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Role of vector mesons in rare kaon decays
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We study the role of vector mesons in K —+m.~, K~ml+l, KL~yl+l; and KL~+ yy using the
chiral Lagrangian in the hidden-symmetry scheme with the Wess-Zumino anomaly. Two main features
of our approach are (i) the slight modification of the effective weak chiral Lagrangian and (ii) the ex-
istence of the anomalous left-handed current constructed from the Wess-Zumino anomaly and intrinsic
parity-violating interactions involving vector mesons. We predict that the decay mode KL ~m e e is
dominated by the indirect CP-violating one-photon-exchange process, which occurs at the level of a few
parts in 10' in the branching ratio. We can also understand the recent data on KL~ye+e and
KL ~m. yy in our framework, except for the branching ratio of KL ~m yy.

I. INTRODUCTION

The role of vector mesons in KL —+ m. yy and
KL ~m e+e has been a controversial subject [1,2].
Chiral perturbation theory [1] and the pion rescattering
model [3] predict that the pion loop gives a dominant
contribution to KL ~~ yy with a branching ratio
around 7X10, and the two-photon spectrum has a
peak near mzz—-300 MeV in both models. Also, the
low-energy photon pair is almost negligible. On the other
hand, there can be a large enhancement in the low-mzz
region [4,5], if vector mesons come into play in this decay
mode and one uses the naive nonet symmetry in K2~I'
(with P=m, qs, bio). In this case, the branching ratio is
(1-3)X10 '.

The recent measurement [6] of IC& ~moyy from
CERN is rather puzzling. The two-photon spectrum
seems consistent with the predictions of the chiral pertur-
bation theory (ChPT) and the pion rescattering model.
However, the branching ratio for m z&

~ 280 MeV is
larger than those predictions by a factor of 3—4. In this
rather confusing situation, it would be nice to have a sys-
tematic calculation for KL ~m yy as well as for other
processes where vector-meson contributions can be po-
tentially important.

In this paper, we give self-consistent calculations forK, EC I+I, K yy, K yl+ I, d
EL ~nyy in the . hidden-symmetry scheme [7] in con-
junction with the nonleptonic Hamiltonian used by
Sakurai, Cronin and other groups [8]. In Sec. II, we give
a brief review of the hidden-symmetry scheme with the
Wess-Zumino anomaly. In our approach, the usual
0 (p ) and 0 (p ) terms arise from vector-meson ex-
change between the chiral mesons, and from the Wess-
Zumino anomaly term including vector mesons. From
the work of Ref. [5], it is known that the 0(p ) terms
through p and ~ exchange in yy —+~ m unitarize the
chiral loop amplitude in an effective way up to mzz —1

GeV, and controls the high-energy behavior of the chiral

amplitudes. Once we make this assumption, things get
much simplified and we anticipate we do not lose any im-
portant physics information. The major advantage of our
model lies in the number of unknown parameters to be
determined by the experimental data. In fact, we do not
have any unknown parameters at the level of strong and
electromagnetic interactions other than the meson masses
and their decay constants, once we adopt the notion of
vector-meson dominance in the normal sector (a =2 in
the notation of Bando et al. ; see Sec. II.) In Sec. III, we
first discuss the structure of the left-handed currents. We
find that there exist anomalous left-handed currents aris-
ing from the Wess-Zumino anomaly and the intrinsic
parity-violating interactions involving vector mesons, and
they give important contributions to KL~yi l and
KL —+m. yy through generating weak Vmy vertices. The
nonleptonic weak decays of kaons is described by the
effective weak Lagrangian of current-current interac-
tions. We make connections with the calculations in
terms of quark fields with QCD corrections [9,10], and
find that there is an additional term in the effective weak
Lagrangian, which is proportional to Tr(j„L ) where the
trace is taken over the U(3)& or SU(3)f indices. This ad-
ditional term cannot be thrown away as usually done in
the case of SU(3)L XSU(3)z, since the anomalous left-
handed currents we consider in this paper have a nonvan-
ishing trace even in that case. The coefficient of this new
term measures the contributions of penguin operators of
current-current types to the nonleptonic kaon decays. At
this stage, we will have four parameters C8' ', C27
C and 5 with one constraint C2 =5C C*s

characterize the strengths of the (SL, lz )zi, zz,
(27L, 1~ )q1=, ~2, and (27L, l~ )Qi —3/2 pieces of the weak
Hamiltonian, respectively. Deviation of 5 from 1 mea-
sures the contributions of penguin operators. We fix C's
from K —+am. 5 contributes to EL ~~ yy in the
SU(3)I XSU(3)z case, and both to KL ~rr yy and to
&L ~yl l in the U(3)I XU(3)a case. In the following,
we assume nonet symmetry in the vector-meson sector.
Before studying the effects of 5 on X~~yl+l and
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K~~~ yy, we analyze K~m. l+l in Sec. IV using the
suitable value of 6 . For the decay mode K~~l+l, we
need two more operators, Q7V=—(sd)i, z(ll)i, and

