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An order-a; calculation of p(? — W-WTY 4+ X is presented. Results are given for the total
cross section and differential distributions for Fermilab Tevatron, CERN Large Hadron Collider, and
Superconducting Super Collider energies. The calculation utilizes a combination of analytic and
Monte Carlo integration methods which makes it easy to calculate a variety of observables and to

impose experimental cuts.

I. INTRODUCTION

The production of W~ W pairs at hadron supercollid-
ers will be an important process for testing the standard
model [1]. If the Higgs boson is heavier than twice the Z-
boson mass, it will decay almost exclusively into W- or Z-
boson pairs [2]. The existence of the Higgs boson would
then be signaled by a peak in the invariant-mass distribu-
tion of the weak-boson pair. Charged-weak-boson pairs
can also be used to study the trilinear coupling of weak
gauge bosons [3]. The production of W pairs could also
signal new physics since new heavy particles often de-
cay into weak-boson pairs, for example, heavy squarks
and gluinos can decay into W~W™. In order to perform
these tests it is important to have a precise calculation
of continuum W~W production.

The main source of continuum W~W* produc-
tion is ¢ annihilation which proceeds via t-channel
quark exchange and s-channel Z-boson and photon
exchange [4]. Other sources of continuum W~W pro-
duction, in order of their importance, are gluon fusion,
W-WT fusion, and ZZ fusion. The cross section for
W-W* production from gluon fusion via a quark box
loop is 20-25 % as big as the lowest-order gg-annihilation
cross section [5]. Gluon fusion can also proceed via a
triangle heavy-quark loop with Higgs-boson exchange in
the s-channel [6] (99 — H — W~W™). This process
is mainly of interest as a source of Higgs bosons; away
from the Higgs resonance this cross section is only a
small fraction of the gg-annihilation cross section. In the
weak-boson fusion processes [7] the incoming quarks ra-
diate two vector bosons which subsequently scatter off
each other. These processes are again mainly of in-
terest as sources of Higgs bosons, with the Higgs bo-
son appearing as an s-channel resonance; away from the
Higgs resonance, the weak-boson fusion cross sections
are only a small fraction of the gg-annihilation cross
section. The cross section for the W~ W fusion pro-
cess, pp — W-W+ — W-Wt, is about an order of
magnitude smaller than the g¢g-annihilation cross sec-
tion, while the cross section for the ZZ fusion process,
pp — ZZ — W-W, is about half as large as the
W =W fusion cross section. Pair production of W~ W+
bosons in association with jets has also been calculated
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(8, 9].

Until now W~ W production has been calculated only
in the leading-logarithm approximation and the order-a,
corrections have only been estimated [10] using the soft-
gluon approximation [11]. A complete next-to-leading-
logarithm (NLL) calculation of hadronic W~ W+ produc-
tion is presented in this paper. At the parton level this
involves computing the contributions from the 2 — 3 real
emission processes q§ — W~Wtg, qg — W-Wtq, and
dg — W~ W*q as well as the one-loop corrections to the
2 — 2 process q§ — W~W™. The focus of the present
calculation is on the order-a; corrections to W~ W pro-
duction. Accordingly, the order-o2? gluon fusion contri-
bution has not been included. However, this contribution
should eventually be included when calculating the full
W =W+ continuum background since it can be significant
at supercollider energies. |

The NLL calculation presented here makes use of a
combination of analytic and Monte Carlo integration
methods. The methods used here are the same as those
used in Ref. [12] for the NLL calculation of hadronic
Z Z production. Similar methods have also been used to
perform NLL calculations for direct photon production
[13], photoproduction [14], symmetric dihadron produc-
tion [15], and W production [16]. The Monte Carlo ap-
proach to NLL calculations has many advantages over a
purely analytic calculation. The Monte Carlo approach
allows one to calculate any number of observables si-
multaneously by simply histogramming the appropriate
quantities. Futhermore, it is easy to tailor the Monte
Carlo calculation to different experimental conditions, for
example, detector acceptances, experimental cuts, and
jet definitions. Also, with the Monte Carlo approach one
can easily study the NLL corrections for different observ-
ables, the variation of the NLL corrections in different
regions of phase space, and the dependence of the NLL
cross section on the choice of scale.

The procedure for the NLL W~ W calculation is iden-
tical to the procedure used in Ref. [12] for the NLL ZZ
calculation. In fact, most of the expressions for the
W-W* case can be obtained from the corresponding
expressions for the ZZ case by simply replacing the 22
Born cross section with the W~ W+ Born cross section.
The only exception to this rule is the finite virtual cor-
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rection, which must be calculated anew. Thus only the
final expressions for the NLL W~W+t calculation will be
given in this paper. Details on the derivations of these
expressions can be found in Ref. [12].

