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In multi-Higgs-boson extensions of the standard model, tree-level flavor-changing neutral currents ex-

ist naturally, unless suppressed by some symmetry. For a given rate, the exchanged scalar or pseudosca-
lar mass is very sensitive to the Aavor-changing coupling between the first two generations. Since the
Yukawa couplings of the first two generations are unknown and certainly very small, bounds which rely
on some assumed value of this Aavor-changing coupling are quite dubious. One might expect the size
(and reliability) of the Yukawa couplings involving the third generation to be greater. In this paper, we

consider processes involving ~'s and 8's, and determine the bounds on the Aavor-changing couplings
which involve third-generation fields. The strongest bound in the quark sector comes from 8-8 mixing
and in the lepton sector, surprisingly, from p —+ey. Et is then noted that the flavor-changing couplings in

the quark sector are related to those in the lepton sector in many grand unified theories, and one can ask
whether an analysis of rare ~ decays or rare 8 decays will provide the strongest constraints. We show

that rare 8 decays provide the strongest bounds, and that no useful information can be obtained from
rare ~ decays. It is also noted that the most promising decay modes are 8~Kg~ and 8,~p~, and we

urge experimenters to look for rare decay modes of the 8 in which a ~ is in the final state.

I. INTRODUCTION

The standard model of the electroweak interactions has
been extremely successful phenomenologically, and yet
the large number of free parameters, as well as the large
number of unanswered questions, has led to a strong be-
lief that the standard model is incomplete. For this
reason, there have been many studies of possible exten-
sions of the standard model, ranging from simple exten-
sions such as additional Higgs doublets to more compli-
cated extensions such as supersymmetry and technicolor.

One feature that tends to occur in most extensions of
the standard model is the presence of tree-level Aavor-
changing neutral currents (FCNC's). In fact, even in the
simplest extension, with just the addition of a Higgs dou-
blet, such currents will occur. When analyzing such
models, virtually all theorists require that tree-level
FCNC's, in both the quark and lepton sectors, are absent.
This requirement is imposed in different ways; often a
discrete symmetry is added to the model which eliminates
these unwanted currents. In fact, many have examined
the effects of virtual particles on one-loop FCNC's to
constrain physics beyond the standard model, again as-
suming that this new physics does not give tree-level
FCNC's.

The elimination of tree-level FCNC's often requires ad-
ditional assumptions. Why do model builders insist on it
so frequently? Many point to the small value of the KL-
Kz mass difference, arguing that any tree-level contribu-
tion must be suppressed by making the exchanged parti-
cle very heavy; the small value of muon-electron transi-
tions (either in prey or pX~eN) extends this argu-
ment to the lepton sector. Another reason is more
psychological —the requirement that tree-level FCNC's

be absent led to the prediction of the charmed quark and
to the general acceptance of the standard model, and it is
natural to suppose that it applies to the entire model.

We feel that the assumption of no tree-level FCNC's
may not be as necessary as generally believed. In a model
with an extra Higgs doublet, for example, it is often stat-
ed that the mass of the extra scalar must be greater than
100 TeV, to avoid too large a contribution to the I(1-Kz
mass difference [1,2]. This statement assumes, however,
that the Aavor-changing coupling is as large as the b-
quark Yukawa coupling. A more natural value for the
coupling would be [3] the geometric average of the d
quark and s-quark Yukawa couplings, which gives a
bound on the exchanged particle mass of 1 TeV. Even
that applies only to a pseudoscalar exchange; for a scalar,
the bound is 300 GeV. Given the uncertainty in the Yu-
kawa couplings of the first two generations, and the fact
that Yukawa couplings in the standard model span six or-
ders of magnitude, it is not implausible that the coupling
would be somewhat smaller, thus making the bound even
smaller. (In many grand unified theories, effective non-
renormalizable interactions at the Planck scale [4] give

Myra /Mp~ 10 MeV uncertainties in all masses,
making reliance on the value of the down-quark Yukawa
coupling quite dubious anyway. ) In addition, the infor-
mation one obtains from this result would apply only to
mixing between the first and second generations. Since
Yukawa couplings in the standard model vary with mass,
one might expect FCNC's couplings to also vary with
mass, and thus FCNC's involving the third generation
(fiavor-changing B decays or r decays) could be consider-
ably larger. Yet virtually all analyses of the effects of
tree-level FCNC's in extended Higgs models have only
addressed the first two generations [5].
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In this paper, we examine all the bounds that arise on
flavor-changing couplings in extended Higgs models from
an analysis of rare ~ and B decays. These bounds will all
consist of an upper limit on the couplings (which are pro-
portional to the exchanged scalar or pseudoscalar mass).
The objective here will be to determine which of the
many possible processes are most sensitive to these de-
cays, and thus offer the greatest chance of success.

We will then note that in grand unified theories, the
quarks and leptons are often in the same representation.
This implies that their FCNC s couplings could be relat-
ed. In other words, a ~ to p transition would be related
to a b-quark to s-quark transition. Thus, one will be able
to eliminate the b-quark Aavor-changing couplings in
favor of the w flavor-changing coupling. In the simplest
grand unified theories, the couplings will be equal at the
unification scale. The principle question we will address
is: which set of decays (b or r) will give stronger bounds?
In other words, would one be more likely to detect them
in ~ decays or in B decays'? The relevance of this question
to the current discussion over whether to build a ~ facto-
ry or a B factory is obvious. Furthermore, by examining
the various bounds, we will be able to determine which
processes are most important, and which (in the context
of this model) are not.

In Sec. II, we examine the model itself, and discuss the
most reasonable value for the couplings; we also examine
the relationship between the Aavor-changing ~ and &-

quark couplings. Section III contains an analysis of lep-
tonic decays, including three-body decays, radiative de-
cays, and p-e conversion in nuclei. In Sec. IV, we consid-
er 8 and 8, decays, including three-body decays (which
are sensitive to scalar exchange), two-body decays (which
are sensitive to pseudoscalar exchange), as well as 88-
mixing. In Sec. V, our results are discussed and in Sec.
VI, we give our conclusions.

