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Penguin trapping with isospin analysis and CP asymmetries in B decays
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Isospin relations are used to eliminate hadronic uncertainties in various CP asymmetries in 8 decays.
In addition to the simple triangle relations for the m.m mode, we study quadrilateral relations for Km and
pentagon relations for pm. A combined angular and isospin analysis is required for pp. These methods
are useful also for three-body decays such as Kmm. . The magnitude of the penguin amplitude can be ex-
tracted in various modes. The theoretical principles behind this analysis can be experimentally tested
through sum rules for decay rates prior to the measurement of CP asymmetries.

INTRODUCTION

CP asymmetries in B decays into a final CP eigenstate
are free of hadronic uncertainties if amplitudes which de-
pend on only a single Cabibbo-Kobayashi-Maskawa
(CKM) phase dominate the decay process. A clean mea-
surement of the three angles of the unitarity triangle (see
Fig. 1) is thus made possible [1]. Within the standard
model, most processes get contributions from both tree-
level and penguin amplitudes [2]. In b~ccs processes
(e.g. , B~QXs) both amplitudes carry the same CKM
phase; extracting sin2P from this asymmetry is free of ha-
dronic uncertainties. In b —&uud processes (e.g. , B~sr~)
the two amplitudes carry different CKM phases. It is ex-
pected that the contribution from the penguin amplitude
is small (a few percent), but it could be larger than the
naive expectation if the matrix element for the penguin
operator is enhanced; extracting sin2o, from this asym-
metry may suffer from hadronic uncertainties if this is
indeed the case. For b ~uus processes (e.g. , B~K~) the
situation is even worse: not only do the tree and penguin
amplitudes carry different CKM phases, but also they are
expected to be comparable in magnitude (the tree process
is strongly CKM suppressed). It has often been stated
that clean information on CKM parameters cannot be ex-
tracted from this asymmetry.

Gronau and London [3] have shown how to separate
the CKM phase of the tree-level B~~m process from
any penguin contamination. This is done by means of

isospin analysis of various (charged and neutral) B decays
into m.~. This will allow a determination of the phase a
completely free of hadronic uncertainties, independent of
the size of the penguin amplitude [4]. Nir and Quinn [5]
have later shown that a more complicated isospin
analysis could be used to separate the tree contribution to
the asymmetry in modes such as B~Km, thus allowing a
clean measurement of a from these modes as well.

In this work we attempt to complete the discussion for
all relevant types of decay modes. For completeness, we
briefly review previous results, namely, the isospin
analysis of the mm. and Km. modes, and combine them
with our own analysis of additional modes. We explicitly
discuss pp, p~, and Em+. These analyses include various
new ingredients: combinations of angular and isospin
analyses; pentagon relations among decay amplitudes;
and the study of three-body decay modes. In addition we
show how to measure the magnitude of the penguin con-
tribution (for example, in the mvr mode) an. d we suggest
ways of testing the validity of our approach through sum
rules which will be subject to experimental check long be-
fore CP asymmetries are actually measured.

We begin by reviewing the analysis of Gronau and
London [3] for ~m. We use a nota. tion that is convenient
for the general case.

The B+ and B decays into final m.~ states proceed
through the quark subprocess

b ~QQd

Ks

The Hamiltonian is of the form

m=A„, ~,', +-,' &+A„,~-,', +-,'&, (2)

Bs PKs ) Vcd Vcbl glvlng

W~B+ & =W~-,', +-,' &

FIG. 1. The unitarity triangle. A relevant B decay mode is
indicated for the angle involved in the corresponding CP asym-
metry.

V 4A3/2~ &+(Al/2 Y~A3/2)~1 1&
(3)
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a/B'& =m/-, ', —
—,
'

&

=Q-,' A„,~2, 0&+Q-,'(A „,+ A„, ) ~1,O&

+Q-,' A „,~0, 0& .

There are three relevant final ~~ states:

~~+~-
& =+-,' ~2, 0&++', ~0, 0&,

~~o~o& =~-,' 12, 0& —~-,' 10,0& .

(4)

dependent amplitudes only, which we define as

A2= 2'V
~ A3nz» Ao=V 6Aino .