The remainder of this paper is organized as follows.
Section II describes the techniques used in the Monte
Carlo approach to NLL calculations. The NLL calcula-
tion of W~ W production is described in Sec. III. Re-
sults are presented in Sec. IV and summary remarks are
given in Sec. V. Finally, there are three appendices con-
taining details of the regularization of v5 and lengthy
expressions from the calculation.

II. MONTE CARLO FORMALISM

The Monte Carlo formalism for NLL calculations has
been described in detail in Refs. [12-16] so the discussion
here will be brief. The basic challenge is to design a pro-
gram which retains the versatility inherent in a Monte
Carlo approach while ensuring that all of the required
cancelations of singularities still takes place. In order
to discuss the technique for isolating the various singu-
larities, let the four-vectors of the two-body and three-
body subprocesses be labeled by p1 + p2 — ps + ps and
p1+p2 — p3+pa+ps , respectively, and define the Lorentz
scalars s;j = (pi+p;)? and tij = (pi—p;)?. The W-W+
calculation contains infrared (IR) and collinear singular-
ities but no ultraviolet singularities. Dimensional regu-
larization [17] is used to isolate the singularities. First,
three-body phase space is partitioned into singular and
finite regions by introducing soft and collinear cutoff pa-
rameters §; and .. The soft region of phase space is
defined to be the region where the gluon energy in the
subprocess rest frame becomes less than §,1/s,,/2. The
collinear regions of phase space are defined to be those
regions where any invariant (s;; or t;;) becomes smaller
in magnitude than é. s12. Next, the squared three-body
matrix elements are approximated in the singular regions;
the soft gluon and leading-pole approximations are used
in the soft and collinear regions, respectively. The re-
sulting expressions are then integrated over the singular
regions of phase space. At this stage the integrated ex-
pressions contain finite two-body contributions as well as
singular pieces. The singularities from the soft region

will cancel the virtual IR singularities while the singular-
ities from the collinear region will be factorized into the
parton distribution function. The remainder of three-
body phase space contains no singularities and the sub-
processes can be evaluated in four dimensions.

The calculation now consists of two pieces — a set of
two-body contributions and a set of three-body contri-
butions. Each set consists of finite parts, all singularities
having been canceled or factorized. At this stage both
pieces depend on the values chosen for the two theoretical
cutoffs §; and 6. so that each piece by itself has no in-
trinsic meaning. However, when the two- and three-body
contributions are combined to form a suitably inclusive
observable all dependence on the cutoffs cancels. The
cutoffs merely serve to distinguish the regions where the
phase space integrations are done by hand from those
where they are done by Monte Carlo simulation. When
the results are added together, the precise location of the
boundary between the two regions is not relevant. The
results reported below are stable to reasonable variations
in the cutoffs, thus providing a check on the calculation.

III. NEXT-TO-LEADING-LOGARITHM
FORMALISM

A. Born process

The Feynman diagrams that contribute to the Born
amplitude for the reaction

q(p1) + @(p2) — W™ (p3) + Wt (ps) (1)

are shown in Fig. 1. The Born amplitude in N dimensions
is

MBI = 6,4, €% u* N € (ps) € (pa)

X V(p2)P--T* U(p1), (2)
T==%

where 6;,;, is the color tensor (i;,iz are color indices
for quarks 1 and 2), e is the electromagnetic coupling
constant, p is a mass parameter introduced to keep the
couplings dimensionless, ¢}(p3) and ¢;(ps) are the W-
boson polarization tensors, and P, denotes the left-right-
projection operator P, = £(1+ 7vs). The tensor T#” is

o = 0(Qy) (9277) B Py 1 p(—@y) (o7¥)" B Bayn

cot Ow
S—M% + iz Mz

_(_1_ 1«_’7«1 +
S

where 0(z) is the step function. The right- and left-
handed weak-boson-to-quark couplings are denoted by

v
9!
1
uWd dWu uWd dWu
uWd . dl - — =0
g g \/_2.sin Ow 9+ 9+ ’
Tq
99 = 3 — Qg tanfyw ,

sin Oy cos Oy

t

yiz") [(163 — $a)9"" + (2pa + p3)*v” — (2ps + p4)"7“] ) (3)

I
g_q{_Zq = —Q, tanfw , (4)

q_’ﬂ]qu’ gi"/q :QQ7

where @, and T4 denote the electric charge (in units of
the proton charge e) and the third component of weak
isospin of quark ¢, and 6y is the weak mixing angle. The
kinematic invariants s,t,u are defined by
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-pa)®.  (5)