Q7„—:(sd)i, „(il)„, arising from the electromagnetic
penguin diagram [11], the Z penguin diagram, and the
box diagram with two internal W's [12]. The real part of
the Wilson coefficients of these operators cannot be cal-
culated reliably. Therefore, we introduce another param-
eter C7 as the coefficient of the new operator Q7i, , ignor-
ing the operator Qzz. We fix Cz from the best fit to the
decay mode K+ ~~+e+e . There is a twofold ambigui-

ty in C7, and we can predict for K+~m. +p+p
Kz —+n e+e, and K& —+m p+p . Our model predicts
the decay rate for the K& —+~ e+e process to be compa-
rable to the decay rate for K +~~+e +e . The
K& ~~ e+e process contributes to the indirectly CP-
violating KL ~m. e+e process through the mixing be-
tween KL and Kz. We predict that the branching ratio of
the indirectly CP-violating KL ~~ e +e process is
about 1.4 or 2.7X10 ', which is substantially larger
than other previous calculations. Another process in
which vector mesons are important is KL —+ye +e
This has been recently remeasured and the form factor
shows a clear deviation from the p form factor [13, 14].
In Sec. V, we give a comprehensive analysis of KL~yy
and KL ~yl+l . In KL ~yl+l, we have both weak
VV and weak Vmy vertices, the latter of which was not
considered in the earlier analysis. In this section, we in-
troduce one more parameter 6„characterizing the possi-
ble deviation of a (K2go) from its naive value obtained
from the e6'ective weak Lagrangian. This takes care of
the fact that the U(1)„symmetry is broken through the
QCD axial anomaly. (We assume nonet symmetry else-
where. ) The recent data on KL ~ye+e, when com-
bined with the branching ratio of KL~yy, provide us
with important information on g—=a(&2il)/ a(E2ir ),

a(ICzg')/a(K—2' ) and 5~, or equivalently, on 6„and
6 . We will have two solutions for 5„,each of which cor-
responds to m and q dominance in KL —+yy, respective-
ly. Then, 5 is constrained to some region for each 6„.
Section VI is devoted to the study of KL —+m yy and its
implication for the CP-conserving part of KL m e+e
In our calculations of KL ~m yy, we find there is direct
emission of vector mesons from weak vertices, which was
not considered in a systematic way before. It turns out
that the two-photon spectrum of Kz ~+ yy at low mzz
shows sensitive dependence on 6 . For 6„corresponding
to ~ dominance in KL —+yy, the predicted two-photon
spectrum does not agree with experiment. Therefore, we
choose 5„corresponding to g dominance in KL ~yy, for
which the low-energy photon pair is indeed suppressed as
recently observed, and B(K &LE yy)=5. 7X10 for
5 =0. This will imply that the CP-conserving two-
photon-exchange contribution to KL —+m e+e is negli-
gible compared to the CP-violating contribution. In Sec.
VII, we summarize our results as a whole. Possible
modifications and/or improvements of our model will be
proposed. Comparisons with other approaches are
briefly discussed in each section.

II. CHIRAL LAGRANGIAN
IN THE HIDDEN-SYMMETRY SCHEME

A. Vector mesons in the hidden-symmetry scheme

The hidden-symmetry approach [7] exploits the fact
that the nonlinear chiral Lagrangian describing the
Nambu-Goldstone (NG) bosons for a (G/H) „„„coset
space is equivalent to the linear 0. model with symmetry
group G „b„XH„„,[15]. Vector mesons are introduced
as gauge bosons associated with the hidden local symme-

try group H. Specifically, we consider the groups
G=U(3)L XU(3)z and H=U(3) i. The scalar and the
pseudoscalar nonets are represented by 3 X3 matrix fields

(L (x) and gz (x), and the vector-meson nonet by V„(x).
Under [U(3)L XU(3)~] „b„X[U(3)i,]„„,, they trans-
forI11 as

g~(x) ~e"'"'gL(x)e

g~ (x) e" '"'g~ (x)e

g V( x)~ie"'"'[8„igV—„(x)]e

where v (x)=gosv'(x)T' is a 3 X 3 matrix field, and is the

group parameter of the hidden symmetry group
[U(3)i,]„„,. The U(3) generators T"s are normalized as

Tr( T'T ) = —,
'5' . g is the gauge coupling constant associ-

ated with [U(3)i,]„„,. eL and ei, are the group parame-
ters of [U(3)L XU(3)i, ] ~,b„. To couple the NG bosons
to external gauge fields such as y, 8 —,and Z, we gauge
the full global symmetry group 6 by introducing the
gauge fields, l„and r„, and the covariant derivative

D„g =(8„—igV„)g +i/ l„,
D„4=(d„&gV„)4+C—R r„

which transform as gL (x) and gi, (x), if the gauge fields

transform appropriately:

6l„(x)=8 eL (x)+i [eL (x), l„(x)],
5r„(x)=B„ez(x)+i[eii(x),r„(x)] .

