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Multiplicity distributions, transverse momenta, and nonstationary effects
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The application of the quantum statistical formalism to multiplicity distributions has been generalized
to include corrections for "nonstationarity" in rapidity as well as the transverse-momentum dependence.
The identical-particle data available so far can be explained in this formalism with a quite broad range of
parameters of chaoticity and correlation lengths.

I. INTRODUCTION

Quantum statistical results in general and coherent
states in particular have proven quite useful in the
analysis of fluctuations in many fields of physics and in
particular in optics and in high-energy physics (for re-
views on this subject cf., e.g., [1—4]). One appealing
feature of this formalism is that when applied, e.g. , to
multiplicity distributions, the latter can be interpreted in
terms of a few physical quantities, the most important of
which are the chaoticity p which plays the role of an or-
der parameter and the rapidity coherence (correlation)
length g [5]. Both of these parameters are important
tools in the investigation of phase transitions. Thus, e.g.,
in solid-state physics, the temperature dependence of
these parameters gives important information about the
structure of the corresponding system, and, in high-
energy physics, it is probably the energy dependence that
contains the equivalent knowledge. In particular the
broadening of the multiplicity distributions P(n) with en-
ergy &s [Kuba-Nielsen-Olesen (KNO) scaling violation]
[6] has been interpreted as due to the increase of p and g
with &s suggesting the approach of a phase transition
[3,7]. Another important phenomenon observed in the
investigation of P(n) is the dependence of P(n) on (a) the
width of the rapidity window 5y [6] and (b) the position
of the center y, of the rapidity window, ~y

—y, ~
&5y/2

[6,8]. Observation (a) in particular has given rise to many
speculations related to the phenomena of intermittency
[9] known from other branches of physics. On the other
hand many features of (a) could be explained within the
quantum statistical (QS) formalism as due to the interfer-
ence of a coherent and a chaotic field leading to a scaling
of P(n) in terms of the ratio 5y jg, without any need of
invoking intermittent behavior [10]. (b) has been inter-
preted as due to two independent sources: one totally
chaotic and contributing mainly to the very central re-
gion, and another one totally coherent contributing in the

entire rapidity region [11]. The above-mentioned inter-
pretations of the experimental observations on multiplici-
ty distribution may imply far-reaching consequences. In
addition to the possible approach to a phase transition al-
ready mentioned above and reiterated recently in the con-
text of intermittency [12], it was conjectured in [11]and
then in [12] that the shape of P(n) as refiected in g» may
signal a quark-gluon plasma. Given these facts a new ap-
praisal of the QS formalism as applied to multiplicity
fluctuations and which contains intermittency as a limit-
ing case appears worthwhile, especially because in the
past several approximations were made [7,11], the
justification of which may be in certain cases question-
able. This last point got new emphasis in a recent study
by Ochs [13] who proved how important a three-
dimensional momentum-space analysis of multiplicity
distributions may be when applied to intermittency stud-
ies. This appraisal will be done in the present paper.

The first question that arises when confronting obser-
vations (a) and (b) is whether there does not exist a com-
mon mechanism underlying both. Indeed, although both
(a) and (b) could be interpreted within the QS formalism,
the mechanism assumed in [7] is different from that of
[11]. The difference is that [7) used a superposition of
fields whereas [11] involved a convolution of probabili-
ties. Moreover, in [7] "stationarity" in rapidity space y
was assumed, meaning that the two-particle correlation
function of the chaotic field was a function of the rapidity
differences ~y,

—
yz~ only. This last assumption, which is

quite standard in quantum optics, where the role of rapi-
dity is played by the time variable, may not always hold
in particle physics. Finally, both in [7] and [11] the role
of the transverse-momentum distribution in the correla-
tion was ignored. The importance of including the qT
dependence has been stressed recently by Gyulassy (cf.
below). These three aspects of the y dependence of multi-
plicity distributions will be discussed in the following.