The squared amplitude summed over final-state polariza-
tions and initial state spins can be written

lMBomlz =Nc 64 4E(Aqu+Aqu+Aqu) (6)
J

s=(p+p2)’, t=(p1—ps)®, u=(m

s2
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where N¢ is the number of colors, A contains coupling
and propagator factors, Bf are functions of the kinematic
invariants, and the number of space-time dimensions is
N =4 — 2¢. For up-type quarks the AY factors are

(s = M2)? 4 (TzMz)?

s(s — M2)
(s — M3)? + (TzMz)? 7~

ey o

uZu

T — M) + (U5 Mz)? [(gﬁzu) +(giz")2]cot29w

+
+ S(S - MZ) ( u'yu uZu u'yu uZu) cot 0W , (7)

cot 9W) .

The A¢ factors for down-type quarks are obtained by interchanging u « d in the AY¥ factors. The B] expressions for

up-type quarks are

16(¢ + u)

B — 2tu  8My,  8(t+ u)
PTAME, w2 M2,

8(t + u) 16M3, . 8t 8Mj,
+14) ( MZ, u + u? te u u? ’

BY— Au(t+u)® 8t +ud)  24tu(t+u)  32(t+u)M7 + 14(¢2 + u?) 44tu  80M37
2= M}s? M2s? MZs? 52 52 s2 52
te 8(t1° +u®)  24tu(t+w) 320t +uw)MZ  16(t2 + u?) 80M§ _ 48tu (8)
M2s? MZs? s2 52 s2 s2 )’
u 2u(t+u)  8(+u)? 22t 14u  16(t+u)MZ  40M}
By =| - 4 2 w5 +
M3zs Mzs U s su su
2 2 4
+€<_ 8(;;2@ L16(t+w)MG | 24t 16u 40MZ> .
ZS su S S su

The B} expressions for down-type quarks are related
to the B} expressions for up-type quarks by the relations

Bi=Bi(t =),
Bj =B}, (9)
=—Bj(t < u).
The details for treating vs in N dimensions are described
in Appendix A. The algebra for this paper was evaluated

using the computer algebra program FORM [18].
The Born subprocess cross section is

111

d&Born(qq—_) W—W+) — Z 5 5 |MBorn|2 dN(DQ (10)
where the factors ‘—11 and 1 5 are the spin average and color

average, respectively, and the two-body phase space is

_1— i"_r_ € 1 - 4M‘?V 1/2-¢
8t \ s / T(1—¢) s

xv (1 —v)"¢dv,

dVo, =

(11)

[
with v = (1 + cos8). It is convenient to decompose the
squared Born amplitude into three terms corresponding
to the power of € that appears in the squared amplitude

|MBom|2 |MBorn‘2 + ElMBom|2 2‘Mgorn’2 , (12)

with this decomposition the Born cross section can be
written

d&Born — d&?orn + 6da_?m’n + 62d62B°rn .

(13)

This decomposition will be useful later for writing the
virtual and soft corrections.

The leading-logarithm (LL) cross section is obtained
by convoluting the subprocess cross section with the par-
ton densities and summing over the contributing partons:

o (op — W)
- Z/d&Born(q‘—I-_} W~W+)
q9
x [Gq/p(xl , M?)Gqyp(z2, M?)

+zy :cg] deidz, . (14)
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W+
u —>——N"\ N\ Wt u
v,z
Y
T —e—"NNNU W T
W
FIG.1. Feynman diagrams for the Born subprocess ui —

W =W+, The straight and wavy lines denote quarks and elec-
troweak bosons, respectively. The diagrams for the subpro-
cess dd — W~™W? are obtained by replacing « — d and
W~ « W in the diagrams shown here.

B. Virtual processes

The order-a, virtual correction to ¢g§ — W~ W+ comes
from the interference between the Born graphs of Fig. 1
and the virtual graphs shown in Fig. 2. The interfer-
ence between these amplitudes has been evaluated in
N dimensions using the Feynman parametrization tech-
nique. There are two mitigating factors which simplify
the ¢q§ — W~ W virtual calculation. The first is that
the calculation does not contain UV singularities since
the graphs in Fig. 2 do not contribute to the renormal-
1zation of the strong-, electromagnetic-, or weak-coupling
constants. The second is that the self-energy insertions
on the external quark lines vanish because of the cancela-
tion of the UV and IR divergences [19]. Basically, what
happens is that the UV and IR poles cancel when one
does not distinguish between them.