The various decay amplitudes are thus given by

=3A 2 7

=2A2+ Ao .

Similarly, B and B decay to final ~~ states through
the quark subprocess

We are interested in calculating the amplitudes A+,
A+, and A where

A v= (~~~J~~~B~+J&

While the isospin states in Eq. (3) are four-quark states,
the states in Eq. (4) are two-meson states. The transition
between the two necessarily involves hadronization and
other rescattering effects, which introduce both a phase
shift and a form factor. In the general case, there is one
independent amplitude A~ ~ for each possible combina-

tt f
tion of [I„If], transition isospin, and final-state isospin
(including the spectator quark), respectively. The ampli-
tudes Az z differ from the transition amplitudes Az in

t) f
that they include the effects of rescattering and hadroni-
zation processes.

Note, however, that in the mm case there is no If =1
state because it is forbidden by Bose symmetry for an an-
gular momentum zero system of two pions. This fact
simplifies the discussion considerably, because I, =—,

' tran-
sitions lead to If =2 states only, while I, =

—,
' transitions

lead to If=0 states only. Therefore, we have two in-

b~uud .

The B and B decay amplitudes are given by

A+ =3A2,

Q-,'A +-=A, —A, ,

=2A +A

Q-'A +-=A +'—A
2

(10)

Measuring the total rates for B ~sr rr gives ~A—+
~

and
~

A + . As for the neutral modes, the decay rate into
final sr+~ is [6]

where A ' is the amplitude for the CP-conjugated process
of A', e.g., A + corresponds to B ~~ m. . The A;
amplitudes carry weak phases opposite to those of A;,
but unchanged strong phases. Notice that for each case,
the set of amplitudes forms a triangle in the complex
plane, as seen from the relationships:

I (B h(t)~m+m )=e. ~'~[(~A+
~

+~A +
) —( A+ —A +

~
)cos(hmt)+2 A+ a+ sin(bmt)],

1 (B „,(t)~m. +m. )=e " ' [([A+
( +( A +

( )+(( A+
[

—(A +
(

)cos(bmt) —2)A+
(

a+ si (Anmt)],

and similarly for m. m. . Here B~h„,(B t~z, ) is a tiine-
evolved state such that B „„,(t =0) and B h„,(t =0) are
the interaction eigenstates B and B, respectively. We
are interested in determining

~
A +

~, ~
A +

~, and a+
In any given experiment, the total rates give two quanti-
ties, but additional experimental information, e.g. , time-
dependent measurements, is needed to fix all three. For
example, in experiments conducted at the Y(4S), t is the
time difference between the tagging decay of one neutral
B and the decay into the CP eigenstate of the other, and
it runs in the range —~ + t ~ ~. The contribution of the
sin(b, m t) term vanishes in the total rate, but not that of
the cos(b, m t) term. Thus, measuring the total rates for
the charged and neutral B decays gives all six magni-
tudes,

~
A 'J~ and

~
A '~~, and consequently the shapes of the

two triangles can be determined. In addition, the time-
dependent decay rates into m. +sr give the CP asymmetry

A+a+ =Im e (12)

(13)

The phase PT is the CKM phase in the tree diagram.
The crucial point to notice next is that the penguin dia-

The phase PM is the CKM phase in the B Bmixing am-—
plitude. In principle, one could also measure a time-
dependent rate and extract an asymmetry for the ~ m

channel. However, to determine the CKM phase we
need only the asymmetry for the charged-pion channel.
This is fortunate, since in the m m channel time-
dependent measurements wi11 be very difFicult.

Let us replace the barred amplitudes by rotated ampli-
tudes:
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A+'= A +'. (14)

The figure thus formed allows us to measure the angle be-
tween A+ and A +, up to an overall ambiguity which
arises from the four possible orientations of the two trian-
gles relative to their common side. (Figure 2 shows one
possible orientation. )

We can rewrite Eq. (12) for the CP asymmetry as

gram is purely I=
—,', and consequently only tree diagrams

contribute to A 2. Hence A 2
= A 2 and the triangle

formed by the A's shares a common side with that
formed by the A's (see Fig. 2):

tion, to tree contributions. We define

A =T +P
A =T +Po,

(17)

where T contains no penguin contribution (and there-
fore T = T ). Note that ~Po ~