Consider a field m(y, qT) which has a coherent com-
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ponent m„h and a chaotic one m, h,o..

~(y qT)=~,h y qT +~ h o y qT

where (y, qT) are the rapidity and transverse momentum
at which the field is measured. The chaotic component
~,h„determines the correlation function

(yl qT1 V2 'qT2) ~h o(yl 'qT1) ~ h o(V2 qT2)& bl

pidity window ~y
—y, ~

(5y/2, i.e., no= & n &/5y, as was
assumed in [7]. In the quantum statistical approach, the
fluctuations of multiplicity are most directly expressed
theoretically by the factorial cumulants p . They are
defined through the generating function

( —s)'g P„(l—s)"=exp g p
n=0 Jl

with

=r(1,2),

& ~chap(V ~ qT ) & ensemble

+r(y, qT y qT)] .

The average multiplicity is

& n &
= f dy dq T & ~(y, qT ) ~(y, qT ) &,„„bl,

dy dqT m„h y, qT m.„h y, qT r

(2)

(3)

(4)

where P„ is the probability of finding n particles. The
other statistical moments associated with the multiplicity
distribution P„can then be calculated in a simple way, in
particular, the factorial moments which may be more
readily calculable in certain dynamical models [15] and
have become again fashionable recently in intermittency
studies [9].

II. ONE-DIMENSIONAL FACTORIAL CUMULANTS
IN RAPIDITY

In quantum statistics, the ensemble average is performed
with the help of the density matrix p:

(yl qT1 V2 qT2)= [P~.h-(yl qT1) ~ h o(V2 qT2)l .

In the limiting case of a one-dimensional distribution
in y with p,h„(y) =po, the expressions for the normalized
factorial cumulants read [16]

(6) v, =pj /(p, )'=(j —1)!B"'+j!B'", (12)

Whenever there is no ambiguity, we shall abbreviate the
three-dimensional variables by their index [writing, e.g.,
for the left-hand side (LHS) of Eq. (2), r(1,2)]. We shall
parametrize the above correlation function as follows:

I (1,2) =v'r(1, 1 }I(2,2)y(1, 2),
with

r(1 2) r»(yl V2)YT(qTl, qT2)

It is useful to introduce also the chaoticity

p,„„(y)=I(1,1)/[I (1,1)+ i~„h(1)i ]

=p,h„(1),

(7)

(8)

(9)

meaning that the qT dependences of the coherent and the
chaotic components are assumed to be the same. This
kind of parametrization assumes factorization in y and
qT. Partial support for these assumptions comes from
the observation that in a first-order approximation the in-
clusive cross sections factorize [14] as

d30. /dy dqT —f(y)g(qT) . (10)

For the particular case of a Oat rapidity plateau without a
qT dependence

p,„„(y)=pa =const,

and

where

(&)—jByj =p,h„Bj
j gy

dy;r(y 1 V2) r(y, ly, )-r(y, yl »
(5y )'; =1

(13)

(14)
(&) j—1

B»J =(1—
pchep)pchepBj

j gyB =, g dy;y(yl, y2) y(y. l,y ) .
(5y )';=1

(15)

(16)

If we further assume a Lorentzian profile for the rapidity
correlation,

(17)

we obtain analytical expressions for the functions B and
B given in Ref. [16]. For example,

B2 =(e «+216) —1)/(2p ), (18)

B2 =2(e «+p —1)/p (19)

where P» =5y/g . For higher orders of j, B and B have.
been integrated in the Lorentzian case up to the eighth
order explicitly [17].

