplings with any nonzero 6p, a purely AI =2
effect. But at one or more loops EI=2 effects can emerge
as a result of iterating EI = 1 parts of the B and A opera-
tors. [Note that effects of operators of the form [JgJB„],
while unenhanced in the vacuum-insertion approxima-
tion, can infiuence 5p, (0) at the tree level. ]

The graphs relevant for the calculation of one-loop
EI=2 effects can be grouped into three types. In the
first set only AI=1 PGB mass effects are included. In
the second set both AI=1 mass effects and couplings
contribute, while in the third only AI=1 couplings ap-
pear. The first set has been discussed in Ref. 24 in
unenhanced theories and in Ref. 25 in enhanced theories.
It typically dominates over the other two sets, as seen by
the following power-counting argument. Generically, the
first set gives

(
(1)(ETC)2 )2

5'(0) — '—, (,),
m PGB

(4)

where mp~'B ' is a AI =1 ETC-induced splitting of
PGB mass squares, and mp~B is AI=O. Ignoring loga-
rithms and cutting off the quadratic divergence of the
third set at AcsB, the second and third set are of the same
order, giving

(
(1)(ETC)2 )2

5'(0)—
(477) Acsa

where the relation B—3 /A&sB has been used in the form

8(bI =1)- m"" (6)m PGB
CSB

The effects of Eq. (5) scale as illustrated in Eq. (2). By
comparison of Eqs. (4) and (5) the corrections from the
second and third set are suppressed relative to those from
the first set by the ratio m /os /Acsa. Note however that,
in the limit m pGB /AcsB 1, appropriate for Higgs-
strength couplings, ' all three sets are roughly of the
same order. Also, when examined in more detail it is
difIicult to make a specific connection between the PGB
mass matrix and the couplings which govern, say,

Z„Z"P0 as an ETC-induced vertex. ' Therefore, it is
both convenient and adequate to work with the third set
of graphs alone to obtain a rough, but useful bound on
5p„(0).

The one-loop diagrams contributing to 5p, (0) are qua-
dratically divergent, requiring AI=2 counterterms for
renormalization. A rough lower bound on the renormal-
ized AI =2 couplings can be obtained by computing the
one-loop counterterms induced by the iteration of AI = 1

couPlings, and using AcsE as the ultraviolet cutoff. (The
situation is analogous to the problem of scalar field
masses in theories with fundamental scalars, where rough
lower bounds can be put on scalar masses by computing
the quadratically divergent mass counterterms and re-
quiring naturalness. ) Just as discussed in Refs. 35 and 36,
higher-order loop corrections are not suppressed here, so
one-loop results are only reliab1e in order of magnitude.
The study of quadratic divergences arising in nonlinear o.

models in calculations of 5p„(0) at one loop was initiated
in Ref. 37. That 5p„(0) at one loop can be quadratically
sensitive to scales above m ~ in extensions of the standard
model was first illustrated in Ref. 38.

Only the simplest neutral PGB-Z couplings will be dis-
cussed; such cases should be sufhcient for the order-of-
magnitude bounds we seek. These couplings are for
Category-A neutral PGB's, in the nomenclature of Ref.
13, defined by the condition that [T,Y]=0. Here, T r~

represents the broken generator corresponding to the
given PGB, T~ being a Hermitian generator of SU(ND ),
and Y is the diagonal matrix of the hypercharges of the
left-handed doublets.

The dimension-2 ETC-induced operators of the chiral
Lagrangian which contribute to the Category-3 neutral
PGB-Z couplings' are the 8 operator of Eq. (3) and

CABCD UBC UDA 2 D

EABCD UBC [ U (D„U)(D"U ) )D„+c.c.
(7)

We will obtain our lower bound by considering only the
contributions of the B operator to 6p, with the familiar
assumption that the contributions from the C and E
operators do not significantly reduce the order of the esti-
mate by cancellation. The one-loop graphs of interest are
illustrated in Fig. 1. Because we are interested in a real
order-of-magnitude bound with which to compare to the
experimental bounds on 6p, it is important not to omit
possibly significant numerical factors by too rough an
evaluation of these graphs. A precise calculation is facili-
tated by some expanded notation suited to electroweak
interactions.