II. FLAVOR-CHANGING NEUTRAL CURRENTS

We first consider the simplest possible extension of the
standard model —the addition of a Higgs doublet. Since
we are interested in neutral currents only, effects of the
charged Higgs field will be ignored. The most general
Yukawa couplings are given by

(ouija diL djR Wa +~ijbdiL jR 4b ++
where d; =(d', s', b'), p, and itpb are complex neutral
fields and the A,;.k are arbitrary. Similar terms can be
written for the charge 2/3 quarks and for the charged
leptons. In general, the real components of the Higgs
fields will acquire vacuum expectation values u and ub.
We can then redefine two new scalar fields H and P as

cospp +sinppb i))= sinpp +cosppb

where tanP=vblv, . The new fields H and P have real
components with vacuum expectation values
v =Qv, +vb and zero, respectively. Note that in the
standard model, u =246 GeV. The Yukawa couplings
can be rewritten in terms of these new fields:

(f,jd Ldj'RH+g, jd,l d,'RP)+H. c. ,

where the f, an"d g; are still arbitrary. The mass matrix
is then given by

M,, =f, v .

When this matrix is diagonalized, we find, in terms of
quark mass eigenstates,

[mddI dR(&2H/v)+m, sI sR(+2H/v )

+mbbl bR(&2H/v)+h; d;I d)RQ]+H. c. ,

where again, the h," are arbitrary. We see that the H field

is the Higgs field of the standard model; the P field is sim-

ply an additional scalar which does not contribute to
symmetry breaking or to quark and lepton masses; its
couplings are, of course, completely arbitrary.

For simplicity, we will neglect mixing between the H
fields and the P field. This will not afFect our bounds
significantly if the mixing is small; the effects of such mix-
ing on the results are discussed in the Appendix. The. H
field is then identical to the standard-model Higgs field
(with the imaginary component being the Goldstone bo-
son absorbed by the Z). The complex P field is composed
of a scalar Ps and a pseudoscalar PR. The couplings of
the scalar are given by

and those of the pseudoscalar by

AlJ
di Xsdj 4p

2

with similar terms for the leptons. For simplicity, we will
assume here that the Yukawa coupling matrices are Her-
mitian (or at least that the deviations from hermiticity
are small).

These extra scalar s will lead to tree-level fiavor-
changing neutral currents through scalar exchange. The
rate for such processes will generally be proportional to
h;J hkl /m &. It is important to note that some processes,
such as two-body B decays, will only occur through pseu-
doscalar exchange, and others, such as three-body B de-
cays, will only occur through scalar exchange. Some pro-
cesses, such as ~ decays, occur through both. This has
led to some misunderstandings in the literature. In the
classic work of Shankar [I], many processes (again, in-
volving only the first two generations) were listed in a
table with the accompanying bound on the scalar mass
(assuming the couplings were all equal to the b or r Yu-
kawa coupling). In some cases, the bound refers to the
scalar mass and in some, it refers to the pseudoscalar
mass. In processes (such as p decays) with both, it was
assumed that the masses were equal. Although this was
stated clearly in the text, the table gave the impression
that the various modes were competing with each other.
This is not the case —the process %~pe for example,
only bounds the pseudoscalar mass, whereas the process
%~~pe only bounds the scalar mass. Since the masses
are expected to be different, these two processes do not
compete with each other. In this paper, we will consider
bounds on the scalar mass and bounds on the pseudosca-
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p quark
quark-

(gy )b

h lepton
lepton-

(g )
(2)

The early estimates will correspond to g,"= 1. Substitut-
ing Eq. (1) into Eq. (2) gives the "most natural value" for
the couplings. This value for g~~""" is Qm;I /mb and
that for g,

"~""is Qm, m~ /m, .

lar mass to be completely separate, and give results for
each. In experiments looking for rare decays, it is crucial
to keep this distinction in mind when quoting bounds on
scalar masses.

We now turn to the value of the coupling constants,
h; """for the charge —1/3 sector and the corresponding
couplings h 'p"" for the lepton sector. Although they are
in principle arbitrary, we do have some theoretical gui-
dance. When citing bounds, experimenters calculate the
bound using couplings of the order of the gauge coupling;
their bound is then cited in the form mph;J/g. This
makes the mass scale appearing in the bound quite large.
However, not only is there no reason to expect these Yu-
kawa couplings to be as large as gauge couplings, but
there is every reason to expect them to be much smaller.
After all, fourteen of the fifteen Yukawa couplings in the
standard model are orders of magnitude smaller than the
gauge couplings, and those involving the first generation
are five orders of magnitude smaller.

What is the most reasonable value for these couplings?
Some early authors [1,5] chose the following approach:
since the most conservative approach is to take all cou-
plings to be comparable, and since in some sense the
heaviest fermion sets the scale for the whole matrix, we
can assume that each element is given by the Yukawa
coupling of the heaviest quark or lepton times some mix-
ing angle. As we do not know these mixing angle factors,
we set all of them to 1. Thus, all of the h; are given by
the Yukawa coupling of the b or ~. Many of the bounds
cited in the literature for the mass scale of the exchanged
scalar assume this coupling. This approach was strongly
criticized in Ref. [3]. They argued that the assumption
that all of the couplings are comparable was not reliable,
since one of the most conspicuous features of the fermion
mass spectrum is its hierarchical structure. They showed
that if one assumes that there is no fine-tuning (in which
large terms add together to make a small term), then
there is a small set of phenomenologically sound Yukawa
matrices, and that all of these possibilities lead to Yu-
kawa couplings of the. form

&;~"""=Q(gy );(gy ), ,

where (g~ ); is the Yukawa coupling of d, . A similar term
arises for the leptons. In other words, the Aavor-
changing coupling of the additional scalar to, for exam-
ple, the b and s quarks, should be of the order of the
geometric mean of the Yukawa couplings of the b and s
quarks. This assumption gives the observed Kobayashi-
Maskawa (KM) angles without fine-tuning.

Although we will keep our results general, we will con-
sider the choice in Eq. (1) to be a "preferred" value, and
will also express the results in terms of this value. To this
end, we define

Is there any connection between the fiavor-changing
neutral-current couplings in the quark sector and those in
the lepton sector? In general, there is not, but one might
expect a connection to exist in grand unified theories. In
SU(5), for example, the b and the w are in the same repre-
sentation and have the same Yukawa couplings (at the
unification scale Mx). If one adds a Higgs 5-piet to the
model, then the Aavor-changing neutral-current cou-
plings in the quark sector and in the lepton sector will be
identical; i.e., the hb, coupling will be equal to the h„
coupling, etc. How generic is this result. In models with
a "grand desert, " the b to r mass ratio at Mz (obtained
by extrapolating the observed low-energy value to high
energies) is unity; i.e., the Yukawa couplings of the b and
of the ~ are equal at Mz. If this occurs for group theoret-
ic reasons [as it does in minimal SU(5) and SO(10)], then
FCNC s couplings in simple extensions of the Higgs sec-
tor will be equal at Mz. Even in many intermediate scale
models, as well as in supersymmetric models, the success-
ful prediction of the low-energy b to ~ mass ratio is not
significantly affected, thus the equality of the FCNC's
couplings also should not be. However, in models with
family group symmetries, or in models with much more
complicated Higgs structures [such as SU(5) with 5-plets
and 45-plets], one would expect a different relationship
between the couplings, if any. Throughout this paper, we
will assume that the Aavor-changing neutral-current cou-
plings of the quarks equal those of the leptons at M~, as
expected in the simplest grand unified theories (GUTs).