Y T('qT1 'qT2)

Eq. (7) reduces to

r(1 2) =nopoy»(yl V2)

where no is the average number of particles within the ra-

III. THREE-DIMENSIONAL FACTORIAL CUMULANTS
IN RAPIDITY AND TRANSVERSE MOMENTUM

We generalize now the expressions for the normalized
factorial cumulants to the three-dimensional case and ob-
tain
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v =p /(pi)J=(j —1)tB'"+j!8'",
where

J8 ' —Q J dy; J dq, I (1,2) 1(j—1 j)l (j, l),

(20)

(21)

8' ' Q Jdy; Jdq;I(1, 2) I(j—l,j)
X~ oh(yi 'qTi)~ oh(y, qTJ ) (22)

Substituting the factorized form of the correlation func-
tion Eq. (7) into the above expression, the B. and 8 are
also reduced to the products

(3)— (&)

(3) (&)
J O'J

(24)

In the above expressions BT and BT are the analogon of
8 and 8, but in qT space and 8 ' ', 8 J"' are given by
Eqs. (13) and (15). In the case of a constant p,h„, one ob-
tains the exact expressions such as those given by Eq.
(18). Notice that the overlapping integrals possess struc-
tures that are quite similar to the linked-pair structures
recently proposed by Carruthers and Sarcevic [18).
There are, however, two types of diagrams. Equations
(15) and (22) are formally linked-pair diagrams, while
Eqs. (13) and (21) are linked-ring diagrams.

We discuss now the q„dependence of the cumulants.
Two technical differences arise. (a) qT is in a two-
dimensional space, (b) the qT space is usually not bound-
ed above. A form of correlation suitable for analytical
calculation is the Gaussian profile, i.e.,

Expressions for higher j's are given in Appendix A.
At this point, one may argue that the true profile of the

inclusive qz spectrum is more likely to be a simple ex-
ponential rather than a Gaussian. In Appendix B, we
discuss the expressions for this alternative choice. Given
a reasonable set of values for pT, however, the differences
between these two choices are small.

It is interesting to remark that the assumption of a pos-
itive two-particle correlation in qz- is at variance with
those cluster decay models, in which the clusters are as-
sumed to be at rest before decaying into particles. The
conservation of transverse momentum would then display
an anticorrelation instead. The reason for this difference
is the fact that our QS approach deals with identical
Bose-Einstein particles where, because of the Bose-
Einstein bunching effect, positive two-particle correla-
tions must exist.

In the above expressions, single inclusive cross sections
are treated as constant (independent of the rapidity y).
To overcome this restriction, we start with the more gen-
eral expression of p in terms of overlapping integrals of
the correlation functions ofy, i.e.,

dn (1) dn (2)
~(y1 y2 ) P h o(1)P h o(2)

—
1/ 1

—
X2 l /'4yXe

Nonstationary values of n taken from experiments can
then be used. %'e also have taken the qz- dependence of
the single inclusive distribution as Gaussian. As we dis-
cuss in Appendix B, with our values of pT, an alternative
choice of a simple exponential may introduce an uncer-
tainty of about 15%. Since the qz- correlation length is,
in general, not well known, there is no real necessity to
use alternative inputs for qz.

d'o /'dq T
-exp( —

I qT I'/qT'p ),
2 2 1/2
0' d 0'

Q gy1 0 gy2

(25) IV. APPLICATION TO DATA

Given a set of cumulants p. , it is easy to convert them
to an equivalent set of normalized factorial moments f,

X exp( —
I qTi —qT2I'/4g'T ), (26)

( )= 1

1+P
(27)

through which we get the corresponding $&J and JBQJ.
Analytical expressions for B&J were given by Gyulassy
[19]. They can be generalized to some more complicated
forms for 8& . We have, for example,

(n(n —1) (n —j+1))
J (n)J

through the relationships

f~=l+vz,
f3 =1+3v2+v3,

f~
= 1+6v~+ 3v2+ 4v3+ vq,

(33)

(34)

(35)

1

(1+3PT/4)
1

1+PT /2

1

(1 P+/ T)(41 3+P /4T)

(28)