Let a, I3, y, 5= 1, . . . , ND label the "doublet, " and
m, . . . , m& = 1,2 label the member of a "doublet"
(right-handed fields are also paired for notational ease).
In this notation B~~cD corresponds to Bam m&ym m& ~

expand

XD —1
2

0 J K
um Bm ym sm& X g b JKT)BTa55m m +m m&

J,K=O j=0 P r

(8)
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BA'B' ADBB' A'CB ( U D U)BA ( D)l, U)DCp (12)

of a form appearing in, ' but also operators such as

B„BCDB„BC D. UD A (D"U)BC (D„U)B.C UDA, . (13)p

These forms are consistent with spurion analysis (see,
e.g., Refs. 36 and 39). The factors appearing in Eq. (11)
are not surprising and are related in part to conventions
in the definition of Eq. (8). The coefficient of the counter-
term operator (12),

2
1 &csB

2f (4')
is typical; it exhibits no unUsual factors. Recall again
that a calculation for g'=0 is sufficient to calculate
5p, (0) here. To obtain the final estimate take
rnw- ,'gf ()/—N—D and

AcsB -4m f /Q—ND, (14)

FIG. 1. One-loop vacuum-polarization diagrams.

with the normalizations Tr( T T ) =25 . The B
induced PGB-Z couplings of interest are'

2+ &2

2+ND (P0 Imb(0)K+P3 Imb()K)Z"Z„ (9)

and

2+ &2

f8 g g ((PKg PL +PKg PL )I b03

+ ,'(P3 (3„P() —P—()B„P3 )ImbKL ]Z",
(10)

where the PGB field P corresponds to the generator
T ~J. We work in the Landau gauge. With g'=0 only
the divergence of Fig. 1(a) has a b,I =2 piece. Our final
simplification will be to consider only contributions from
the operators whose coefficients are biz. These should be
representative, and by familiar logic should suffice in ob-
taining a lower bound. The counterterm quadratic in the
bgis quadratic. ally divergent. (Quadratic divergences
can be identified conveniently using dimensional regulari-
zation as simple poles at D =2.) Cutting off the diver-
gence at AcsB, the required AI =2 counterterm is

5~(ETc)— 4g csBA

f' 4'

. 2 -

ND 1

(Imb JK )
J,K=1

N —12
D

+ g (1mb(0)K )
K=1

1X —(W", W,„+W2W2„) .
2

The complete counterterm involves not only the operator

the presence of the additional factor 1/3/ ND beyond the
results of Refs. 35—37 being argued for in generality in
Refs. 13 and 40. The bound is then

. 2 'N —1D

~5p„(0) ~ g (Imb )
ND f JK=)

N —1D

+ g (Imb00K )2 . (15)
K=1

This form is potentially misleading. In higher orders in
PGB loops the various terms entering here do not neces-
sarily appear with the same signs, as they do in Eq. (15).
Also, the effect of the C and E interactions of Eq. (7),
among others, shou1d be included. In general, the coun-
terterms do not depend precisely on the squares of PGB-
Z couplings, as seen for example by the easily verified re-
sult that the one-loop counterterm has no dependence on
Q2

From Eqs. (9) and (10) the ETC-induced Category-A
PGB-Z couplings of interest approach Higgs strength if
(8/f )(ImbKI ) or (8/f )(ImbKI )~1 (K,L =0 al-

lowed). Assuming that SU(2)c is badly broken in four-
technifermion interactions, as is probable given the large
splittings within the masses of ordinary fermion doublets,
these two conditions are equivalent. However, it is possi-
ble that the four-technifermion interactions are by and
large SU(2)c preserving, in which case the bound we have
obtained would be weakened. We can identify two types
of scenarios where this could be the case. First one might
imagine that there are many technifermions which do not
interact with ordinary fermions and their coupling s
among themselves are largely SU(2)c preserving. This
possibility seems to us theoretically rather ad hoc. The
second possibility entails having all ETC operators, in-
cluding those which give ordinary fermions masses, being
close to SU(2)c preserving, and all large violations of
SU(2) c being due to hypercharge interactions. This
scenario would, at the least, require enormous enhance-
ment of hypercharge induced SU(2)c violation in order to
explain the quark spectrum. Such enhancement may be
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possible in ETC-enhanced theories with a certain amount
of fine-tuning. Having mentioned what appears to us as
the possible singular exceptions to the applicability of our
bound, we proceed.

From our bound, if one single coupling approaches
Higgs strength, ~5p, (0)~ & I/ND =1% for ND =10, ' the
reference value of Ref. 13. This is marginally acceptable
by itself; it would correspond to nearly a two-o. effect.
However, there are O(ND ) additional terms in Eq. (15).
Although there are obvious uncertainties in the absence
of a particular model of ETC interactions, it appears un-

likely then that acceptable deviations from p~(0) =1 can
be found in models with ETC-induced neutral PGB-Z
couplings of roughly Higgs strength, unless new theoreti-
cal considerations can suggest the possibility of large can-
cellations of the type we neglected.
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even a factor 2, for example, one might very reasonably ob-
tain Higgs-like couplings for the PGB s with just N&=4.
Also if a techni-Glashow-Iliopoulos-Maiani mechanism is in

place, then one could have a very large {—1 TeV) scale for

the PGB masses, which in a theory with Nz =4 doublets
could result in Higgs-like couplings for the PGB's. The light-
est of these PGB's might still lie considerably below 1 TeV.
D. Kennedy and P. Langacker, Phys. Rev. Lett. 65, 2969
(1990).