If the couplings are equal at the GUT scale, we must
renormalize them down to the electroweak scale. The
renormalization-group equation for each coupling will be
of the general form

dh;
p =h; (C a +C,a, )+C hq(a

+Ch. klhj g hilhkI

where the a's are the gauge couplings and the C's are
easily calculable coef5cients. In the cases of interest, the
h; will always be smaller than the gauge couplings (espe-
cially smaller than the strong coupling), so the last term
can be dropped. The o. term is identical for both quarks
and leptons, so it will drop out of the ratio. The a, term,
of course, only applies to h;q""". The remaining equation
is identical to the renormalization-group equation for the
conventional Yukawa couplings in the standard model
(under the same approximations). As a result, the ratio
of h,q"""to h,-"p"" should be the same as the ratio of the b
to ~ Yukawa couplings, i.e., the ratio of the b mass to the
r mass (see Ref. [6] for an explicit derivation):

h quark
1J

I lepton
1J

Virtually all of the contribution to this ratio comes from
the effects of the SU(3) coupling.

One minor caveat must be mentioned. In deriving the
b to ~ mass ratio in grand unified theories, one runs the
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couplings down to Q =4m&, since the b mass is "mea-
sured" by the threshold for b-pair production. Here, we
only need to run the coupling down to Q =m&. This in-
troduces a correction to the right-hand side of Eq. (3)
which is given by

a( m~)
12/23

a(4mb )

The factor of 12/23 is related to the anomalous dimen-
sion and /3 function of the QCD coupling, see Ref. [6] for
details. For the range of m& which is of interest (40 to
1000 GeV), this factor ranges from 82% to 92%. Since
the uncertainty in matrix elements in b decays is typically
a factor of 2, this correction will be smaller than the un-
certainty in the results. We will, nonetheless, include a
10% correction in our final results (for each h,q"""), al-
though for simplicity, we will ignore it in the text.

We now can see the advantage of the notation used in
Eq. (2). Plugging in Eq. (3), we find that

quark lepton
1J 7J (4)

As in grand unified theories, this relation should be most
reliable for second- and third-generation fields. We will
use this relation (modulo the correction mentioned in the
last paragraph) and express our results entirely in terms
of g", """.Note that the only assumption we have made is
that the quark FCNC's and lepton FCNC's are identical
at some grand unified scale —an assumption which is true
in the simplest grand unified models. Our statement that
the most natural value for g' "" is Qm, mi/m„al-
though plausible, is less reliable [7], and is based on the
"no fine-tuning" arguments of Ref. [3].

Let us summarize the results of this section. In the
simplest extension of the standard model, the addition of
another scalar multiplet, one generally has tree-level
Aavor-changing neutral currents. If the flavor-changing
couplings are taken to be the same as the b-quark Yu-
kawa coupling, then the resulting lower bound on the ex-
changed scalar mass is very large. However, it has been
argued that a more natural value for this coupling is the
geometric mean of the Yukawa couplings of the two
quarks (or leptons), which leads to much lower couplings.
We have noted that the Yukawa couplings of the first two
generations are very small and uncertain, and have point-
ed out that bounds based on mixing with the third gen-
eration should be more reliable. We have also noted that
in many grand unified theories the w and b Aavor-
changing couplings are identical at the unification scale.
When they are renormalized, we find that g'-p""=q;"",
where q,

"" '" ""' is the ratio of the flavor-changing cou-
pling between the ith and jth quark (lepton) to the Yu-
kawa coupling of the b(w). (This relation has a 10%
correction which we include. ) This relation will be used
throughout, as we determine the bounds on the g," from
various rare decays. The "most natural value" for the g,"
will not be explicitly used, but should be kept in mind in
determining how strong the various constraints are.

III. CONSTRAINTS FROM RARE ~ DECAYS

A. Three-body decays

The fiavor-changing interactions of the Ps and P~ will
lead to lepton-number-violating ~ decays, as shown in
Fig. 1. There are six rare ~ decays which will occur:

~~e e e+,

~—+p p e+,
+p p p+, w +e e p+,

z~e p e+, w e p p+ .

The latter two can occur through two different processes;
for example, ~—+e p e+ can occur either through a
h„,h„ term or through a h, g, term. For example, the
matrix element can be written as

(6)

5

3072~ ms
(7)

FIG. 1. Lepton-number-violating z decays can occur through
exchange of an intermediate scalar. l„l2, and l3 are either elec-
trons or muons. If two identical fermions are in the final state,
an exchange diagram must be subtracted. In some cases, such
as ~~e+e JM, the process can occur with either l, =p
l = e and l3 =e+ or l

&

=e, l2 =p and l3 =e+; these two di-
agrams have different coupling constant dependences and are
acid ecI.

where we have ignored the momentum dependence of the
propagator (since the scalar mass is so much larger than
the momentum transfer). A similar term will exist from
pseudoscalar exchange (with a y5 in the vertices); as dis-
cussed in the preceding section, since only the lighter of
the scalar and pseudoscalar will contribute much, we are
considering the two cases separately. Note that if the
scalar and pseudoscalar masses were similar, then in-
terference between the matrix elements would be impor-
tant. However, the masses come from different terms in
the Higgs potential, and will generally be different; we are
assuming that they are sufticiently different that the in-
terference term will not drastically change the results.
The momentum dependence of the spinors has not been
explicitly shown. Neglecting the mass of the muon, this
gives a decay rate of
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Decay process Expt. limit Bound

TABLE I. Bounds on the flavor-changing couplings which
arise from three-body leptonic decays. Here, q;, is defined in
the text in Eq. (2}. The numerical values should be understood
as multiplied by (mz/ms, ) [(mp/ms, ) ]. The contribution is
the same for scalar exchange and for pseudoscalar exchange,
and so leads to identical bounds on the masses. All experimen-
tal bounds in this paper are from Ref. [8], unless explicitly stat-
ed otherwise.