(30)

f5
= 1+10v2+ 15v2+ 10v3+ 10v2v3+ 5v4+ v5, (36)

where v =pj /(p, )J as defined before. Experimental
values of the f of negative-charge data at the NA22 en-
ergy [20] are plotted in Fig. 1 as a function of the width
of the rapidity window —1n(5y). The resultant cumu-
lants p. are computed with a typical set of parameters
given by [21]

where

PT=qTOCT ~ (31)
PT= 1.1,

1.7 7

(37)
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FIG. 1. Comparison of the experimental negative-charge
data of the NA22 experiment [20] with values derived from Eqs.
(33)—(36). The solid curve corresponds to the parametrization
from Eqs. (37)—(42), and the dashed curve corresponds to the

fully chaotic case (i.e., p,h„=1.0) with Pr =2.2 and g»
= 1.6.

and a nonstationary p,h„(y) taking value p, (pb) at
y, (yb ), i.e.,

y.
P h o(y) =Pb

ly I

—
yb

+pa
ya yb

p yb pby

pa
(39)

p h..(y)=o «r ly I
&

payb pbya

Pa Pb

p, =0.10, y, = 1.0,
pb —0.01, yb =2.0 .

(40)

(41)

(42)

In Fig. 1, the experimental values of the factorial mo-
ments f are constructed from the multiplicity distribu-
tions P(n) read from figures of [20]. The associated er-
rors off are obtained through the reported errors in the
1/k values of the NA22 negative-binomial fits to the
negative-charge data [22]. For the smaller rapidity win-

dows, the data can be satisfactorily fitted with a wide
range of parameters, as indicated by the solid curves with
the parameters quoted above in Eqs. (37)—(42). Even
with a totally chaotic representation (p,h„=1), the fac-
torial moments f. can still be reproduced. However, this
is achieved through a choice of a rather large correlation
length gT of qT (which gives a substantial reduction fac-
tor for the factorial cumulant). A completely chaotic
solution would imply that the value of gT is significantly
higher than what is known from Bose-Einstein correla-
tions [23].

One possible way to distinguish the two extreme cases
of a highly coherent system (very small p,„„)and a fully
chaotic system (p,h„=1) is to examine the multiplicity
distribution for shifted rapidity windows. For the non-
stationary representation (p,b„not a constant), the
amount of noncoherent contribution in the charged data

P

becomes very small if we move away from the central re-
gion. This behavior off2 is given in Table I. Since nega-
tive charged data for shifted rapidity windows, i.e.,
~y

—y, ~ (5y/2, are not available, a direct comparison is
not possible. The negative-charge data would be, howev-
er, quite consistent with the charged-particle data for
shifted rapidity windows, if we would assume that the ap-
proximate relation k,&-2k'z" found for the symmetrical
windows is also valid for asymmetrical ones [20]. On the
other hand if one assumes a totally chaotic case p,h„=1,
one finds that v&=1/k is independent on y„which is
difficult to accept in view of the observed behavior of the
charged data (cf. Table I).

It is interesting to observe that our results tend to
overestimate the fluctuations of the multiplicity distribu-
tion of n (as reflected by its associated factorial moments)
for the largest rapidity window, as long as a reasonable fit
is established for the smaller windows. This we believe is
the reflection of the effect of the overall conservation
laws, such as energy and charge conservation, which
were not taken into account in the preceding considera-
tions. For example, given a large rapidity window, it is
no longer possible to consider the negative and positive
particles as independently fluctuating quantities. It is
thus necessary to use more general quantum statistical
formulations such as charged-coherent states [24].

The factorial moments f observed for "bin averaging"
are in general somewhat smaller than that of the symme-
trical windows with the same bin size. This can be par-
tially understood by the fact that the particle fluctuations
for a window away from the central rapidity region are
smaller. The statistical errors of the "horizontally" aver-
aged f are also smaller than the errors associated with a
single symmetrical window, where no "horizontal"
averaging is allowed.

