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Charmonium decays into proton-antiproton and a quark-diquark model for the nucleon
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A quark-diquark model of the nucleon is applied to a perturbative @CD description of several decays
of the charmonium family: q„y,o „,2 f,2~pp. Both experimental data and theoretical considerations
are used to fix the parameters of the model. The decay rates for the g's and for the q, cannot be made to
simultaneously agree with the experimental results: we can obtain a good agreement with the existing
data on the g's, but the values for the decay of the g, are then found to be much smaller than the data.
The available experimental information is also discussed. Our formalism provides a general framework
for the computation of the decay amplitudes of any +'LJ, C=+ 1, heavy-quarkonium state into a
hadron-antihadron pair. The explicit expression for the decay into two photons is also given.

INTRODUCTION

The presence of diquarks as constituents inside nu-
cleons has been extensively discussed in the literature [I]
and seems to be well supported both by theoretical and
experimental arguments. In a previous paper [2] we have
computed the g, —+pp decay, at the tree level in perturba-
tive QCD, modeling the proton with a quark-diquark
(qg) system. Contrary to pure quark models [3], this ap-
proach allows us to obtain a value for the decay rate
which di6'ers from zero. Its actual numerical value, how-
ever, still depends on several poorly known parameters,
some of which have been fixed by comparison with other
processes computed in a simplified version of our model
[4,5].

We extend here the discussion of Ref. [2] to other de-
cays of the charmonium family, in order to be able to fix
the parameters and to provide a consistent check of our
scheme. That is, we consider a full set of exclusive pro-
cesses, in the same energy range and in the same frame-
work, and we see if our model can give a good description
for all of them. The energy range is that of the masses of
the cc mesons, where diquarks are supposed to act as
quasielementary objects, and the framework is the
modified Brodsky-Farrar-Lepage scheme [3], already
used in Ref. [2] and, with scalar diquarks only, in Ref.
[5].

We consider the g, and go & 2 decays into pp. We fix
the values of the charmed-meson wave functions at the
origin by computing the decay rates of g, and /02 into
two photons and comparing with the experimental data.
We then exploit part of the experimental information on
the decay rates into pp to fix some of the remaining pa-
rameters; we accomplish this by fitting our results for the

decay rate of y2 —+pp to the experimental data. We dis-
cuss the reasons why we consider these data as the most
reliable ones and show that dift'erent strategies do not
lead to better results. Other parameters are Axed using
theoretical considerations.

We obtain a reasonable agreement with the known
data on the decay rates of g&~pp; we can also get a re-
sult of the same order of magnitude for the decay rate of
go —+pp, in agreement with an existing upper bound.
Much smaller values are found for the decay rate of
g, —+pp, to be compared, unfortunately, with a seemingly
very large experimental result. If instead we insisted on
making q, ~pp agree with experiment, we would inevit-
ably obtain unreasonably large results for each of the oth-
er decays. If such a disagreement should persist, even
with more precise data, it would be a problem for the ap-
plication. of our quark-diquark model to the description
of exclusive reactions.

The plan of the work is as follows. In Sec. I we present
our scheme and give the explicit formulas for the compu-
tation of the helicity amplitudes for the decay of any

'LJ heavy-qq state into baryon-antibaryon. In Sec. II
we compute the elementary helicity amplitudes for the
process cc~qg Q and give the helicity amplitudes for
the considered charmonium state decays into pp. In Sec.
III we give the general expressions to compute the decay
rate of any 'LJ, C = + 1 heavy-qq state into two pho-
tons: In particular we obtain, in the nonrelativistic limit,
the decay rate for g„y02~yy, in agreement with Ref.
[6], and use such results to fix the values of the charmed-
meson wave functions at the origin. We also give the de-
cay rate of the expected f,2 state into two photons. In
Sec. IV we discuss the diquark form factors, give numeri-
cal results for the decays into pp, and discuss them.
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I. GENERAL FORMALISM

In analogy with the QCD scheme of Ref. [3] we de-
scribe exclusive interactions by the convolution of a hard
elementary process, involving free hadronic constituents,
with a soft part, the hadronic wave function which mod-
els the hadronization of the constituents into the ob-
served particles.

In the intermediate-energy region we are considering

(energy transfers of the order of few GeV) nonperturba-
tive or higher-twist effects are still important. Following
the program explained in Refs. [2,4,5,7], we model some
of these effects by considering diquarks, bound states of
two quarks, as active constituents. Such an assumption is
supported by a large amount of experimental and theoret-
ical information [1].