= ~Po . We obtain the re-
lation

Po=(Ao)~

where the subscript P means contributions from penguin
processes only. The A and A amplitudes can be
rewritten as

+ — 2'«M+&r') Aa =Im e A+ (15) —A

+2[1—cos2(P z. —Pp ) ]
(18)

Were Ao dominated by the tree-level diagram, we would
have ( A + /A +

) = 1, and Eq. (15) would reduce to the
usual sin2(PM+Jr ) expression. However, if we can con-
struct the triangles we know both the magnitude and the
phase of ( A + /A +

); we need not make the assump-
tion of a small penguin amplitude anymore. We are able
to disentangle the value of (PM+Jr ) without any uncer-
tainty from the unknown penguin contribution to Ao.
The fourfold ambiguity from the different possible orien-
tations of the triangles could, in general, be resolved if
the asymmetry in the m m mode were also measured, but
this is unlikely.

In addition, if we assume the standard model, we can
actually extract a measure of the penguin contribution to
Ao. Let us distinguish the tree and penguin contribution
explicitly. We use three generation CKM unitarity and
the approximation that the penguin contributions with u
and c quarks in the loop are equal in magnitude to
6(m, 2/m&2), apart from their CKM factors. Rescatter-
ing effects that change quark Aavor are included in theif'
penguin contributions. Terms proportional to e thus
correspond to pure penguin contributions, while those

ip&
proportional to e correspond, to a good approxima-

2(&li &I p)

Op

The phase P~ is the CKM phase in the penguin diagram.
This result is readily seen from Fig. 2: The distance be-
tween the vertices opposite the common side of the two
triangles is

~
A —A . It is the basis of an equilateral

triangle (dotted in Fig. 2) with the angle opposite to this
basis =2(gr —Pz). The length of its other two sides is
~Po~. The quantities on the right-hand side of Eq. (18)
can be determined from the figure, except for (Pz. —Pp).
However, within the standard model, both the penguin
amplitude and the mixing amplitude depend on the same
CKM combination, V,b V,d. Consequently, Pz

—
Pp=Pz +P~ =a determined from the CP asymmetry. We

conclude that the full isospin analysis allows a determina-
tion of Po~ and is, therefore, useful not only for our un-
derstanding of CP violation but also to test estimates of
hadronic physics.

There are two kinds of discrete ambiguities in the
determination of ~Po~ from Eq. (18).

(i) The fourfold ambiguity mentioned above reduces to
a twofold ambiguity in the magnitude of Po. The two
solutions will probably differ significantly. Since theoreti-
cal estimates indicate that ~Po~ should be small, this will
suggest which solution is preferred.

(ii) There is an additional discrete ambiguity in the
determination of PM+Pz. even in the case of

However, this ambiguity can, in princi-
ple, be resolved using additional data [7].

A+'

FIG. 2. The two triangles of B~~n.. Note that 2+ is a
common basis. The dotted triangle serves to find the magnitude
of the penguin contribution.

8 decays into final pp states proceed via the same
quark subprocess, b~uud or 6 —+uud, as into final ~m
states. Thus, the Hamiltonian is the same as in Eq. (2).
With an appropriate angular analysis [8], one can
separate the CP-even final states from the CP-odd ones.
By Bose symmetry, the J=O pp states are isospin-even
since L =S and (

—1)~ + + ' is the symmetry of the sys-
tem under particle interchange. Thus there is no I =1
final state for B~pp, and an isospin analysis of the pp
system can be done in exactly the same way as for m~.
There are four CP asymmetries to be measured:
p (CP=+), p p (CP= —), p+p (CP=+), and
p p ( CP = —). In each of these channels, time-
integrated B~hys and B phys decay rates are needed to con-
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struct the triangles, but a time-dependent measurement is
needed for the CP asymmetry. We would then obtain
four measurements of the CKM phase a that are corn-
pletely free of hadronic uncertainties.

In the pp case there is not as much difhculty in measur-
ing the time-dependent rate for any channel as there is in
the ~ ~ case. Possibly, all four measurements can be
made, thus resolving the discrete ambiguities. However,
angular analysis is needed for the neutral channels, which
will require somewhat higher statistics than for the mm

case. To decide which channel is more useful, we need to
know the branching ratios.