The formalism developed above has been used to deter-
mine the parameters p,h„, g, and gT from the multipli-
city distributions. If this formalism gives an adequate
description of data, it must describe two-body correlation
functions as well. This appears to be the case at least at a
qualitative level [25]. Implications of "bin-average" and
the subtle differences between "horizontal" and "verti-
cal" averages [10] shall be discussed in the future.

The generalization of the QS formulation presented in
this paper, assumes among other things that the y and qT
dependence of the chaotic and the coherent fields are the
same. This assumption may be too strong. At the
present stage, however, there is no further information
available about this issue.

The inclusion of the qT dependence and the "nonsta-
tionary" rapidity effects in the QS formulation as per-
formed in the preceding considerations influences also the
concrete behavior of the chaoticity p,h, and of the
coherence lengths g and gr as a function of energy, if
the broadening of the multiplicity distribution with +s is
considered. Unfortunately no identical particle data exist
so far at the collider energies, so that a more reliable
analysis in this direction is not possible at this stage.
This aspect of the application of the QS formulation is re-
lated to the well known problem of charged- versus
identical-particle multiplicity distribution. The solution



FRIEDLANDER, HE, SHIH, AND WEINER

TABLE I. "Nonstationary" dependence of the average multiplicity (n ), factorial moment fz, and
cumulant v2, v2=f2 —l= ilk, z on the rapidity span 5y and the center of a rapidity window y,
( ~y

—y, ~
(5y/2). The parameters of the partially coherent and fully chaotic representations correspond

to those of Fig. 1.

Partial coherence

5y

0.5

0.5
1.0
1.5
2.0
2.5
3.0

0.44
0.38
0.33
0.23
0.12
0.07

1.16
1.11
1.07
1.02
1.01
1.01

V2

0.16
0.11
0.07
0.02
0.01
0.01

1.0

0.5
1.0
1.5
2.0
2.5
3.0

0.82
0.77
0.65
0.45
0.26
0.13

1.15
1.11
1.06
1.03
1.01
1.01

0.15
0.11
0.06
0.03
0.01
0.01

2.0

0.5
1.0
1.5
2.0
2.5
3.0

1.61
1.48
1.22
0.92
0.59
0.30

1.12
1.10
1.07
1.04
1.02
1.01

0.12
0.10
0.07
0.04
0.02
0.01

Chaotic 0.5 0.5
3.0

0.44
0.07

1.17
1.17

0.17
0.17

1.0 0.5
3.0

0.82
0.13

1.15
1.16

0.15
0.16

2.0 0.5
3.0

1.61
0.30

1.12
1.14

0.12
0.14

of this problem can only be obtained through supplemen-
tary dynamical considerations beyond the level of identi-
cal particles. On the other hand, because of the lack of
identical-particle data at high energies and the lack of an
adequate theory, one is tempted to apply the usual
scheme of QS to charged data as well. This means that
one describes the multiplicity distributions, i.e., its cumu-
lants pj. , by some effective parameters p' and g' which
satisfy formally the same equations as identical-particle
data, and one expects that the qualitative behavior of p'
and g' with respect to 5y and &s is similar to that of p
and g of the identical particles [3,5]. That such an expec-
tation is not too far fetched can be seen from the fact that
if the two-particle correlations are independent of the
sign of the charge of the individual particles this expecta-
tion is fulfilled [26].

0.5

0.67
0.66
0.71

1.0

0.50
0.48
0.57

2.0

0.33
0.32
0.42

3.0

0.25
0.24
0.33

G
E

0.80
0.79
0.82

0.67
0.66
0.71

0.50
0.49
0.57

0.40
0.39
0.48

B
A

G
E

0.53
0.55
0.58

0.33
0.36
0.41

0.16
0.19
0.25

0.095
0.12
0.17

TABLE II. B», B», B», B», and Br4, Br4, as fUnctions of
Pr. 3 denotes analytical, 6 denotes (gaussian, and E denotes ex-
ponential.