Because the loop integrals associated with the four-
point function from the box diagrams in Fig. 2 are very
difficult to evaluate when powers of the loop momenta
appear in the numerator, it is advantageous to first mul-
tiply the Born amplitudes times the virtual amplitudes
and evaluate the resulting traces. The numerator of the
resulting expression can then be rewritten, using momen-
tum conservation relations, such that propagator denom-
inator factors cancel with identical factors in the numer-
ator. This way the four-point functions with powers of
the loop momentum in the numerator are reduced to a
four-point function with a constant numerator and three-
and two-point functions which are easier to evaluate. The
loop integrals can be reduced to a set of 12 integrals. The
first 11 of these integrals were given in Ref. [12] and the
twelfth integral is given in Appendix B.

The order-as virtual contribution to the ¢qg — W~ W+
cross section is

dgvirt o e (471'/12)5 I'(l1-—¢)

v For\Ts ) T(1-2e)

2 doBom  2déPom 3 dePom
T2 dv € dv € dv

+%-;-NC et FVirt(s,t,’u, M&/)) ) (15)

where doP°™ and déBo™ are defined by Eq. (13) and
Cr = % is the quark-gluon vertex color factor. The order-
«, finite virtual correction is contained in the function
FVirt(s,t,u, M2, ) which is given in Appendix C.

FS

0Q0QQQ
L%

=]
4
€

u —(—mw u WW\/W
W+
u
v,z
u
W
W+
u
v,z
u
w-
w+
u
v,z
u
w-
FIG. 2. Feynman diagrams for the virtual subprocess

wi — W™WT. The straight, wavy, and curly lines denote
quarks, electroweak bosons, and gluons, respectively. The
diagrams for the subprocess dd — W~™W™ are obtained by
replacing « — d and W~ «— W7 in the diagrams shown here.

C. Soft-gluon emission

The Feynman diagrams for the real emission subpro-
cess

q(p1) + §(p2) — W™ (p3) + WH(ps) + 9(ps)  (16)

are shown in Fig. 3. In the soft-gluon region of three-
body phase space, which is defined by Es < 6, +/512/2,
the soft-gluon contribution to the cross section is
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~Born ~Born
dég déy )

dg=ot oy (drp’ye T(1—¢) | 2 d6Bo™ 2
= - —= - =21
dv Cr 2w ( s ) I'(1—2) | € dv + e( 2In(8,) dv + dv
dé Born dé Born dé Born
+41n(8,)2 22— — 41n(s,) "allv +2 ";v ] : (17)

where §, is the soft cutoff parameter defined in Sec. II.

D. Hard collinear corrections

The 2 — 3 real emission processes have hard collinear singularities when ¢35 — 0 or t35 — 0. These singularities
must be factorized and absorbed into the initial-state parton distributions. The collinear regions of three-body phase
space are defined to be those regions where any invariant (s;; or ¢;;) becomes smaller in magnitude than §.s12, where
8. is the collinear cutoff parameter defined in Sec. II. After the factorization is performed, the remnants of the hard
collinear singularities take the form

de , _ _ a, dedorm 2 1=8 Ty o\ 3 Ty . 9\ 3
Z}-(qq — W W+) = ﬂ do Gq/p(1:1,M ) [,;2 -;' Gq/p (-Z—,M ) qu(z) +Gg/p (—Z—,M ) P“(Z)
2 =8 gy T 2\ 5 T 2\ &
+G<T/p(f'32,M ) o = Gy/p (—;’M ) Pyg(2) + Gyyp (7»M ) Pyy(2) )
(18)
[
with dimensions for 0 < z < 1 are
~ 1-—2 s _ 1+2°
P;j(z) = Pij(z) In (—z— 8¢ m) — Pj;(2) — AFij(2) . Poq(2,€) = CF ( 1—2 e(1- z)) )
(20)
o P [ (1 2)?
Y€)= ST + - - )
The Altarelli-Parisi splitting functions in N = 4 — 2¢ 49(2,€) 2(1—¢) z )~
g and can be written
u ﬁm w* Pij(z,€) = Pij(2) + ¢Pj;(2) , (21)
\ e which defines the P/; functions. The functions F,, and
I —e—N"N\N\/ U W F,4 depend on the choice of factorization convention and
u w* the parameter )\ specifies the factorization convention;
vz A = 0 for the universal [modified minimal subtraction
(MS)] convention and A = 1 for the physical [deep-
= inelastic scattering (DIS)] convention. For the physical
u - . . A .
w convention the factorization functions are
u —>—NNNU W 1422 1 3 1
z —z
v F‘”(z)_CF[l—zln( . )—51_Z+2z+3],
a AVAVAVA'S
a@)-f_aé w (22)
g u
Y,Z
1 9 2 1—-2
Fqg(z):§ [+ (1-2)°]In . +8z(1—2)—1].
u
w-
u —>—NNN W g The parameter M? is the factorization scale which must

be specified in the process of factorizing the collinear
singularity. Basically, it determines how much of the
collinear term is absorbed into the various parton dis-
tributions.