In our scheme, the helicity amplitudes for the decay
into two baryons (BB} of a +'LJ(cc ) state are

Az~r's(&)= g Jdx dy d'k[(BAglhply'qg'X~&&)(BAglhalx'qg;k A, -)TP„'.~ „.~ „(k,8,xy)
QA jA A

X (k;cc;A,,A,, lhclk; J,M, L,S ) ],

~JMLS X
1/2

2L + 1 C(].lz)( t l2)SCLsJ
4m

A. —k A, OAR,

X Jd k Mg g .g g (8;a,P, k)

where T'($' is the center-of-mass helicity amplitude which
describes the elementary annihilation of c and c into
quark-antiquark diquark-antidiquark pairs (cc~qgqg };
the operators h describe the hadronization process of the
elementary constituents into mesons and baryons. By as-
suming, as usual, that qQ and qg are collinear, the
baryonic wave functions (B lb~ lqQ ) and (B

l h~ lqQ ) de-

pend only on the fraction of the baryonic momentum
y(x) carried by the diquark (antidiquark). The ampli-
tudes depend on the quantum numbers J,M, L,S of the
initial charmonium state, on the helicities A,z, A,~ of the
final particles BB and on the decay angle 0 between the
baryon momentum and the quantization axis of the spin
of the decaying particle (chosen as the z axis). The initial
wave functions are defined in momentum space and k is
the cc relative momentum. A11 the sums over the Aavors
and colors of the constituents are not explicitly written
for simplicity of notation.

The hadronization operators are supposed to be diago-
nal in angular-momentum space; that implies
A,z = A,~+ A, &, A,z

=A, +A,&. The transformation from the
canonical base lJMLS) to the helicity base lA,,A, , ) is

given by the usual Clebsch-Gordan coe%cients. By in-
serting the explicit expression for the + 'LJ(cc )-state
wave function and after some algebra, Eq. (1.1) can be
rewritten as [8]

tive momentum of the cc system, k, has been expressed in
spherical coordinates in terms of the polar and azimuthal
angles a and P. After integration over a and P, Eq. (1.2)
should give the correct angular distribution for the decay
of a particle with quantum numbers J and M into BB;
i.e., the angular dependence of the helicity amplitude A
must be given by the rotation matrix element

The formalism defined through Eqs. (1.1)—(1.3) is quite
general and applies to the decay of any +'LJ heavy-
(qq ) state into baryon-antibaryon.

—[(Q.e&)(e'&)"—(Q E&)(e&}"]G~

—(~' Q)(~& Q)(Q —Q)"G3], (2.1)

where the T' are Gell-Mann color matrices; Q and Q are
defined in Fig. 1, Es, G&, 62, and 63 are form factors
which will be discussed in Sec. IV, and e&, e& are the di-

II. DECAY AMPLITUDES FOR ri„yo ) g,fg ~pp

We will consider the decays of charmonium states with
C =+1. The corresponding elementary processes are
given by the two-gluon-exchange diagrams of Fig. 1.
These diagrams contain only vertices with one gluon line
attached to a diquark line. This allows us to use in our
computation the most general couplings of scalar (S) and
vector ( V) diquarks to gluons, given by

S~=— ig, T& (—Q —
Q )"F, , .

V":ig, T,'—[(e& e&)(Q —Q)"G,

XD~q(P, a, O)g, (k ), (1.2)

where g, is the charmonium wave function, A, =A., —A, ,

Jdx dy A*,~, (y}P&,~ (x)
;AQUA.

—;Qq' Q Q' Meson 2S+ 1gJ JPC

TABLE I. Quantum numbers of some charmonium states
with C =+1.

x5 +A,
Q

A.~, A, +A.—B' q

XT
kq Ar j Ay

Q
(1.3)

and the gz z are the baryon wave functions. The rela-

9C

XCO

XC1

XC2

'SO
3p
3p

'D

0
0++
1++
2++
2 +
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c, A„i
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6
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FIG. 1. Feynman diagrams for the elementary process cc~qg Q. Here p"=(E,p sin8, 0,p cos8},
c"=(E;(k/2}sinac osP( k/2 lsi na si nP( k/2}c osa }i j l m, r sab are color indices. A~, 1, , A&, 1&, k„and 1,, label helicities.

quark polarization vectors. [For couplings with two or
more gluons attached to a diquark line the most general
form (allowed by Lorentz, gauge invariance, etc.) would
be much more complicated. ]

%'e can now compute the elementary amplitudes corre-
sponding to the diagrams of Fig. 1, where the kinematics
is defined. Throughout our calculation we use the naive
parton model, neglecting the Fermi motion of the constit-
uents inside the baryons; we must then assign to quarks,
antiquarks, diquarks, and antidiquarks a running mass
m~=(1 —y)m~, m =(1—x)m~, m&=ym, m —=xm,

q

respectively.
We do not give here all the details of the lengthy calcu-

lation; the interested reader can find them in Ref. [8].
Once we have the full expression for the elementary am-
plitudes T'~', we can use them in Eqs. (1.3) and (1.2) to
obtain the desired decay amplitudes. We list in Table I
the (cc ) meson states which we shall study, together with
their quantum numbers.