Here, eL (x) and ei, (x) are the 3 X 3 matrix field group pa-
rameters of [U(3)L XU(3)~]s„b„. If we want to intro-
duce SU(2)r X U(1) i, electroweak gauge fields, we can set

r„=eQ( A „—tan 8 ii,Z„),

l„=r + . TzZ+
slnggrcosggr V 2 sjngi

where Q =diag( —', , ——,', —
—,
'

) is the 3 X 3 electric charge
matrix of three light quarks, T, =diag( —,', —

—,', —
—,
'

) is the

coupling between the left-handed current and the Z bo-
son, and

8 „+cosOC 8'„+sin6c

8'„= 8'„cosO~

8'„sin OC
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Tr[(D„4,)4+(D„4)4 1'

X„,„(V) = —,'Tr(F„.+~ ),
y„.=a„v.—a„v„—ig [ v„, v„],

(2)

Here, f =93 MeV is the pion decay constant. We
consider only the 0(p ) term in the spirit of the low-

energy theorems. If we take the unitary gauge in
which gL(x) =JR(x)=exp[i~( x)/f „] so that U(x)
=g (x)gR(x) =e xp[ 2im( x)/f ],X „reduces to the usual
nonlinear-o. -model Lagrangian:

Tr(D„U D"U ),
D„U=B„U—il„U+i Ur„.

The hidden symmetry enables us to add XR to Xz
without changing physics described by X„,since vector-
meson fields are just auxiliary fields in the absence of
Xi,;„(V) so that XR has no effect on chiral dynamics. A
highly nontrivial assumption is that X.i,;„(V) may be
developed by underlying QCD. Even if there is no proof
for this assumption in 3+1 dimensions, there are some
examples where it is true in lower dimensions [7]. Once
we agree to accept this assumption, we can study the
dynamical role of vector rnesons in strong, electromag-
netic and weak interactions of the pion nonet and vector
mesons.

In the unitary gauge, the scalar nonet becomes the
longitudinal component of the vector meson nonet. By
expanding gL (x) and fR(x) in the unitary gauge, setting
i„=r„= eg A „,and comparing with

XR =mvTrvp 2egvTrvqQA"—

2igv T—r V„[m., B"m ] +
we find that

8~ and 0& are the Weinberg angle and the Cabibbo an-

gle, respectively. Since we are interested in AS=1 weak
decays of kaons, we set Z„=O.

The various low-energy theorems concerning the pro-
cesses involving the NG bosons can be derived in an
effective way from the following Lagrangian [16]X„,:

X„,=X„+X +X„,„(V)+I'"' (g,g, V, l, r); (1)

&g = —
4 Tr[(D„4)4—(D„4)4]'

K+~n+.e e, for example. ) Instead of the standard
chiral perturbation theory based on the loop expansion,
which is equivalent to the derivative expansion, we use

with a =2. For a =2, Eqs. (3) imply the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF)
relations [17], the universality [18] of the Vmm couplings
(gv 's) and Vy mixing (gv's). These are all observed to
be approximately true [19] in V~m'vr, V~rry, the meson
mass spectra, and the charge radius of ~+. This would
imply that, if we could calculate various properties of
low-lying hadrons from the underlying QCD, we would
get a =2.

B. Inclusion of the symmetry breaking

One of the phenomenological Aaws of the above La-
grangian, Eqs. (1) and (2), is that it does not include
symmetry-breaking effects: the explicit chiral-symmetry
breaking and the Qavor-symmetry breaking. In reality,
neither are pions massless, nor are vector mesons degen-
erate as dictated by Eq. (1).

First of all, chiral symmetry is broken explicitly
through the quark masses, as well as spontaneously
through the vacuum expectation value of the qq conden-
sate. In QCD, the quark mass term transforms as

(3L,3R ) under U(3)L XU(3)R, so that we may add terms
with the same transformation property to Eq. (1). In the
lowest order, we choose the following symmetry-breaking
term:

=u Tr(mU+ U m ),
where m =diag(m„, m&, m, ) is the quark mass matrix. u

is a vacuum expectation value of qq representing spon-
taneous chiral-symmetry breaking. U relates the quark
masses with the meson masses in the following way:

2(m„+mz) 2(m„+m, ) 2(mz+m, )

This gives nonvanishing finite masses to NG bosons.
Furthermore, we can easily lift the mass degeneracy of
the pion nonet by choosing m not to be proportional to
the identity matrix.