The upper limit on the integrals appearing in Eq. (18)

VSZ.SZ.SLQ_QSlg
C e AVAVAVATS

FIG. 3. Feynman diagrams for the real emission subpro-
cess ui — W™ Wtg. The straight, wavy, and curly lines

denote quarks, electroweak bosons, and gluons, respectively.
The diagrams for the subprocess dd — W~W*g are obtained
by replacing u — d and W~ « W in the diagrams shown
here.

is determined by requiring that the hard collinear term
not overlap with the soft region previously discussed. If
such an overlap were to occur, then that region of three-
body phase space would be counted twice.
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E. Soft collinear subtraction term

The M?-dependent subtraction piece which is used to
absorb the collinear singularity into the parton distribu-
tion functions involves an integral over splitting functions
with the upper limit corresponding to z = 1, not 1 — §;,.
Therefore, there is one last piece to be subtracted which,
for the ¢15 case, takes the form

deg's drp?ye T(1—e¢)
dv =—Cr 271'( s ) I'(1 - 2e)

1
€
+ A

dég
( + 2In(é, )) Io
3 s do.Born d&?orn
—+2ln(5 )>[ (W) dv “dv T dv ]

9+—+
3

44
dg'®  dgBom a 4y € T(1—e)
dv = dv 27\ M?2 (1 —2¢)
odz 1
X /1_6’ - ("'C'qu(z) + )\qu(z)) Gy/p(z/2).
(23)

Inserting Py, and Fy, and integrating yields

~Born

O.Born
1n(5,)—1n(5,)2) d £ } , (24)

where terms proportional to a power of the soft cutoff §; have been discarded. The soft collinear singularity in the

tos — 0 region yields an identical result.

F. Next-to-leading-logarithm cross section

The NLL cross section, which consists of two- and three-body contributions, can now be assembled from the pieces
described in the previous sections. The two-body contribution is

do
oW (pp — WWT) = Z/dv dzy dzy (Gq,p(:cl,Mz)Gq—/p(:cg, M?) y
q

~NLL

oy
(97 > W WH)+ (21 & z2) + E%) ,

(25)
where the sum is over all contributing quark flavors, d&/dv is defined in Eq. (18) and
da’NL + dgBorn dévirt désott d&1s dé2s

— = - - . 26
(g7 — W=W™) = dv dv dv dv dv (26)

The 1/¢? and 1/¢ poles cancel when the terms in Eq. (26) are summed [see Eqgs. (10), (15), (17), and (24)].

The three-body contribution to the cross section is

Tabody (PP — W WY + X) = Z/do(ab — WW*)[Gayp(a1, M?) Guyp(a2, M?) + (21 23)| day daz (27)

abe

where the sum is over all partons contributing to the
three subprocesses ¢q¢ — W~ Wy, q¢ - W~ Wtygq, and
dg — W~-Wtq. The squared matrix elements for the
2 — 3 subprocesses were evaluated numerically via he-
licity amplitude methods as described in Ref. [9]. The
integration over three-body phase space and dz; dz, is
done numerically by standard Monte Carlo techniques.
The kinematic invariants s;; and ¢;; are first tested for
soft and collinear singularities. If an invariant for a sub-
process falls in a soft or collinear region of phase space,
the contribution from that subprocess is not included in
the cross section.

IV. RESULTS

The numerical results presented in this section have
been obtained using a single scale Q% = M3y, where

f

Mww 1s the invariant mass of the W pair, for the renorm-
alization scale pu? and factorization scale M2. The two-
loop expression for a; has been used. The QCD scale
Aqcp is specified for four flavors of quarks by the choice
of parton distribution functions and is adjusted whenever
a heavy-quark threshold is crossed so that a, is a contin-
uous function of Q2. The heavy-quark masses were taken
to be my = 5 GeV and m,; = 140 GeV [20]. The standard
model parameters were taken to be Mz = 91.17 GeV,
Mw = 80.0 GeV, and a(Mw) = 1/128. These mass
values are consistent with recent measurements at the
Fermilab Tevatron [21], the SLAC Linear Collider [22],
and the CERN ete™ collider LEP [23]. The soft and
collinear cutoff parameters were taken to be §, = 5x 102
and 6, = 10~3. For comparison, LL predictions obtained
with the two-loop running coupling for «;, are also given.
Using the two-loop running coupling for both the LL and



4 ORDER-a; CALCULATION OF HADRONIC W~ W* PRODUCTION 1409
TABLE I. Predicted cross sections (in pb) for W =W * production with no cuts at various colliders and for different sets of

parton distribution functions. The leading-logarithm (LL) and next-to-leading-logarithm (NLL) results are given.