1 )(p) 1&lp') 1)

FIG. 2. Diagrams which lead to lepton-number-violating ra-
diative decays. If l& and l3 are identical, these diagrams give
contributions to the anomalous magnetic moment.

~~e e e+
~~p p p

+e e p+
~~p p e+
~~e p e+
7~e p p
p~e e e+

3.8 X10-'
2.9X10-'
3.8 X10-'
3.8X10
3.3 X10-'
3.3 X10-'
1.0X 10

q' 7/' &2000
q„'„q„'.& 1600

g„g,„+peep„,& 1800

g„,g,„+g„„q„&1800
g2, q,'„&10 '

where

d "k (P —k +m ~ ) y„(gf' —lt.'+ m 2 )

(2~)"(p —k) —m~ k —m, (p' k) —m2—

P
' —k'+ m2

Xl (p') =i
(2')" (p' —k) —m~ k —m,

The rate for psuedoscalar exchange is identical, with
ms —+mz. The observed limit on the branching ratio is
3.3 X 10 . With this limit, we then find that

2 2 2 2
9e~ Iep+ Iee 1p~+ 2 le~ lee Pep Ip~

4
min( mz, m~ )

using the definition of g;- given in the preceding section.
Completing the square, and assuming maximal interfer-
ence, gives

4
min(m, , mp)

&it(p)=&l (p ~p') .

Here, we have only shown the result when the scalar is in
the loop; if the pseudoscalar is in the loop, appropriate
y~'s must be inserted. The divergences all cancel, as they
should. The finite part can then be computed.

First, consider ~~ey decay. Performing all of the in-
tegrations and expanding in powers of m /ms, we find
that the leading term is 0 ( m, /mz ) and get

2 2

lM = u(p') h„h„

A similar calculation can be done for each of the above
six processes. The results are given in Table I, where we
have also included the bound from the p —+3e process.

Note how poor the bounds from ~ decays are. As dis-
cussed in the preceding section, the most natural values
for the g;. are much less than one, and thus these pro-
cesses do not give any significant limits, even for a very
light scalar or pseudoscalar. Improvement in the experi-
mental bounds of at least three orders of magnitude (and
generally four or five orders of magnitude) would be
needed to approach the interesting region [9]. We now
turn to radiative decays.

2

+ (h,P„+h „,h,„)
3ms

m
u, (p) . (11)

e'm'

9 ms
(12)

Unless there is fine-tuning, the interference terms will be
negligible. Ignoring them, we get the overall decay rate

B. Radiative decays

X A. +ir~ ' "+i
P L p&2 m2 p2 m2 R

Xui (p), (9)

The Aavor-violating couplings of the (tz and P~ will

also lead to lepton-number-violating radiative decays of
the p and w, through the one-loop diagrams shown in Fig.
2. One expects that these will give better bounds than
Aavor-changing radiative decays of the b, since the latter
already occur at one loop in the standard model. The sum
of the amplitudes of the diagrams in Fig. 2 is given by

M = ee"h, , h, , u, (p—')

Comparing with the standard ~ decay, we find that

h,g„h„h„+h „P,„ ms

mw

4

(13)

The terms in the square brackets are negligible, compared
with the right-hand side, because of the bounds from
three-body decays from Table I. Dropping these and ex-
pressing the results in terms of the q, finally gives the re-
sult in Table II. A similar calculation can be done for the
process ~—+py.

We can also calculate the process prey. Here, the
dominant contribution (by many orders of magnitude)
comes when the fermion line in the loop is a ~. The cal-
culation is similar; the matrix element is
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TABLE II. Bounds on Aavor-changing couplings which arise from radiative decays of the ~ and p.
The numerical values should be understood as multiplied by (ms/ms ) [(mp/mar) ]. The bounds for
the case of scalar exchange are slightly different from those for the case of pseudoscalar exchange; the
number in parentheses gives the bound when the pseudoscalar mass is used.

Decay process

7 —+ef
&~Pl
p~ep

Expt. limit

2.0X 10
5.5 X 10
5 OX10

Bound

q',.q,', &2.2X10'(8.8X10 )
2

np2 &6 7X 107(2 7X106)
g„',q'„&3.6X10 '(3.6X10 ')

m m "h' P'
256~4 4ms4 P

X u, (p') E' —2
m

uR(p) (14)

which then gives the bound listed in Table II:

4
ms(mp)q'.q,' &3.6X10 '

m
(15)

Suppose we choose the "most natural" values for the q, ,
i.e., rI„,=+m„/m„r)„=Qm, /m, . Then the bound
on mz and m~ is 40 GeV. Yet one expects the values of
these masses to be of the order of the weak scale. We see
that the experimental limit on p —+ey is just beginning to
probe the most interesting range of masses. An improve-
ment of three orders of magnitude in the experimental
bound, which is expected in the next few years, would
cover the region of m~ and m~ from 40 to 210 GeV, just
the region where one might expect them to be.

Let us restate this point. In the simplest extension of
the standard model, with what we believe to be the most
natural values for the additional flavor-changing cou-
plings, one expects prey to occur at a rate not much
below the current limit. If the extra scalars have masses
below about 210 GeV, as one might expect, then the de-
cay will be observed within the next few years. Note that
here, observation of prey does not indicate mixing be-
tween the muon and the electron, but rather between the
muon and the tau, and between the electron and the tau.
As we will see later, the bound from this process is the
one of the most severe, and thus this decay may be the
first signature of this simple extension.

Suppose the decay is seen. At that time, all theorists
will come up with their particular models. Is there any
way to distinguish between these models? As can be seen
from Eq. (14), the interaction is a tensor interaction. This
will distinguish the model from some of the other possi-
bilities. The clearest way to determine which model is
correct, of course, is to observe additional signatures. Al-
though prey is the first signature likely to be observed,
we will see in the next section that there are other signa-
tures in rare B decays that may not be far behind. First,
we consider other lepton-number-violating processes.