The underlying quark subprocess for this channel is
b —+ uus. Here the tree diagrams are strongly CKM
suppressed, so contributions from tree and penguin pro-
cesses are believed to be comparable, or possibly the
penguins may even dominate. A similar analysis to that
applied above for m~ can be made. The transition isospin
can be either I, =0 or 1. The final four quarks can have
isospin If =

—,
' or —', . Thus there are three independent am-

p t des: Ao, in A i, ized and A i 3&2. These AI, ,I amp

tudes again incorporate the change in magnitude as well
as the strong phase shift corrections to AI due to had-

t

ronization and rescattering effects. We find it convenient
to define the following amplitudes which absorb
Clebsch-Gordan coeKcients:

W—=V' —,
' A01/2

-2 ~~M+~~+~. ~ A
a = Im e

A 00 (23)

A +Q—,'A += A +Q—,'A
(24)

As can be seen from Fig. 3, the relationships (22) and (24)
are sufficient to determine A /A and hence to extract
the CKM phase of the tree diagram from the measured
CP asymmetry (23). A more detailed analysis of the 7rK
mode is given in Ref. [5]. It also explains how to extract
the magnitudes of penguin and tree amplitudes for this
mode.

We note that the eight decay rates are functions of four
independent complex amplitudes, U, V, W and W. Since
one overall phase is irrelevant, there are seven parameters
determining eight decay rates. Therefore, this model pre-
dicts a relation between these eight decay rates. To
derive this sum rule, we first write the expressions for the
differences between CP-conjugate decay rates:

The phase Px is the CKM phase in the K IC m-ixing am-
plitude [9]. To extract a=PM+PT+Px, one needs to
determine A /A . While

I
A /A

I
is known from

the decay rates, arg( A /A ) can be determined only
with further isospin analysis, as explained below.

The crucial point to notice now is that the penguin am-
plitude contributes only to I, =0 transitions. Thus, only
W has any penguin contribution while U and V have con-
tributions from tree diagrams only. This gives two fur-
ther relationships between the two quadrilaterals:

A ~+ A o+ = A ~+ A '+,

(19) I

A'+ I' —
I
A '+ I'=

I
wl' —

I
wi'+2U'( w w)

A 1 3 /2 + A 1 1/2 )

7( A1, 3/2 A 1, 1/2 )
—,'(IA+'I' —

I
A +'I')=I Wi' —Wi' —2V (W —W),
i'= W' —IW' —2U (W —W),

—'(I A + I'I —A + I') =
I
wi' —

I
wi'+2v ( w —w)

There are two possible charge assignments for the m and
the E for each decay, so there are four amplitudes for B
and B+ decays:

(25)

A/j = (~~~jI~Ig~+j ) (20)

They can be written as

A'+=U —W, Q,'A '=V+W,
A =U+W, Q —,'A +=V —W.

(21)
A00

AOO

r,
'~

Since these four amplitudes are given in terms of only
three isospin amplitudes there is once again a single rela-
tionship between them, and a similar relation holds for
the A amplitudes defined from the barred amplitudes by
Eq. (13):

+Q-'A -+ = A'+++-'A+'

-w/:
A-0+ 4 I

A +Q-'A -+= A '+++-'A +'.
2 2

(22) ,. 1

~2 A'

Thus, each set of four amplitudes forms a quadrilateral in
the complex plane.

Measuring the various decay rates gives all eight rnag-
nitudes,

I

A'/I and
I
A 'ji. In addition, the time-dependent

decay rates into ~ Ez give the CP asymmetry

'~

FIG. 3. The two quadrilaterals of B—+K~. Note that U+ V
is a common diagonal, while the noncommon diagonals bisect
each other.
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2A 8:—A*B+B*A . (26)

where the dot product denotes the symmetrized scalar
product of two complex vectors:

plained within the standard model. The
I
A '&I =

I
3 '&I re-

lation can be checked channel by channel and does not
require any isospin analysis [11].