Collider Vs (TeV) HMRSE HMRSB DFLM160 DFLM260 DFLM360

Tevatron 1.8 LL 7.87 7.44 7.25 6.79 6.37

Tevatron 1.8 NLL 9.90 9.53 9.64 9.17 8.73
LHC 16 LL 61.9 73.6 73.2 79.6 84.3
LHC 16 NLL 85.8 103 105 115 123
SSC 40 LL 144 188 187 223 257
SSC 40 NLL 212 278 277 335 388

NLL results provides a consistent expansion parameter so
that one can judge the degree of convergence of the re-
sults. The results presented here for W~ W™ production
are qualitatively similar to the results for ZZ production
[12].

In order to get consistent NLL results it is necessary to
use parton distribution functions which have been fit to
next-to-leading order. The dependence of the total cross
section on the choice of parton distribution functions is
shown in Table I where the total cross section for W~ W+
production at the Tevatron, CERN Large Hadron Col-
lider (LHC), and Superconducting Super Collider (SSC)
are given for the Diemoz-Ferroni-Longo-Martinelli [24]
(DFLM) sets corresponding to Ay = 160, 260, and
360 MeV and for the HMRS [25] sets B and E. The HMRS
set E distributions give the extreme values, while the
HMRS set B and the DFLM 160 distributions yield nearly
equal values. Since the DFLM260 distributions yield re-
sults that are intermediate compared to the others, they
will be used in the numerical results for the remainder
of this section. Note that the HMRS distributions are
defined in the universal (MS) scheme whereas the DFLM
distributions are defined in the physical (DIS) scheme.
The factorization defining parameter A in Eqgs. (19) and
(24) should thus be A = 0 (1) for the HMRS (DFLM)
distributions.

One of the motivations for performing NLL calcula-
tions is that the results often show a less dramatic de-
pendence on the renormalization and factorization scale
than the LL result. This is true for the present calcu-
lation. The Q? dependence of the total cross section is
illustrated in Fig. 4 where Q? has been parametrized as
Q? = nMy and the total cross section is plotted ver-
sus n. Parts (a), (b), and (c) of Fig. 4 are for the Teva-
tron, LHC, and SSC, respectively. The NLL result at the
Tevatron shows only a very slight decrease in scale depen-
dence, while the NLL results at the LHC and SSC show
a definite decrease in scale dependence. At the Tevatron,
W-W+ production via pp interactions is dominated by
valence quark interactions with average z values equal to
2Mw //5 = 0.09. For z values in this range the valence-
quark distributions decrease with Q2. On the other hand,
at the LHC and SSC the relevant x ranges are smaller
by factors of 9 and 22, respectively, and sea-quark in-
teractions dominate in the pp process. The sea-quark
distributions show a significant increase with Q2 in these
z regions. Thus the cross section decreases with Q? at
the Tevatron but increases with Q? at the LHC and SSC.
At the LHC the cross section is nearly independent of Q2
because the increasing parton distributions are compen-
sated by the decreasing of as.

The NLL and LL total cross sections for pp — W-W+

12 l]ll!lllll[lll]llll‘]r‘u 150 II]llll||||l||l|fl|l]]|l_1 4‘00 _Ill] TYlIIYI!l'(II!IIIII_
Ea) 3 Eb) 3 e NLL .

10 — 125 — — L |
E‘% = NLL 4 300 [ -

4 8: — 100 [— IL —] - J1°
c 3 = 3 I ]
g — _ LL ] F - —— 3 .~ ]
N — = = — =200 —
& F pp - WWT + X 7 E pp o WW' 4+ X 7 T pp - WW'+ X ]
E 4 - 50 — -3 - e
[ E Vs = 18 Tev 3 - Vs = 16 TeV 31 100~ Vs = 40 TeV 7
B Q®=nMy 4 PSE Q®=nME T Q% = n MZ, .
O:llllllllllllllllLJIIllll ;Ill'lllllllllllllj_lllii‘ o —lLllllllllllll|llll IIII—
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FIG. 4.