C. Other processes

It has been pointed out [10] that bounds from muon to
electron conversion in nuclei are very often stronger than
bounds from prey. The reason is that the "exchanged
particle" often couples coherently to the nucleus. Here,
however, the bound from muon conversion wi11 be weak-
er. The reason is that we are interested in bounds in cou-
plings involving the third generation, i.e., it is still neces-
sary to have a ~ in a loop; the relevant diagrams simply
involve attaching the nucleus to the photon in the p rey
diagrams. The photon will couple coherently to the nu-
cleus (the cross section will vary as Z ), but the loop is
sti11 necessary. We have calculated the rate for muon to
electron conversion in titanium (which gives the strongest
bound) and found the bound to be two orders of magni-
tude weaker than that from p —+ey. We have not includ-
ed QCD enhancements, finite-size effects, etc. ; should
these enhance the rate by a factor of 100, then muon to
electron conversion would give bounds competitive with
prey (at least until the latter is improved).

Bounds can also be calculated from the contribution of
scalar exchange to the anomalous magnetic moments of
the electron and muon. Nor surprisingly (since the stan-
dard electroweak contribution is too small to have been
seen), these bounds are also much, much weaker than the
other processes we have considered. Finally, one could
also consider two-body ~ decays, such as ~~pE . These
processes will all involve couplings involving the first
generation fields, and are expected to be small; it turns
out that the bounds are much weaker than those from B
decays.

IV. B AND B, DECAYS

A. Three-body decays

The fiavor-changing neutral-current interaction will
also lead to anomalous 8 decays. We will only consider
semileptonic decays; nonleptonic decays are much more
dificult to calculate and the experimental bounds are
much, much worse. Of course, some processes, such as
B—+Kp p occur at the one-loop level in the standard
model, but some, such as B—+Kp+~, do not. In all
cases that we consider, the standard-model processes will
occur at a rate far below the current experimental limit.
For example, the process B ~K p+e occurs through
the diagram in Fig. 3. Unlike ~ decays, this process can-
not occur through either scalar or pseudoscalar ex-
change. The reason is simply that the parity of the B and
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The matrix element is

h, „h~b
M =i u, v„f+(q ),

~s
(16)

FIG. 3. Contributions to three-body decays of the B meson.
The exchanged particle, in this case, must be a scalar.

where f+ (q ) is a Lorentz-invariant form factor which is
only a function of q =(p —p') . (Note that another pos-
sible form factor, often referred to as f, does not con-
tribute because of conservation of the vector current; see
Okun [11]for a discussion. ) This form factor can be cal-
culated with the nonrelativistic approximation of Isgur
and Scora [12], which should cause an error somewhat
less than a factor of 2. Their procedure can be outlined
as follows.

We can write

the K are the same, and the interaction does not change
the spin, thus only a scalar can be exchanged. (In two-
body decays, only the pseudoscalar can be exchanged, as
we will see. )

f+(q )=(& (p')lsblB (p)) . (17)

The nonrelativistic state vectors for the B and E bo-
sons are given by

lB (p)) =+2m& J d k P~(k)gy, , b
mb

pB+k, S
mB

~u
pB

—k, s
mB

(18)

~E (p'))=+2m+ jd'k'p~(k')xy, , s
* p~+k', s'

)
u

m~

mu
pg k )s

Pl lt-

where y couples the spins s and s to the total spin zero
and P(k) is the relative momentum-space wave function.
Isgur and Scora chose Schrodinger wave functions that
are appropriate to a Coulomb plus linear potential and
used variational solutions based on harmonic-oscillator
wave functions:

h, b h,„p23pK m~ mK

16~ g~Kmsm„

mK pgK 3/2m.

mu IB
mumB

X erf
23/2mK p~K

(20)

p3/2

P"(r)=
3 exp( Pzr l2—),

in which ps is the variational parameter, whose value
turns out to be ps-0. 3 GeV. We now compute the
Fourier transform of these wave functions and substitute
the result into Eqs. (18) and (17). Note that the form fac-
tor vanishes if a y5 is present, so that pseudoscalar ex-
change does not contribute. The result for the form fac-
tor is

where erf(x) is the error function [normalized so that
erf( oo ) = 1].

Since we know that the lifetime of the B is 10 ' sec,
we can compute the branching ratio for the process. The
results are identical for all processes of the form
B —+E I j I2 for any two leptons, with the obvious
change in the couplings. If there is one ~ in the final
state, there is a phase-space factor of 0.7; if there are two
~'s, the phase-space factor is 0.4. The resulting bound on
the 2) s is given by (with inclusion of the factor of 20%%uo in
the conversion from 21

"""to 2)" "")

(7X10 (branching ratio)
1 2

p3/2p3/2
B K

f+(q )=2+mzmK exp
pBK

m„'(t t)—
2

4pgK m13mK

mg
X

4

(phase-space factor) . (21)

(19)

where p~K=(p~~+pK2)/2 and t =(m~ —mK) . The de-

cay rate is

All we need to do now is to put in the various branch-
ing ratios. Note that a similar calculation can be done
for B ~m i, l2, with an identical result (with

mKm„), although the nonrelativistic approximation is
a bit more suspect in this case. Experimental bounds
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TABLE III. Bounds on the flavor-changing couplings from
three-body 8 decays. Since only the scalar contributes, the
bound only applies to the scalar mass, and not the pseudoscalar
mass. The numerical values should be understood as multiplied
by (mz/m~) . We have used Eq. (4) to relate the quark flavor-
changing couplings to the lepton-number-changing couplings,
and included the 10% correction factor discussed in Sec. II.
Processes marked with parentheses are not firm experimental
bounds, but simply our estimate of the bound that could be ob-
tained from the results in Eq. (22).

Decay process

8~Kpp
B~mpp
8~Kee
8~m.ee
8~Kpe
8~m.pe
8~Kp~
8 ~mp~
8~Kez
8—+me~
8~Kw~
8—+~~~
K~mpp
K—++pe
K~mee

Expt. limit

5x1O-'
5X10
5X10
5X10
10
10
(3x10-')
(3 x10-')
{3x1O-')
(3X 10 )

(2x10-')
(2x1O-')
2. 3 x10-'
2. 1X10
1.0X 10

Bound

2 2
71p~qpp & 3
q2„71„2„«330
71„,71„&3.6
712 712 &360
71„,71,„&70
712„q2,„&7000

2 n2 &3000
232 &300

71„&30000
71 .71.,& 350
712„q2„&35000
712,„q„2„&200

2" 2
71ee 71'~ & 9

have been given for decays in which the two leptons are
muons and/or electrons, but no bounds have been cited
when one or both is a ~. Nonetheless, one can make a
rough estimate of the bounds from two processes which
have been cited [13,14]:

I (B~e+e X)+I (B~p+p X)
& 2.4X10

I (B~all)

10-'
I (B~all)