We consider as final states only protons, for which we
take the SU(6)-type wave functions [2,5]:

+F~
p~ i. =~(i/2)(x) = —I/2(x)[&2 V~, (ud)u ~ —2V~, (uu)d ~ ]+pg(x)[V2Vo(uu)d~ —Vo(ud)u~ ]p~ 18

+ [2$,(x)+$3(x)]S(ud)u~ j . (2.2)

The P;(x) (i = 1,2,3) are the diquark momentum density distributions normalized as f dx P;(x)= 1; Vi (ud) stands for
a vector (ud) diquark with helicity A, , and so on. F~ is the hadronization constant, wit%i the dimension of [mass], some-
what analogous to the pion decay constant F . We also introduce a certain amount of SU(6) violation [9]:

$2(x) =$3(x)= t/2/i, (x) sinA,

2$, (x)+$3(x)=3&2$s(x) cosQ .

By varying the value of the angle 0 we can give diff'erent weights to the vector and scalar components [for 0=sr/4 we
recover the SU(6) wave function].

Using the wave functions (2.2) the helicity amplitudes (1.3) and (1.2) and carrying out the a and P integrations, we get
the decay amplitudes 2& & .I, for the charmonium states listed in Table I:

P' P'

1/2

A++(g, ) = + p2E2
m~ f dx dy f dk k g„( )kG( )k1 2

2 y23G2y(x —y)co, (2.4)

A++(q, )=0, (2.4')
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A++(y, )= fdx dy f dk k'gx (k)6(k)m,

X,pk(x+y) 9ysFs+ |p3 [(p +E ) 1 4xyp E 63 E 2] 6yzG
1

fOp

2co+ cp

—24
q pkyz3Gzy co ——c

mp
r

+ (x —y ) [2p +m& (2 —x —y) ] —9@sFs+3+2 2 [(p +E )61—4xyp E 63 ]—69&261
Alp

~+ ~ (Xo)=0

~ 2+;M(X1)

—12cp3 &E G&+24 &E Gzy&3y c& . ,

Alp mp

1/2

g+ .M(y, )=+—— dM1+, (0)f dx dy f dk k gx (k)6(k)
T

X,pk (x+y —4xy) 9ysFs+3y, 2
[(p'~E')6, 4xyp'E—'6, 2E G, ]—

~ 6g (x —y) 6 —12(1—x —y }(p G y c

+pk 2(x+y —xy) 9~sFs+3y3 [(p +E )61 4xyp E G—
3
—2E Gz]

L

Plp

+ 3q, (x —y) 6, + 1+—(x +y) 12'»Gzy —c,1 1

+(x —y) [2p +m (2 —x —y)] 9ysFs+3yz 2 [(p +E )G, 4xyp E G3]—

p 2—12y3 E Gz+12p Gzqz3y c
f71p

g~~.M(yz)= — dMzo(g) f dx dy f dk k'g» (k)6(k)
C

X,pk(3E+2m, ) (x+y) 9qrsFs+3y3 —[(p +E )G1 4xyp E G3 2—E Gz] —6y26—1

E2+», G.e~e 7co
Alp

+pk (3E+11m, )(x +y) —9@sFs+3y3 2 [(p +E )61 4xyp E 3 2 2] 6f'261
L

Plp

E2+ (3E —10m, }12
z Gzqr23y cz

m

+pk (m, E) (x +y) —9y —F +3y, [(p'+E'}61—4xyp'E'63 —2E'62] —6V»Gi
mp

E2
+12

z Gzl z3y 4c4
Alp
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+(x —y) [2p +m (2 —x —y)] 9y—&Fz+3y3 z [(p +E )GI 4—xyp E 63]—6yqG~

1
++;M(X2) 210

1/2

2 2—12y3 E 6&+24 E Gzyz3y [7(3E+2m, )c&
—9(E —m, )c3] . ,

mp m

~i(8)f dx dy f dk k g& (k)6(k)
C

(2.7)