The four CP-conjugate differences vanish if CP is con-
served in the decays, but they are different from zero for
the general case of CP violation. Note that the form of
Eq. (25) depends only on the following very general as-
sumptions: (1) isospin invariance for all strong final-state
interactions; (2) the weak Hamiltonian can produce only
I, =o and I, =l transitions; (3) the weak phase is the
same for all I, =1 transitions.

For the standard model, where there are contributions
from penguin and tree diagrams, the above assumptions
hold since penguin diagrams contribute only to I, =O
transitions and all tree contributions have the same weak
phase. Combining these equations gives the sum rule

go+ 2 I+0+I2+lgOOI2
I

Jool2

1(lg+OI2
I

J+OI2+Ig —+ 2 Ig
—+I2) (27)

All the CP-conjugate differences vanish if there is no
penguin contribution, since then all the amplitudes have
the same weak phase. In that case the sum rule is trivial-
ly satisfied. If there are appreciable penguin contribu-
tions, the sum rule becomes nontrivial. Since branching
ratios will be measured before time-dependent asym-
metries, these data will show immediately whether there
is an appreciable penguin contribution. If indeed there
are appreciable penguins, the sum rule will test whether
the very general assumptions above are valid [10].

All the above discussion can obviously be applied
equally well to the channels pL and aK*. For the chan-
nel pK*, one needs to use angular analysis in the neutral
channels (to separate a definite CP contribution) in com-
bination with this isospin analysis. Note that the K* is
observed both as K&~ and K+~ and only K&m is a CP
eigenstate which exhibits CP asymmetry. The K—~ de-
cay modes provide another determination of

I
A

I
and

I
A

I
and a check on systematics in time-dependent mea-

surements. Unfortunately, the branching ratios for any
of these channels (including ~X) are likely to be very
small: a combined angular and isospin analysis will be so
dominated by the errors in the several measurements that
it would probably be rendered useless. Additional chan-
nels that can be similarly analyzed are those with an ad-
ditional isosinglet meson in the final state. Such a parti-
cle does not affect the isospin structure of the amplitudes.
As long as the CP of the neutral system can be fixed, us-
ing angular analysis where necessary, such channels pro-
vide further possible measurements of the CKM parame-
ter o.. Unfortunately, none of these channels is expected
to have a large branching ratio, so it is unlikely that
sufhcient data will be available to accurately construct
the quadrilaterals and extract o. in this way.

The isospin structure of the channels ~D, pa, and ~a*
is exactly the same as in the nl]. case. (CP asymmetries
will be measured with CP eigenmodes of D and D ).
However, here no penguin contributions are expected.
Differences between 2'~ and 2 '~ processes cannot be ex-

I

p+~0) =V'-,' I2, 1)+V'-,'
I 1, 1 ),

IpO~+ &
=V'-,' I2, » —V'-,'

I 1, 1 &,

lp+~- & =v'-,'I2, 0&+v'-,'ll, o&+v'-,'lo, o&,

lp-~+) =v" I2, o) —v", Il, o)+v', Io, o),
p'~') =v'-'I2, 0) —v'-,' lo, o) .

(28)

Now let

~'& = (p'~&ImIB'+&) (29)

Then

TV 2 ~3/2, 2 2V T~3/2, ] V 2 ~]/2, ]

zV 2 ~3/2, 2+ 2V 2 ~3/2, ] V 2 ~]/2, ]

=
2 V &

A 3/2 2 &
A 3/2

2 V &
A 3/2 2 +

&
A 3/2

+I~ 1/2, 1 V 6
~ 1/2, 0

(30)
1 r' 1

2 ~1/2, 1 V 6 ~1/2, 0

V T~ 3/2, 2+ V 6 ~ 1/2, 0

As before, the amplitudes 2 'J correspond to the CP-
i

' 2ipT iconjugated processes and 2 ' =e 3 ' . For conveni-
ence we define the quantities

S =v'Za+0 S —=3/ZaO+

S3 ——3+, S4 =—3 +, S5:—2A
(31)

and similarly for S;. Then

S, +S2 =S3+S4+S5,
S1+S2=S3+S4+S5 .