(22)

where the charge of the B is undetermined. For example,
if B~Kp~ occurs, it will give a signal in the above pro-
cess 17% of the time (the percentage of w's which decay
into muons). Consider the first of these bounds. We have
made two modifications to it. First, in extracting their
bound, the authors chose many different possible matrix
elements to model the decay, and cited the one that gave
the most conservative bound. Unfortunately, none of
these matrix elements was a scalar. We have chosen to
model the decay with a constant matrix element, result-
ing in a bound which is a factor of 2 smaller than the one
they cite (virtually all of their choices gave a factor
within 10% of this one). Second, they also searched for
B~e+p X, assumed this was zero, and used that to
check their background calculation. Since ~'s decay into
electrons and muons with equal enthusiasm, we will also
get a signal here, so we have included these data in ex-
tracting the bound (they give the number of events seen).
Regarding the second bound, we have not yet seen the
detailed analysis, and will simply take the number at face
value. Note that it gives no information on decays with
an electron in the final state. From these values, we esti-

mate that the limit on B—+m.ep and B~Eep is 10;the
limit on B~e~X is 3X10; the limit on B—+p~X is
3.2X10, and the limit on B~~~X is 2X10 . The
other bounds are given in Ref. [8]. It is important to em-
phasize that these bounds involving final state ~'s are only
rough estimates, and should not be considered firm exper-
imental limits. Experimental limits could be obtained
from the above experiments if the appropriate Monte
Carlo calculations were done, and we have not done so.
The estimates have been done to give an idea of the
bounds that can be obtained from such decays; we urge
experimenters to determine limits on these branching ra-
tios so that more precise bounds can be found.

The results are given in Table III. Note that the
bounds are much stronger than the corresponding
bounds on ~ decays. Some of the processes, such as
B~Ke~, are proportional to the same couplings as in
prey. The latter bound is so strong that these process-
es would be unobservable. Other processes depend on
first-generation couplings and are expected to be small.
Perhaps the most interesting process is B~Ep~. This
decay depends only on g„, which is expected to be the
largest Savor-changing coupling. The right-hand side will
reach unity with an improvement of a factor of 30 in the
rate. This may seem extremely difficult, but the process
has never been looked for. Such an improvement seems
quite possible.

These processes all depend on scalar exchange. If the
scalar were much heavier than the pseudoscalar, these
decays would be negligible, while ~ decays would still
occur. We now turn to two-body decays, which are not
only sensitive to pseudoscalar exchange, but offer much
more realistic prospects for experimental improvement in
the bounds.

B. Two-body decays

Two-body decays of the B and B, mesons occur
through the diagram of Fig. 4. Since these mesons have
negative parity, the decay can only occur through a pseu-
doscalar interaction. As an example, the matrix element
for the decay B,~ep can be written as

h~~h, bM=i u, v f+(q ),
m&

where f+(q )=(O~sysb~B, ). The form factor can be
evaluated by the method of the preceding subsection [15],
and is given by

0

B
(H ) d(s)

FICz. 4. Contributions to two-body decays of the 8 (or the B,)

meson. The exchanged particle must be a pseudoscalar.
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p3 /2

f+(q )=+4mii

so that the decay rate is

h, „h,b pii mii
5/2 4

Alp
(23)

the vacuum is about one-fourth that of d pairs [16]), and
thus the bounds on the 8, branching ratio into pp, p~,
and ~~ is four times as large as that for 8's. Note that no
bounds currently exist for 8,~ep or 8,~ee.

The results are given in Table IV. As in the three-body
case, the bounds from two-body 8 decays are much
strong than the corresponding bounds from ~ decays.

The same decay rate (with the obvious change in the sub-
scripts on the coupling constants) applies to all other pro-
cesses. With one r (two r's) in the final state, a phase-
space factor of 0.76 (0.36) must be included. This will
give a bound for 8 ~l, 12

re i i)„(3.0X10 (branching ratio)
1 2

mp
X

4

(phase-space factor) . (24)

For B, decays, one obtains an identical result (the small
mass difference between the 8 and 8, gives corrections
much smaller than the factor-of-2 uncertainty in the form
factor), with rl„—+i)„,.

To determine the branching ratio, we compare this rate
with the observed 8 lifetime. For processes involving z s,
we use the results which followed Eq. (22). This does not
work well for 8, decays, since the lifetime of the 8, has
not been measured. However, one expects the lifetime of
the 8, to be the same as that of the 8, since the
standard-model decay proceeds through the weak decay
of the b quark. Thus, we will take the lifetime of the two
to be equal. In determining the branching ratio for the
B„we note that the UA1 result [14] does not distinguish
between 8's and 8, 's. We will assume that the relative
production rate for 8, 's is a factor of 4 smaller than that
for B's (since the probability of popping an s pair out of

C. E-K and B-Bmixing

The strongest bounds on scalar- and/or pseudoscalar-
mediated tree-level FCNC's quoted in the literature come
from K-K mixing. We now discuss the constraints from
this and similar processes.

As discussed earlier, it has generally been recognized
that the most stringent bounds on flavor-changing cou-
plings (involving the first two generations) come from K-
K mixing. Here, this result is extended to include B-B
mixing.

A discussion of the calculation of K-K mixing due to
Higgs-scalar exchange can be found in Ref. [3], and refer-
ences therein. The relevant matrix element discussed in
these papers is (K (sysd )(s) 5d) ~K ), which has a value
[2] of 0.085 GeV . With a value for the coupling of
V (g~)d(g~)„a bound of 1.0 TeV on the mass of the ex-
changed particle is obtained.

The y& in the above matrix element shows that pseu-
doscalar exchange only was treated in these papers. If
one considers scalar exchange, the matrix element will be
different. It is easy to see why the matrix element with
scalars will be smaller: If one uses the vacuum-insertion
method, and inserts the vacuum state in the matrix ele-
ment, then the fact that the kaon is a pseudoscalar im-
plies that the matrix element for scalar exchange will
vanish. The scalar matrix element has been calculated
[17] and is smaller by a factor of 12. This will lower the
bound on the mass by a factor of +12. One thus finds

TABLE IV. Bounds on flavor-changing couplings which arise from two-body decays of the B and B,.
Since only the pseudoscalar contributes, the only bounds apply to m&. The numerical values should be
understood as multiplied by (mp/m~) . The bounds on B(B,)~pp comes from a recent result of Ref.
[15]. Processes marked with parentheses are not firm experimental bounds, but simply our estimate of
the bound that could be obtained from the results in Eq. (22). For the processes B,~ee, B,~ep, and
B,~e~, there is currently no experimental limit; once a limit X is determined, the bound given in the
third column follows.