Total cross section as a function of scale; the scale has been parametrized as Q> = n M2, and the total cross section

is plotted versus n. The solid curve is the NLL result and the dashed curve is the LL result. Parts (a), (b), and (c) are for the

Tevatron, LHC, and SSC center-of-mass energies, respectively.
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FIG. 5. Total cross section for pp — W~W+ 4+ X as a

function of the center-of-mass energy. The solid line is the
NLL result, the long dashed line is the LL result, and the
short dashed line is the LL calculation with a K factor K =
1+ (87/9)as,.

are plotted in Fig. 5 as functions of the center-of-mass
energy. This figure shows that the order-a, corrections
are positive and increase with the center-of-mass energy.
The corrections enhance the lowest-order cross section by
35-50 % over the range of center-of-mass energies shown
in Fig. 5. Also shown in Fig. 5 is the LL result with

J. OHNEMUS
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a multiplicative soft-gluon K factor. The soft-gluon K
factor is an approximation for the order-a; corrections
and is scheme dependent. In the DIS scheme, which is
used for the figures in this paper, the soft-gluon K factor
is K =1+ (87/9)a, [10]; in the MS scheme the a, term
is half the size as in the DIS scheme. Figure 5 shows
that the soft-gluon K factor underestimates the order-c;
corrections; the underestimation gets worse as the center-
of-mass energy increases. The underestimation is even
worse in the MS scheme because the a; term is only half
the size as in the DIS scheme.

One of the major advantages of using Monte Carlo
methods for NLL calculations is that one can calculate
any number of differential distributions simultaneously
by simply histogramming the quantity of interest. Fig-
ures 6, 7, and 8 show the differential distributions for
the W-pair invariant mass Mw w, the inclusive W trans-
verse momentum pp (W), and the inclusive W rapidity
y(W), respectively. The only cut applied to these fig-
ures is |[y(W)| < 3. These figures show that the order-
as corrections are larger at large pp (W), large Mww,
and small y(W) values. Thus the corrections do not sim-
ply change the overall normalization, but instead, change
the shapes of the kinematic distributions. By contrast,
the soft-gluon K factor simply scales up the lowest-order
cross section and thus predicts no shape change in the
kinematic distributions.

V. SUMMARY

A complete next-to-leading-logarithm calculation of
pP — W-W+ has been presented. The calculation was
done using a combination of analytic and Monte Carlo
integration methods which make it easy to calculate a
variety of observables and to impose experimental cuts.
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Myw (GeV) Myw (GeV)

FIG. 6.

Invariant mass distribution of the W pair. The solid curve is the NLL result and the dashed curve is the LL result.

Parts (a) and (b) are for the LHC and SSC center-of-mass energies, respectively.
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The order-a; corrections enhance the lowest-order cross
section by 35-50%. The size of the NLL corrections de-
pends on the observable and on the kinematic range. The
NLL results are less dependent on the scale choice than
the LL result, especially at supercollider energies. These
results are qualitatively similar to the results for hadronic
Z Z production.
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APPENDIX A: REGULARIZATION OF s

The implementation of <75 in dimensional regular-
ization requires a prescription for defining vs. This
paper uses the definition proposed by Chanowitz
et al. [26], who define 75 by the following properties:
M) {rs, v} =0, p=01,....,N—-1;(2) ¥ =1,
(3) Tr(ysy*y¥y“y") = 4ie"*™ + O(N — 4) X ambiguity,
when p,rv,w,7, are in the four-dimensional subspace
u,v,w, 7 =0,1,2,3. The Adler-Bell-Jackiw anomaly [27]
is related to the fact that the ambiguous term cannot be
explicitly defined.

The ambiguous terms are discussed in Ref. [28], where
it 1s shown that they can be discarded. The three defining
properties plus the fact that there are not enough vectors
to form a nonzero contraction with ¢#*“” allow one to
eliminate traces containing 7s.

After the ambiguous terms have been discarded and
the traces containing 7s have been eliminated, the re-
maining traces can be evaluated in N dimensions. All
v-matrix algebra was done in N dimensions and the re-
sults were checked in four dimensions. The computer
algebra program FORM [18] was used to do the algebra
in this paper.

APPENDIX B: LOOP INTEGRAL

The loop integrals from the virtual graphs of Fig. 2
can be reduced to a set of 12 integrals. The first 11 inte-
grals have been given in Ref. [12] and the twelfth integral
is given in this appendix. The integral was regularized
via dimensional regularization with the number of space-
time dimensions set to N = 4 — 2¢. The integral was
evaluated using the Feynman parametrization technique.
The twelfth integral is

Vlu = Fl(T, U)Jl(T, U) +F2(T,U)

+F4(T,U)In (i) + F5(T,U)In(S) + Fs(T,U)m* + F7(T,U)J2(S) + F3(T,U),

-U

2
7 +1n (_—SU) ~ In(5)?

IR

I‘“’=/ dNk kH kv
127 ) (2m)N k2(k + p1)2(k — p2)?