X,pk(3E+2m, ) (x+y) 9yzFz+3y3 ~ [(p +E )6, 4xyp—E 63 2E —Gz] +126zp~3y 2lco
P

+pk [2m, 9E—+21E(x +y 2xy)]—(9pzFz+3y3 [(p +E )6& 4xyp —E G3 2E Gz]—1

l?lp

+63y3(x —y) GzE+ 2m, —9E+ E(x +y) 12'&z36zy 3cz2 21
2

1+pk(E —m, ) (x+y) 9yzFz+3y3 [(p +E )G, 4xyp E G3—2E Gz] —+12p~36zy 8c~

+(x —y) [2p +m~(2 —x —y)] 9qr&F&+3y3 z [(p +E )6& 4xyp E—G3]
m

2—12y3 ~
E Gp+12p Gztpz3y [21(3E+2m, )c, +18(E rn, )c3]— (2.7')

1/2
7T

~++ ~(fz) +— 2

m d~~o(8) f dx dy f dk k PI (k)6(k)12yz3 z
E Gzy(x —y)cz,

I?lp
(2.8)

~+ ~;M(f~ ) =o (2.8')

where M is the z component of the spin of the decaying particle and

. 2'~'&36 ( k ) = i —F~~(y, ,
81g Ig2

z 1 1+z
co = — 1n

d2 2z 1 —z

z z 1+zcI= 3 —1n
2 1 —z

—1 7

z' 5 1 +z
cz = — (3z —1) ln

2 2z 1 —z
—3

c3 = 7 —(5z —3z ) ln
z 1 1+z
d' 4 1 —z

5 2 2
Z +

2 3
(2.9)

c~= 9 (35z —30z +3)lnz 1 4 1+z
16z 1 —z

g, =(x y) m +4xyE—
gz =(x —y) m +4(1—x)(1 y)E—
d =(x y) m~+2(2xy ——x y)E—

35 2 55
8 24
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with z =d /[kp (x —y)]; a, =g, /4m is the usual strong coupling constant. The diFerent terms coming from the proton
and antiproton wave functions, Eq. (2.2), always appear in Eqs. (2.4) —(2.8) in the following combinations:

ms
=—[20i(x)+03(x) ][201(y)+43(y) ],1

0 3 43(x)03(y»

'P23 $2(y )43(x )

(2.10)

Finally, we introduce the usual [6] nonrelativistic, small-k limit for the charmonium wave functions 6,(k). We get
[8], according to the values of l.,

1/2

(I. =0) i' (k) = — R (0) 5(k),
2 k

(l. =1) g (k)= —3i3/2~R'(0) 5(k),1

k2 dk
(2.11)

' 1/2

(I. =2) f (k) =—15
2 2

d2
R "(0) 5(k)

k dk

where R (0), R'(0), R "(0)are the radial wave function and its derivatives, computed at the origin.
If we use the wave functions (2.11) in the amplitudes (2.4) —(2.8) we find, performing the dk integration,

A++(ri, )=+i R (0)F~a, (m, —m )m, dx dyy23Gzy(x —y)
. 2"~33/3

2 2 2 2 2

3 fPlp

2' 3A++(yo)= 4
n. R'(0) F~a, m(m, —m~)'

34

I
2 2 2

k=o
(2.12)

X f dx dy —9ysFs+3y3 [(2m, —m )Gi 4xym,—(m, m)G—3]—6y2Gi 4xy(x +y —2)m,
mz

'
tp, G (x +y —2)[(x —y)'m, '+4xym, '1

m&

~23G2y [2(x —y)zm + [2(2xy —x —y) —(x —y) ]m, ]
Alp

28
A++ M(y, )= —

A, mR'. ( )0F~,a,m(. ,m—m )'~ dMi (8)
33

1
2 2 4 7

k=0 (2.13)

X f dx dy 9q'sFs+3g3 2 [(2m, m,')G, —4xym, (m, m— )G3]—
Alp

X4xy [[3(x+y) —4xy —2]m,' —(x —y)'m')]

112—6
2 f'362 4xy[3(x +y) —4xy —2]m, +(x +y —4xy —2)(x —y)2m ~

2
(x —y) [2(2xy —x —y)m, +(x —y) m ]

C

—12gr3362y [[2(1—x —y)(2xy —x —y) —(x —y) ]m, +(2—x —y)(x —y) m

1

X g2g2d 4
(2.14)
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2 6
A++, M(yz) = — m3R'(0)F&a, m (m, m—

~
)' d~~(8)

3

X fdxdy 9y—sFs+3y3 [(2m, —m )G, —4xym, (m, —m )G3]—6p2G, 4xy(x+y —2)m,1 2 2 2 2 2 2