(32)

These are the two pentagon relations.
Now let us distinguish tree and penguin contributions

explicitly. The penguin operator is purely I =
—,', so we

define

We can continue to play yet more arcane versions of
this game. For B~p~ we have again I, = —,

' or —', and
Eqs. (1)—(3) hold. However, here If =0,1,2 are all al-
lowed. Thus we have four independent isospin ampli-
tudes (A]/20 A]/2 ] A3/2 ] and A3/22) for B and B0 +

decays, and a corresponding set for B and B decays.
There are five different possible charge assignments for
the p~ system, so once again there is a single relation be-
tween the 3'~ amplitudes and a corresponding one be-
tween the 2 '~ amplitudes. Consequently, each set forms
a pentagon in the complex plane. Here the penguins have
I, =

—,
' only and thus do not contribute to the two A3/2

amplitudes. Following the steps of previous sections we
now obtain
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~1 2(A1/2, 1)P

~0 V 6( A 1/2, 0)P
(33)

where the subscript P means contributions from penguin
processes only. The five vectors can be rewritten as

S) =T+ +2Pj,
S,= T'+ —2P, ,

S3 = T+ +Pj +Po,
S4= T + —P)+Po,
S5 = T ++ T+ —T + —T+ —2PO,

(34)

where the quantities T'~ contain no penguin contribu-
tions. Similar relations hold for S;. Note that T'~= T'J.
Therefore, linear combinations of S; which are P. in-
dependent equal the corresponding S; combinations:

S( +S2 =S) +S2,
S& 2S3 S5 =S& 2S3 S5

(35)

Measuring the ten decay rates gives all ten S;I and
IS;I. Thus we can (in principle at least) measure the
lengths of all the sides of both pentagons. This plus the
conditions above determine the figure up to one parame-
ter, which we can take to be the length of the penguin-
independent quantity S&+S2. There are also three time-
asymmetric quantities which can be measured in the
three channels for neutral B decays. One of these is the
usual CP asymmetry:

aoo=Im e
—21/ +P ) S5 ISs I

I

sin(500) .
S 5

(36)

The other two give [6]

a+ =Im e M
—2i(P +P ) 4

S3

a +=Im e M
—2i(P +P } 3

S4

Is I

Sill( 5+ )
3

S3 i(5 ).
4

(37)

Defining a = —($)lr+ pT ), we can determine

500 =2a+ 4'5
—6

5+ =2a+ p4
—p3,

5 + =2a+ p3
—

p4

(38)

where P;=arg(S, ), P;=arg(S;). From the difference
5+ —5 + we can extract arg[(A +A +)/
( A + A +

) ], which then allows us to fix the one
remaining free parameter and hence determine (S5/S5).
This, in turn, will allow us to convert the measurement of
a without approximation into a measurement of
PM+PT. All this requires solving a number of higher-
order algebraic equations with constants that are the
various measured quantities. Errors on these quantities
make this analysis inaccurate. In addition, discrete ambi-
guities will further complicate the analysis but, as in the

mm case, theoretical calculations suggest that the solution
consistent with small penguin contributions is preferable.
Perhaps the most likely outcome will be that the con-
struction of the two pentagons will give a measure of the
possible magnitude of penguin contributions; if they are
in fact small compared to the tree amplitudes then the
two pentagons will match within errors. In this case the
naive analysis which assumes a =sin2a will be the best
we can do. The figure can be used to provide an estimate
of the possible error in that assumption.

A(SC'~+~0)= A(E:+~ ~')=X- ,

A (K+~+~ ) = —
—,'X —Y+Z,

A (Ic'~+~-) =+-,'x+ l'+z,
A (K + sr m ) = ——'X + Y —Z,
A(K vr n )=+—'X —F —Z,

(39)

where

X=&—', A(1, 2, -', ), r= —,
' A (1,O, —,'),

Z=Q-,'A(o, o, —,') .
(40)

For three-body decay modes such as 8~K~~ there
are many more amplitudes and more decay modes and
the analysis is more complicated but possible. Such anal-
yses may be useful because they include quasi-two-body
final states such as K*~ or Kp without the necessity of
separating out nonresonant background. Here a com-
bination of isospin and angular analyses can be useful.
These final states can be classified in terms of their total
isospin and the isospin of any two-particle subsystem,
which we choose to be the two pions.