V. DISCUSSION

It is clear from the above investigation that the qT dis-
tribution introduces substantial modifications of the vari-
ous moments of multiplicity distributions. Correlations
in qT always introduce a damping factor in the rapidity
correlation. It is, however, possible to accommodate the
experimental data in the new formulation with "renor-
malized" values of the relevant correlation parameter g~

Br3

B4r

Br4

G
E
A

G
E

0.65
0.66
0.68

0.43
0.45
0.50
0.52
0.54
0.58

0.46
0.48
0.52

0.22
0.26
0.32
0.31
0.34
0.40

0.27
0.29
0.35

0.083
0.11
0.17
0.14
0.17
0.23

0.18
0.20
0.26

0.040
0.065
0.11
0.078
0.10
0.15



MULTIPLICITY DISTRIBUTIONS, TRANSVERSE MOMENTA, . . . 1401

and the chaoticity parameter p,h„. The net e6'ect is an
increase of the chaoticity p,h„, and a slight decrease in

The importance of qT for the analysis of multiplicity
distribution was emphasized for the first time by Gyu-
lassy [19]and we confirm his conclusions in this respect.

It was shown previously [7] that the observed KNO
violation with energy increasing from the CERN ISR to
the CERN Spp& Collider regime [27] can be interpreted
in the QS formulation by an increase of p,h„and g» with
energy. Provided the dependence of gT with energy is
not opposite to that of g and that the factorization be-
tween y and qT is not too bad an approximation (both
these assumptions appear reasonable), it seems likely that
the above conclusion still remains valid.

One of the major factors that we have not included is
the additional complication due to charge correlations.
It is known that if the + / —correlation is the same as
the + /+ and —/ —correlation, the present formulation
in terms of a single species is correct. Investigations
along this direction are in progress [26].

To summarize, the quantum statistical formulation can
account for the available identical-particle data of NA22.
The application of this formalism to higher energies is

still hampered by the lack of identical-particle data.
Given the generality of the QS formalism and the impor-
tant physical implications linked with its fundamental pa-
rameters, chaoticity and coherence length, a remedy of
this inadequate situation is urgently needed.
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APPENDIX A

This section deals with simple expressions of BT. and
BT for qT. Given a Gaussian profile for qT, they can be
easily calculated. For example, the lower orders are

BT4= 1/[(1+pT/2)2(1+ pT )],
BT5= 1/( I + 5PT /4+ 3PT /16)

BT6=1/[(I+PT)(1+PT/4) (I+3P /T4) ],
BTg= 1/[(1+P T2/)(1+PT+PT/8)],

BT5= 1/[( 10+3PT /4+PT /16)(10+ 5PT /4+ 5PT /16) ],
BT„=1/[(1+PT/4)(1+PT/2)(10+ 3PT /4)(1+PT+PT/16) ] .

(A3)

(A4)

(A5)

(A6)

APPENDIX B

Tl lT2) exp( I IT1 'qT2l CT ) (Bl)

we estimated 2j-dimensional overlapping integrals
through a Monte Carlo simulation. Here the single in-
clusive qT distribution is simulated through the inversion
of the probability density of qT in terms of uniform vari-
able x by

This appendix compares an exponential qT profile with
the Gaussian one used above. Given the correlation
function

or explicitly,

x(lqT I ) =&'—&(&+ IqT I )e (B3)

where A is the distribution width of qz-. The overlapping
integrals are then identified as the ensemble averages of
the products of the two-body correlations. The resultant
values of the overlapping integrals are shown in Table II
as a function of the scaling variable PT=[((lqTI

( IqT I ) ) ) ]' /gT. They are to be compared with the
alternative choice of the Gaussian profile with the same
values of [((IqTI —(lqTI)) )]' . It is clear that the
difFerences between the two choices are not important at
the level of accuracy demanded in our present investiga-
tion.
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