JP

2
—6

'
y3G2 (x +y —2) [(x —y ) mz +4xym, ]

77lp

2

+12 '
~2362y [2[2xy —x —y +(x —y) ]m, —(x —y) m~ J

m

1

2 2 4 7

k=o
(2.15)

28
A++.M(y2) =

3
m R'(0)F&a, m, (m, —

mz )' dM~(8)
33

X f dx dy 9qrsFs+3y3 [(2m, —m )G, 4xym—, (m, mz)—G3] 4xy(x+y —2)m,
P71p

—6 p3G2(x +y —2)[(x —y) m„+4xym, ]
mp

+ 12yz3m, Gzy (x +y)(x +y —2)
1

g2 2d4
k=0

(2.15')

A+~.M(f, )=+~, m'a, F~R "(0) (m,' m~—)'dM„(8)f dx dy12+»G, y(x —y)'
34 s

Alp

1
2 2 6

g &g2d k =o
(2.16)

Finally, from the explicit expressions of the decay amplitudes, Eqs. (2.12)—(2.16) we can compute the unpolarized de-
cay rates for the spin J charmonium states:

I = 1

8(2m)

(m' —m')' '
C P

m, X f d&~ Ax, x,M ~

~ ~ ~2~+1 p'
p 7

(2.17)

III. CHARMONIUM DECAYS INTO TWO PHOTONS

Each charmonium wave function, Eq. (2.11), still contains one unknown parameter, R (0), R '(0), or R "(0). In order
to fix them we study the decays of rj„yo 2, and fz into two photons (the decay of g, into yy is forbidden and, indeed,
we find it to be zero). The scheme is the same as in Eqs. (1.2) and (1.3), except that now we do not have any hadroniza-
tion process and M and T in Eq. (1.3) coincide. The elementary subprocess is directly cc—&yy and it is described by the
diagrams of Fig. 2, where we also define the kinematics.

By computing the amplitudes for the elementary process, inserting them into Eq. (1.2) and integrating over a and P
we find the decay amplitudes 3 & & .~..

c, A,

FIG. 2. Feynman diagrams for the elementary process cc~yy. We compute them in the cc center-of-mass frame, where
the independent four-vectors are given by c"=(E;(k/2)sina cosP, (k/2)sina sinP, (k/2)cosa) and y", =(E;y, ), with

y &
—=(E sin8, 0,E cosO); A,

&
and A,2 are the helicities of the photons.
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2 ++ ( tl, ) = + 4&2vr f dk k itj„(k) G'( klc 0E, 3 ++ ( il, ) =0,
4&2~ 1

A+g(yp)= Jdk k fz (k) G'(k) cp —cz k+G "(k)c',E, 2+ +(yp)=0,

(3.1)

(3.2)

3++(gz)= dMi(0) dk k Pr (k) . G'(k) 7 —m, +E cp+ — m, +E cz+ (—m, E)—c~ k
2, 10, 4

35m, X2 3 c 0 3 c 2 3

—2G "(k) 7 —m, +E c', +3(m, E)c—3 E . ,

3++.M(gz) = — dMi (8) dk k fr (k)G'(k) —7 —m, +E cp+ —m, +E cz+ (E ——m, )cz .k,4&6~
++ M 2 35 MA, X2 3 ' 3 ' 9

1/2

(3.3)

2nA'++ M(f~)=. +4 dMi(9) f dk k gf (k)G'(k)c~E, A'+~ M(f~)=.0, (3.4)

where G'(k)=(i32m&3e)/(9k ), G"(k)=(il 6n i/3a) /
(9kE) and the coefficients c' are defined by

2

r(f, yy)=, IR "(o)l'.
Pl

(3.10)

1 1+zcp= ln
2z 1 —z

z 1+zc' =3 —ln1 2 1 —z

cz =— (3z —1) ln
5 1 2 1+z
2 2z 1 —z

c 3
=7 —(Sz —3z ) ln

1 3 1+z
4 1 —z

—3

5 2 2
Z +

2 3

(3.5)

I ( g, ~y y ) = 5.7+2.6+3.7 keV,

I (yp~yy)=4. 0+2.8 keV,

I (y~~yy)=2. 9,'0+1.7 keV .

(3.11)

(3.12)

(3.13)

By comparing Eqs. (3.7)—(3.9) and Eqs. (3.11)—(3.13)
we get

Equation (3.7) agrees also with the value given in Ref. [2],
where F„=R(0)/(+4m m, ).