It is instructive to first consider the relationship be-
tween angular dependence and isospin in this system. In
the ~m rest frame the z axis can be chosen along the K
direction. States with isospin I„„=1have their ampli-
tudes odd in cosO with respect to this axis, while states
with I„=even have even angular momenta and hence
their amplitudes are even in cosO. Hence angular
analysis can select contributions that are purely I =1,
purely I„„=even or cross terms between them. This
selection between odd and even I also selects quantities
of definite CP for the K&~+m channel. Angular
analysis is unnecessary for the Kz~ m. state which is al-
ready a CP eigenstate with I„=even.

There are six isospin amplitudes A(I„I,If). The
three amplitudes with I =1: A (0, 1,—,'), A(1, 1, —,'), and
A (1, 1,—', ), form a system which is equivalent to the Km

system. The same method of analysis as for Km can
therefore be applied to all K m.m of I„=1 without
separating out the p resonance. For the even I chan-
nels, the situation is even better. The three amplitudes
A (0,0, —,

' ), A (1,0, —,
' ), and A (1,2, —,

' ) parametrize six

B+~K+~++, K++ ~, K m+m . The resulting rela-
tionships are
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These amplitudes represent any projection chosen to
select only even sr~ angular momentum and hence even
I„„.Note that penguins contribute only to the quantity
Z, neither to X nor to 1. The relationships in Eq. (39)
can be represented by triangles in the complex plane.
These triangles are completely determined (as in the irir
case) once all decay rates and hence the magnitudes of
the amplitudes are known. Similar relationships apply
for the related amplitudes for B and B decays.
Measuring the CP asymmetries in both K&~ ~ and
Kz~ ~ channels will leave no discrete ambiguities.
Thus the asymmetry measurements in the K&~~ system
can again (at least in principle) be converted to clean
measurements of CKM matrix elements, even though a
priori the tree and penguin contributions are comparable
in magnitude.

The cross terms between even and odd I can readily
be selected by integrating against any odd function of
cosO, or by taking the forward-backward asymmetry. Let
us denote such a quantity by F(Krrm) (F denotes the CP
conjugate process). The isospin analysis implies further
conditions on these quantities; e.g. ,

F(K tr+tr ) F(K ~—+sr )=F(K+tr 7r ) F(K+vr—vr ) .

(41)

Both sides of Eq. (41) vanish separately if there are not
both tree and penguin contributions.

The above relationship can also be expressed in an
unintegrated form. We consider particular momenta for
the pions in the final states containing two pions with to-
tal charge +1. The state ~+(p, )ir (p2) is distinguished
from the state n (pi )m+(pz). The relation (41) can be
rewritten in the form

/ Wo+ol I &o+o +
I &+ —o

=
I ~oo+ I ~oo+ +

I ~+o—
I I ~+o—

where 2;,k denotes A [K'~~(p, )ir"(pz ) ]. As with the sum
rules given above for the mK system, the relationships

(41) and (42) can be derived under a very general set of as-
sumptions and become trivial if the penguin contribu-
tions vanish. Thus they provide tests that can probe the
penguin contribution before sufficient data are available
to make the CP violation studies.

As in the case of the K~ system, all the above discus-
sion applies equally if the K is replaced by a D. However,
in that case there are no penguin contributions. Conse-
quently, no asymmetries are expected in the charged B
decays, while those in the neutral B decays are directly
related to the CKM parameters (once a state of definite
CP is selected by angular analysis). Isospin analysis does
not add new information in this case.

CGNCI, USIQNS

We have shown that the method of isospin analysis in-
troduced by Cironau and London [3] to eliminate hadron-
ic uncertainties in CP asymmetries in B—+n~ is, in fact,
very general and can, in principle, be applied to many
channels. Its usefulness depends on obtaining good mea-
surements for a whole set of isospin-related quantities.
This, in turn, will depend on branching ratios and on the
available experimental techniques. We present here the
generalizations of the method to other channels in the
hope that there will be some channel in which a large
enough branching ratio and a full set of observable de-
cays will make it useful. It is clear from the cases
presented here that the applicability is, in principle, very
broad, but the practical usefulness remains to be seen. It
is a tool worth considering once sufficient data are accu-
mulated.
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