F 1
=igs {-(p‘fpi + php3) (2+ ;) — (pi'ps + P4 pY)

S uv 1
+2g <3+ 6) , (B1)
where the factor F is
_ (4" T(1-¢) 1
F= ( s) (1= 2¢) (@n)? ° (B2)

APPENDIX C: FINITE VIRTUAL
CORRECTION

The finite virtual correction for the subprocess ¢¢ —
W-W+ is contained in the function FV'*(s,t,u, M)
which can be written

FYirt(s,t,u, M%) = ATV 4+ ALVE + AVS . (C1)

The A! factors are defined in Eq. (7) and the V;? are
functions of the kinematic invariants. The V;? expressions
for down-type quarks are related to the V! expressions
for up-type quarks by relations identical to Eq. (9). The
type-setting of the V,? expressions is facilitated by writing
them in terms of dimensionless variables S, T, U defined
by

= T= _t LU= —

ME ME ME,
where s,t,u are the Mandelstam variables defined in
Eq. (5). The dimensionless variables are related by
S+ T+ U = 2. The V;! expressions for up-type quarks
are

S (C2)

+ F3(T,U) In(=V)

(C3)

2
Vi = 5755—2(12T25 — 32T'S — 44T? + 1287 — 4T'S® + 4TU S — 85 — 20TV — 64 + 2TUS?)

+§12-(~48T25 +128T'S + 16472 — 5127 — 8T'S? — 185% — 16TU S + 85 + 92TU + 256 — 8TUS?)

+T <~ U,

Vgt = Ey(T,U)Jy(T,U) + E5(T,U)

+E4(T,U)In (;%) + E5(T,U)log(S) + Ee(T,U)n? + E+(T,U)J+(S) + Es(T,U) .

The J; and J7 functions are

(C4)

2
7 +In (-_—Sl—]—) - log(S)z] + E3(T,U)In(=U)

(Cs)



S

1 -SU 2 1 U ? 1 ( 1 )2 1 (
——§ln(—————(s_l)(1_U)> +-2-ln(5_1) +3In T +3zIn

S\2 1-U 1-T 1-U S
1 - 1 - =
4ln(U2) +ln( 5 >ln(_U) 2ln< 5 )ln(U2),

2
J7(S)=%|:—'4Liz(1;z) +21In (1;x) —1n(S)2+%2-] )

where z = /1 — 4/S and Liy(2) is the dilogarithm function
1 ®©
. dt z
ng(z) = —A ln(l _tZ)T = kE_l -k—z .

The F; functions are

16T 32
=7 -7
8T 16
k=g -7
1 3272 64T 64T 64 128
F3—§<——32+ 7 -—T——U—2+48T+16U—7+-U—2'>,
1 8T 88 40
=—[-= T+ 16U — — + —
Fy (1_U)( 5 +40T + 16U U+U2>,
1 8T 48 16
Fs=— 24— 22 24T — 24U + = — —
5 (1—U)< U W+ 3 U2>
1 8T3 3277 ) 48T
— [ 80 — —— 24 — — 32T 2
+(S_4)2(80 =+ =5 + 877 + 24TU + —— — 32T+ 8U” | ,
4 2T 8
F6_§<7+TU——&-—4T—4U+W>,
1 1672 24T 16 24(U —T)> 8T
Fr=——— 40— —— + = 4 16T+ — | - — L 4 ==
’ 5(5—4)( 0-—+7 +18 +U> SUGS -4 T T
2
Fs= 1 —144 + 167U + a7z 40T?% + 16TU? — 112TU — 96T
S U U
40T 24 80 4U - T)?
—— 41927 —40U? + 148U — — 4+ — | - ———~
T + 192 0U? + 148U U+U2> CEDR
and the E; functions are
1 32T 80
1 16T 40
Ey=— | =72 —4TU - — —8U2+4 =
) S(l—U)( 72— 4TU - —— + 20T - 8U* + 0U+U),

1 32T 80
Ez=—{324+22 48T —8U — —
3 5(3 + = +8 U),

8T 20 8US

1 2 2
—_ o _ 84 1 — ik 2
E, <124+ 1672 4+ 12TU + 84T + 16U2% — 72U ) + a R

~51-0)
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07 (52) -t (552) -t () () 1
1-U
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(C6)

(C7)

(C8)

(C9)

(C10)
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E5=S—(1-—1_——U—)(24+igi~12T2+16TU~—1-(677—1+24T+20U2—68U+§)

+-(—1—__1—UF(20—4TU2+4TU+%—4T+12U3—44U2+36U—%) —%(SZ_:ZT)—),
Esz%(16—T2U+4T2-TU2+8TU+1UI—14T+4U2—13U~%9) ,
E7=§13(~56-4T2 — 12TU + 40T — 8U? + 40U) —i;((UT__%),

Eg

1

88T

220

8S

S

S

277 _ 2 2 _ oot _ 2 ey 22
(104+16TU 407 + 16TU* — 80TU + U + 1007 — 40U “ + 56U U) a-0"
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