Decay process

B~ee
B~ep
B~pp
B,~ee
B,—+ep
B ~pp
B~ew
B~p~
B~~r
B,~ew
B,~p~
B,~ww
K~pp
K~ep
K~ee

Expt. limit

3X10
4x10 '
9X 10
X
X
4X 10
(3 X 10 )

(3 x10-')
(2 x10-')
X
(1.2x10 ')
(Sx10 ')
6x10-'
2.2X 10
3.2x10-"

Bound

q,', q,', & 1.0

g,„g„,&3X10X
& 1.2

g4, & 140
g„g„&14

2 n2 & 190
g„q„&4X10X

q2 q2 &640

q'„, & 0.0008
292 &00012
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q',„&1.3 X10
mw

What about the bound on B-B mixing? In the case of
K-E mixing, it was assumed that the contribution due to
scalar exchange was no greater than the standard-model
contribution, refIIecting the factor-of-2 uncertainty in the
standard-model contribution. The same uncertainty ap-
plies to B-B mixing. The ratio of B-Bmixing to K-E mix-
ing is given by

am, h&&&~l(by5d)(by5d)IB)

&,
' &Kl( y d)( y d)lK)

(26)

Estimating the matrix elements by the vacuum-insertion
method, we find [3]

&~l(by, d)(by, d)l~) f,' m,' m, +m,
&Kl(sy, d)(synod)lK) fz mx. mq+md

2

(27)

Numerically, this ratio is 0.9. We will take the ratio of
scalar matrix elements to be the same. We see that the
ratio of Am~ to bmz is almost entirely due to the
difference in couplings. Taking the observed value of the
mass splitting gives our bounds:

4

q4„&2.0X10 '

that the bound on the pseudoscalar mass is 1000 GeV,
and the bound on the scalar mass is only 300 GeV.

The weakness of these bounds may surprise those who
have always felt that the bounds from K-E mixing put
very stringent constraints on the mass of flavor-changing
scalars. Let us emphasize why this bound is so much
smaller. The main difference is in the choice of coupling.
The early authors chose a coupling equal to the b-quark
Yukawa coupling; Cheng and Sher [3] then argued that
choosing the geometric average of the d- and s-quark Yu-
kawa couplings was much more natural and realistic. Fi-
nally, the scalar matrix element is much smaller than the
pseudoscalar matrix element, leading to weaker bounds
on the scalar mass. We wish to emphasize that this
bound is highly uncertain, since it depends so heavily on
mixing between the first two generations and on the
light-quark Yukawa couplings.

Putting all of this together, we can extract the bound
on the coupling:

4
mp

q4„&9.OX1O-'4
mw

(25)

third generations.
Finally, what about B,-B, bounds? In the standard

model, this mixing is maximal, and adding extra contri-
butions will make no difference. The only way in which
scalar exchange could matter would be if it contributed
with roughly the same magnitude and opposite sign to
the standard-model contribution. The uncertainties in
both calculations would Inake any bounds found from
this meaningless.

V. RKSUI,TS

4 (29)

Of all of the processes that have been considered, three
stand out as giving very stringent bounds on Aavor-
changing neutral currents. Those three are p —+ey, E-K
mixing, and B-B mixing. The bounds are given in Eqs.
(15), (25), and (28). As discussed earlier, the bound on
prey' arises from a diagram in which a ~ is on an inter-
nal line, and is thus sensitive to the (more reliable) cou-
plings which mix the third generation, and it is also at the
edge of the most interesting region of parameter space.
From the tables, one can see immediately that these three
bounds eliminate the possibility of seeing many other
processes. For example, the bound in Eq. (28) is much,
much more stringent than that from B—+e~ or B~~e~;
the bound in Eq. (25) is much more stringent than that
from K~ep or Kine@; and the bound in Eq. (15) is
much more stringent than that from B—+p~, B,~er,
B~~p~, or B~Ee~.

The bounds from these three processes are so strong, in
fact, that one can use perturbation theory to derive many
additional constraints. In a grand-unified theory, the va-
lidity of perturbation theory forces all of the g;. to be
small at all scales between the electro weak and
unification scales. This gives an upper bound on the g," at
the electroweak scale. A similar calculation for the top-
quark Yukawa coupling gives an upper bound on the
top-quark mass of 230 GeV, i.e., a bound on the coupling
of 1.3. The same bound will apply here, and thus we
have h; ~ 1.3, corresponding to g; ~45. Combining this
with Eqs. (25) and (28), and noting that we are interested
in cases in which the exchanged scalar is heavier than its
current limit of 40 GeV, we find

4
mp

q2,,-q,'.& 0.36
mw

'4
292 &44

g4 &3.0X10 '
m

4 (28) q~ q~„&2.4X10

4

It is interesting to note that our "most natural value" for
is Qm, /m „giving g, =7. 8 X 10, so that the

bounds (in this case) on ms and m~ are 60 and 200 GeV,
respectively. These bounds should be more reliable than
bounds from K Kmixing (since they-do not involve mix-
ing between the first two generations), but less reliable
than bounds involving mixing between the second and

q2 q,'„&2.9X10

This bound must hold for any i and j, and is easily seen to
be a more stringent bound than many of the processes in
Tables I, II, and III.

Let us now examine the various processes more explic-
itly to determine which offer the best possibilities in the
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future (as well as whether r or B decays are more likely to
be productive). We first consider the case of scalar ex-
change.

Consider the various three-body ~ decays. It is easy to
see that the bounds on the six ~ decays in Table I are
much weaker than other processes. In the order given in
Table I, the processes which give better bounds are (i)
B~~ee, (ii) B~Kpp, (iii) Eq. (29), (iv) B—+Kpe, (v) Eq.
(29) and B~Kee, and (vi) B~npp and B +K—pe No. w
consider the two radiative ~ decays. The bound from
r—+ey is weaker than that from Eq. (29), and the bound
from ~~py is weaker than that from B—+K~~. In all of
these cases, the bound from ~ decays is so much weaker
that even a slight improvement in the bound will not
help. We conclude that there is no useful information
which can be obtained from ~ decays in these models in
which a scalar mediates Aavor-changing neutral currents.