The known experimental values for the decay rates into
two photons are [10]

c~=9 (35z —30z +3) ln4 2 1+z
16z 1 —z

35 2 558'+24 IR (0) I
=0.63+0.25 (GeV)'",

IR' (0)l =0.35+0.12 (GeV)

(3.14)

(3.15)

with z =2E/k.
The decay rates are then given in terms of these ampli-

tudes, for unpolarized spin-J states, by

r= 1 1

16(2~)' 2J+1 ~, (3.6)

In the nonrelativistic, small-k approximation, Eqs. (2.11),
we recover the results of Ref. [6], for states with L=0,1;
that is,

IR' (0)I=0.61+0.22 (GeV) (3.16)

We have combined quadratically the statistical and sys-
tematic errors in Eqs. (3.11)—(3.13) and we have assumed,
consistently with our scheme and the zero binding energy
approximation, the mass of the c quark to be one-half the
corresponding (cc ) meson mass. The two determinations
of R'(0), coming from the yp and yz experimental data,
are, within errors, in agreement with each other. When
computing the gp, 2~pp decay rates we shall use the
corresponding R'(0) values; for y, we shall take the aver-
age value

16 czyy)= IR(0)l',I
r(x, yy)=

m4
C

4
r(x~ yy)=,

5
r(y, yy),

while for fz (L =2) we have

(3.7)

(3.8)

(3.9)

IRr (0)l =0.48+0. 17 (GeV) ~ (3.17)

9 &sr( 9 X0,2 gg)
8

r( 9 X0,2 y3 (3.18)

An alternative way of fixing the values of R (0) and
R'(0) would be that of assuming the total decay rates
into hadrons to be given by the decay rates into two
gluons, for which we have [6]

2
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This procedure leads to results which, within errors,
agree with those given in Eqs. (3.14)—(3.16).

IV. NUMERICAL RESULTS FOR
gc~XO 1 2~PP DECAY RATES

deep-inelastic scattering [7,14] (DIS) and by demanding
that the scaling violations induced by them be compatible
with the observed ones. All this leads to

+ (Q')- G (Q )-G (Q')- G (Q')-

Ps=%,x '(1 —x) ', Py=N2x '(1 —x) ', (4.1)

After fixing the parameters which characterize the
charmonium wave function, R (0) and R'(0), we still
remain with those related to the diquark form factors and
the hadronic wave functions. The latter have the general
form (2.2) and (2.3), with

We then parameterize the diquark form factors as

Qs Qv
Q2+QZ ' & Q2+Q2

(4.5)

(4.6)

x ~sv %12 J dxx ' (1—x)

e) 2+1
a, ~+p, 2+2

(4.2)

We expect the average mass of scalar diquarks to be
smaller than the average mass of vector diquarks; this is
supported by the analogy with the qq bound states (the m

mass versus the p mass) and by explicit calculations [11]
which indicate ms &mz 2ms. A similar conclusion,
(x )s & ( x ) z & 2 ( x )s, has been reached by studying the
contribution of diquarks to deep-inelastic scattering [12].
We shall use in our computations four different sets of
wave functions:

where N& 2 are the normalization constants such that

fOdx pzs(x) =1. By varying a and p we get wave func-

tions with different "average" values of x, the fraction of
the mass and the momentum of the proton carried by the
diquark:

G~ =(1+a )G„G3=0 .

The values of Qs z set the scale for the transition from
the small-Q region, where diquarks act as elementary
objects, to the large-Q one, where they start being
resolved in two quarks. It is generally agreed [1,12] that
scalar diquarks are more pointlike than vector diquarks;
accordingly we take Qs=10 (GeV) and Q~=2 (GeV) .
Small variations of these values do not lead to relevant
changes in the numerical results.

The form factors Gz =( I+~)G, -Q used in Ref. [2],
are not compatible with the asymptotic DIS analysis of
Refs. [7,14] or with the perturbative QCD one [4,13], al-
though they might be phenomenologically acceptable at
intermediate values of Q . We use here the Q depen-
dence suggested by the asymptotic analyses and, as in
Ref. [2], we take a.= l. We have checked explicitly that
the numerical results are only marginally affected by
these modifications of the form factors. We take for the
strong coupling constant the usual expression

a, = 1, /3, =3, a~=3, /3~=1,

a, = 1, /3, =2.5, a2=2. 5, p2= 1,
a, = 1, p, = 1, a2 =4, /32

= 1,

(4.3a)

(4.3b)

(4.3c)

a, (m~„~)=12'/[251n(m~„~/A )], A=0. 2 GeV .

At this point we still have two free parameters: 0 and
F~. The available experimental information is the set of
decay rates [15]

p, =l, a2=5, @~=i . (4.3d)

Fs(0)= 1, G, (0)=1, G (0)=1+&, G3(0)=0,
(4.4)

where ~ is the vector diquark anomalous magnetic mo-
ment. We can get some idea of their large-Q behavior
from perturbative QCD, resolving the diquarks in two
quarks [4,13]. Moreover, we can fix the large-Q behav-
ior of the form factors by looking at the consequences,
caused by the presence of diquarks inside nucleons, on

These are consistent with the above requirement
(x )s & (x ) v & 2(x )s, and are representative of the
dependence of the numerical results on a and /3. Such
dependence will turn out to be very weak. We have
checked that more elaborate kinds of wave functions [2,5]
do not improve the numerical results.

The mixing angle Q, which weighs differently the vec-
tor and scalar diquark components, and the hadroniza-
tion constant F~ will be discussed below.

Let us now consider the diquark form factors. We
know that their pointlike limits (Q ~0) are

I (g, ~pp ) = 12. 1+7.9 keV,

I"(y,~pp) =57+', ,+ 1 1 eV,

I (g2 —+pp ) =233+~5+48 eV .

(4.7)

(4.8)

(4.9)

The above results are based on very limited numbers of
events and certainly need further confirmation. In partic-
ular the value of the g, decay rate is surprisingly large.
Such a process has been observed at SLAC in radiative
J/g decays, e+e ~J//~yes, ~@pe, and the final

value for the decay rate is based on a very small number
of events, 23+11. The y, 2

—+pp decays have been ob-
served in pp interactions at CERN, through the processes

pp —+y~J/py(J/1t —+e+e ), which directly couple the

pp system to a y allowing a detailed scan around the reso-
nance peak energy. The final number of events for
y2~pp is 50 and for y&~pp is 30. The y2 data appear to
be somewhat better established; however, the fact
remains that all data, both on yy [10] and pp decays [15],
have large errors that will reflect in correspondingly huge

errors in our numerical results.
The only piece of data available on I (yo~pp ) is the
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upper limit

I (yo~pp ) & 12 keV

obtained by combining the total decay rate [16]

I ~ =13.5+3.3+4.2 MeV,
Xo

with the branching-ratio bound [17]

B(y O~pp) (9.0X10

(4.10)

(4.1 1)

(4.12)

We have fixed the value of FN, for different values of
0, by fitting the data on y2, Eq. (4.9), which seem to be
the most reliable ones. We find, in MeV,

FN
FN
FN
F

45'

97+19
99+19
91+18
105+20

30'

67+13
70+14
62+12
63+12

55+11
57+11
50+10
50+10

(4.13a)
(4.13b)
(4.13c)
(4.13d)

Eqs. (4.13a)—(4.13d) refer, respectively, to the wave func-
tions (4.1) and (4.3a) —(4.3d).

The above sets of values give (all results are in eV)

45'
30'
00

r(x, ss-)

63 1+666

1 16+122

41+44

r(yo up)

46—46

0 4-o.4
0

(4.14a)
(4.15a)
(4.16a)

45'
30'
0

366
73+78

25+26

2305 2305
293+309 06+o 6

0

(4.14b)
(4.15b)
(4.16b)

45'
30'
0

198+21o

0 1+0.1

22+ 24

3461+3624—3461
362+374

3+3
0.2 0 2

0

(4.14c)
(4.15c)
(4.16c)

45'
30
00

1 147+1194—1147
6+

22+ 24

10271 10271
566+580

4+4

0 1+0.1

0

(4.14d)
(4.15d)
(4.16d)

where, again, (a) —(d) refers, respectively, to Eqs.
(4.3a) —(4.3d).

Equations (4.14)—(4.16) have to be compared with Eqs.
(4.7)—(4.10). First we notice that, as anticipated, the
dependence of the above results on the wave-function ex-
ponents a and P is very weak. This is to be contrasted
with similar computations in the pure quark model
[18,19], where the amplitudes vary by several orders of
magnitude with analogous changes in the wave function.
Next, we notice that, while it is not difficult to get a good
agreement with the experimental information on the de-
cays yo12 —+pp, it always turns out that the value of
I (il, —+pp) is much smaller (by a factor of 5 10 ) than
the observed one.