We have already noted that the most useful experiment
in improving these bounds (or finding an effect) is prey.
Which of the B decays is most likely to be productive?
The decays which stand out here are B—+Kee, B~Kpp,
B~Kp~, and B—+K~~. Using our "preferred" range of
couplings, one can easily see that one needs to reach
branching ratios of 3X10 ', 3XIO, 3X10, and
3 X 10, respectively. In the case of B~Kpp and
B~Krr, these branching ratios are below (barely below
for the latter) the standard-model (one-loop) branching
ratios. Keep in mind, however, that our "preferred
range" is just a rough estimate, and the couplings could
easily be somewhat higher (recall that a factor of 10 in-
crease in a coupling corresponds to 10 in the rate). The
process B—+Kp~, however, vanishes in the standard
model, and thus may offer the best (and least ambiguous)
hope. Measuring its branching ratio to a level of a few
times 10 obviously is difficult, although at a B factory,
it may not be impossible.

Next, we consider the case of pseudoscalar exchange.
The bound from the decay ~~e e e+, ~~@ p p+,
(r~e e p+, r~p p, e+, r~e p p+) is much
weaker than that from the decay B—+ee, B,~pp [all the
others are weaker than the bound from Eq. (29)j. The
bound from ~~ e p e + is still better than other
bounds, however, if one can measure B,~ee to have
branching ratios less than 5%, then this process will set a
better bound. It is hard to imagine that such a large
branching ratio would have gone undetected (there would
be many dramatic four electron events at UA1), and it is
quite likely that this bound will be determined in the very
near future. What about radiative decays? Again, the
bound from B~~~ is much better than that from ~~ey.
Similarly, the bound from B,~~~ is more stringent than
that for ~~py. We thus conclude that improvement in
rare ~ decays will not be useful in setting bounds, even in
the case of pseudoscalar exchange.

Finally, which of these B decays will be most produc-
tive? The decays which stand out are those of the B,
meson into ~~, p~, pp, and pe. The branching ratios
needed to reach the preferred range of parameter space
are 7X10, 8X10, 6X10, and 3X10 ", respec-
tively. Here the rate for B,~~~ is well below the
standard-model prediction ( —10 ), and B,~pp is

slightly below the standard-model prediction. Again, our
preferred range is just an estimate, and the couplings
could be somewhat larger. The most intriguing decay is
B,~p~, which only depends on the single g„coupling.
Measuring the branching ratio to get into the preferred
range seems difficult, although the fact that it is a two-
body decays with charged leptons may make it detectable
at a B factory.

VI. CONCLUSIONS

The simplest extension of the standard model has an
extra scalar field. This model will automatically have
tree-level flavor-changing neutral currents, unless they
are suppressed by some additional symmetry. It is often
believed that the presence of tree-level Aavor-changing
neutral currents in this model is fatal, since it requires the
exchanged scalar to be extremely heavy. This belief, how-
ever, is based on the assumption that the flavor-changing
coupling is quite large. It has been pointed out that using
a more natural value for the coupling (the geometric
mean of the Yukawa couplings of the two fields) leads to
much smaller bounds, closer to the range of several hun-
dred GeV. Even this bound, however, is very sensitive to
the precise value of the coupling. Given the uncertainty
in assumptions involving the first generation Yukawa
couplings (the couplings are five to six orders of magni-
tude smaller than gauge couplings, they are subject to un-
calculable Planck mass corrections, etc. ), even this bound
of several hundred GeV certainly should not be con-
sidered particularly reliable.

With this in mind, we have calculated the bounds on
the couplings of an additional scalar or pseudoscalar for
processes involving the third-generation fields, which
should be considerably more reliable. Since the masses of
the scalar and the pseudoscalar are likely to be quite
different, we have considered the bounds on each sepa-
rately. The most stringent bound in the quark sector
comes from B-B mixing; using our "most natural" value
of the couplings, one gets a bound of about a hundred
GeV on the exchanged scalar mass. In the lepton sector,
the strongest bound comes from prey, in which a w is
on an internal line. This process is sensitive to mixing be-
tween the first and third generations as well as between
the second and third generations (and is not as sensitive
to mixing between the first and second generations, which
is expected to be small). Using our most "natural" value,
we get a bound of about 50 GeV on the exchanged scalar
mass. Unlike the case of B-B mixing, however, this pro-
cess does not exist in the standard model, and thus the
bound will be improved considerably as the experimental
bound is lowered. We thus feel that prey is the best
place to look for mixing involving the third generation.

In most grand unified theories, the ~ and b are in the
same representation, and thus we expect flavor-changing
couplings in the quark sector to be related to those in the
lepton sector. We have then asked the question: which
processes, ~ or B decays, give the strongest bounds? The
answer, from Tables I—IV, is clear: B decays. We find
no case in which ~ decays give better bounds, nor in
which they are likely to in the near future. The most
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promising B decays are B~Kp~ and B,~p~. In gen-
eral, the interesting decays are those with ~'s in the final
state. A search for 8~peX would have relatively little
background and could be quite productive; a search for
exclusive processes with a final state w, while more
dificult, could also be quite useful.

ACKNOWLEDGMENTS

We thank Ikaros Bigi, Carl Carlson, Martin Cooper,
John Ellis, John Hagelin, Joe Milano, Rolf Winter, and
especially Nathan Isgur for useful discussions. This work
was supported by the National Science Foundation.

APPENDIX

In the text, we assume that the H field and the P field
do not mix. Here, we discuss the e6'ects of our bounds if
this assumption is relaxed. Our results for the case of
pseudoscalar exchange will be completely unchanged by
any mixing. The reason is that the basis has been chosen
so that H gets a vacuum expectation value, and P does
not. In this basis, the imaginary part of H is the Gold-
stone boson which gives mass to the Z, and it does not

mix with the imaginary part of the P field. All results we
have given then still hold, since the Z couplings are flavor
diagonal.

The scalars will mix, in general. If the mass eigenstates
are H, and Hz, then the couplings to H, are given by

(gy dd+g ss+g bb)H, cos8+(hq"""d, d )H, sing

and the couplings to H2 are the same with the obvious re-
placement of cosO~ —sinO and sinO~cosO. Suppose we
have a process in which both interactions are Aavor
changing (such as B~Kpr). Then the bound on ms will
change to

4

1

Pl 8 foal,H 2
min

sinO
'

cosO

If one of the couplings is fIavor diagonal, then the change
is a bit more complicated, but straightforwardly calculat-
ed. Note that if the mixing is small, this gives the same
result as before. Since all mixing angles known in the
standard model have cosO) 0.85, we do not expect mix-
ing to give a significant efFect, but one should certainly be
aware of the possibility.
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