We might have followed a different strategy: If we had
chosen to fix the value of FN by fitting the data on

g, ~pp rather than on y2~pp, then we would have
found, as in Ref. [2], a much larger value of F~ with a

large vector diquark component (which is the only one
that contributes to g, ~pp decay). In such a case, how-

ever, the predicted values for go, y„and y2 decays would
all turn out to be unreasonably large (a factor of 10 —10
larger than the experimental ones). To state it clearly: In
Ref. [2] we only tried to fit the g, ~pp data and the fact
itself of getting a result different from zero could already
be considered a success; however, if we insisted now on
obtaining a good description of this decay, we could only
describe correctly one out of four processes. Instead, us-
ing the data on y2 to fix FN we can describe well three out
of four decay rates. In addition, as we said, the g, data
seem to be less firmly established than those on y2, and
the g, also presents some other decay channels not clear-
ly understood in the framework of constituent schemes
[20], which are suggestive of difFerent decay mechanisms.
We will comment on the g, problem in the next section
again.

We do not present here any result for the decay rate of
f2, because of the lack of experimental information on
I (f2 —+yy) from which we could deduce the value of
R "(0). Should such data become available one could
easily compute also the value of I (fz ~pp ).

COMMENTS AND CONCLUSIONS

We have consistently applied a quark-diquark model
for the nucleon, previously introduced [2,5], to several
intermediate-energy exclusive reactions, in order to fix all
the parameters and to provide a full test of our scheme.
We have considered g, and yo, 2 decays into pp, in a nat-
ural modification of the Brodsky-Farrar-Lepage scheme
for exclusive reactions [3], modeling the proton as a
quark-diquark system.

After fixing most of the parameters using both theoret-
ical considerations and comparison with experimental re-
sults, we still remain with two of them, which, however,
are strongly correlated. It emerges that our picture can
give a good description for the decays of the go, 2(cc )

meson states. The vector diquark component of the pro-
ton wave function seems to be smaller than the scalar
one, but not necessarily zero. The same picture, howev-
er, fails to describe the g, ~pp decay, in that it gives a re-
sult which is by a factor of =10 smaller than the ex-
perimental one. The main reason for such a failure is the
combination of the facts that only vector diquarks can
contribute to the g, decay and that the known experi-
mental value for I (g, —+pp), Eq. (4.7) is surprisingly
large, i.e., much larger than the analogous decay rates for
y, 2~pp. Any attempt at fixing the parameters of the
model in order to describe the g, ~pp decay would lead
to unreasonable results for all of the y's decays.

Among the decays considered here only the y2~pp de-
cay rate has been computed in the framework of the pure
quark model [18]. A value of the branching ratio in
reasonable agreement with the experimental one can be
obtained; however, the normalization of the amplitudes
(i.e., the hadronization constant) shows a very strong
dependence on the proton wave function. Moreover, in a
pure quark approach, the amplitudes for the other decays
that we discussed either vanish [2,18], or are ill defined
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due to collinear divergences [18].
The g, decay into pp, strictly forbidden in the pure

quark model of Ref. [3], is one out of many spin effects,
most of which cannot be explained [2,4] in perturbative
QCD massless quark schemes; the introduction of vector
diquarks could, in principle, offer a solution to these
problems and it would be very unfortunate if their contri-
bution turned out to be too small. While the observation
of the g, ~pp decay cannot be doubted, the actual
decay-rate value is based on very few events and indeed
needs a confirmation, ' if the strong disagreement between
our result and the experimental data should persist, it
would be a serious problem for the quark-diquark model
of the nucleon, or at least for its application to the
description of exclusive reactions at intermediate ener-
gies.

The treatment of nonperturbative effects by the intro-
duction of diquarks in an overall QCD perturbative
scheme might be too drastic or simplistic; higher-order
corrections might still be much too large. Another possi-
ble source of uncertainties is the neglect, throughout all
our calculations, of the scalar-vector diquark transition,
which would introduce one extra coupling [to be added
to Eqs. (2.1)], -e„Q Q ~(E*) . We have checked,
however, that such a coupling gives no contribution to
the I (g, —+pp ) decay [21].

Let us add that the pp channel is not the only "weird"
decay of the g„' its decays into vector particles, g, ~pp,
EE *, PP, are in fact forbidden in the Brodsky-Farrar-
Lepage scheme and one still gets a zero result for all am-
plitudes even when taking into account quark mass
effects [21]. All these decays have been observed experi-
mentally. It might be that the g, decays receive a strong,
leading contribution from other mechanisms not taken
into account either in the Brodsky-Farrar-Lepage scheme
or in its quark-diquark generalization (glueballs? [22]).

Waiting for clarification of the g, puzzle, there are still
some other tests of our model left, since all parameters
have now been fixed; of particular interest [2] is the com-
putation of the decay rate I (J/1t~ypp), which is in
progress [23].
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