Second, we also have to consider the symmetry-
breaking effects in the meson decay constants, i.e.,
fz If = 1.22%1. We may introduce the symmetry
breaking [7] in X„as follows:

2

4
Tr [ [(D„4.)k~i+(D„sr. )&~ 41

mv=ag f ~~ gv=agf ~~ gv~~= ~ag (3) —[(D„4)4+(D„CR)&~4.]]' (»

(We assume an ideal mixing in the vector-meson sector. )

In particular, we have the following relations among g,
gv, and m v (independent of a):

~p 3N~ &Ny 1

m m &2m gp co

(4)

This relation guarantees that vector mesons couple to
mesons in a gauge-invariant way. (See Sec. III on

where e z = (0,0, c z ). By renormalizing the pion nonet
field m.(x) by

Ql+c„
1~(x)

Ql+c~
we find that fz =f +1+c„.This sets c„=0.49. How-
ever, we find that it is not easy to make such models con-
sistent with various low-energy data on
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~yy, ~+~ y, for example. Furthermore, calculations
based on the eA'ective Lagrangian are not compatible
with the current-algebra and PCAC (partial conservation
of axial-vector current) calculations.

Third, to achieve the flavor-symmetry breaking in the
vector-meson masses, we can modify Xz in a similar
manner as L z [6]:

2

X~ = —a Tr[ [(D„gL )g~+(D gL )@vga ]4

+ [(D,kR )4+(D„4 )&v(1.]]'

where e v
= (0,0, cv ). Then, Eqs. (3) get modified to

(a}

(b}

K

7 ~ y
PQJ)

2

m =m„=ag f
gp gQ) glp 1

m' &2m' gP Q)

2
m&

(1+cv)

K

p, 40,'=~7

(c}

From the mass spectrum of vector mesons, we can set
c&=0.34. We note that the symmetry-breaking pattern
of X'„and Xz is the same as that of X

To see how well the new Lagrangians, Eqs. (5) and (6),
describe meson physics, we calculate the electromagnetic
charge radii of ~+, K+, and K . We study this quantity
here, since it is the place where the powerfulness of the
vector-meson-dominance hypothesis manifests itself, and
it is a part of the K~~I I process which is the subject
of the next section. Define Fz(s) and G~(s) by

& &(p')lg™I&(p) &

where s =q = (p —p ') . Fz (0) measures the electric
charge of the particle 3 in unit of the electron charge.

I

FIG. 1. Feynman diagrams for (Pjl, IP) with P =n+, K+,
and K . The vertices are read off from Eqs. (5) and (6) and their
Hermitian conjugates with a =2.

For small s, we can expand Fz(s) in Taylor series. The
electromagnetic charge radius r A of the particle A is
defined by

F (s) =1+—(r ) +s
A 6 A

We first make the Lagrangians Hermitian so that parity
and charge-conjugation symmetries are respected.
Evaluating the Feynman diagrams shown in Fig. 1, we
find

F ~(s)=1+—[f (s) —1],

2F +(s)=1— [1 f~(s)]+ [1—,'f (s) ,'f (s)]-———
1+CA

F~o(s) =—

(2(1 —cv)[1 —
—,'f (s) —

—,'f (s)7+(1+cv)[1 f~(s)]], —
6 1+c„

[1 f](s)]— —[1 ,'f (s)+ —,'f (s)—] —+ ((1—cv)[1——', f (s)+ —,'f (s)]—(1+cv)[1 f~(s)]], —
1+CA 12

where

2m p.
fv(s)=

my s

From the above equations, we note that there is no direct
~~y coupling for any c A and c~ if we set a =2. For K
this is true only if cA =c~=0. The numerical values for
(r„) are given in Table I for a =2 (complete vector-
meson dominance). We find that an acceptable fit to the

experimental data [20,21] is obtained if we put
cA =c&=O and still insist on using the physical masses
for vector mesons, which is the most naive case. Then,
we can freely use the KSRF relation and Eq. (4) to ex-
press g and gv in terms of mv and f . This is the same
as the form used in the old current-field identity:

2J"""'= 2gf ' & + = —— & +my
V ~ P f P

V
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TABLE I. The squares of electromagnetic charge radii of
~+, K+, and E (in units of fm ) for diA'erent values of c& and

cz obtained from the Lagrangians X'„and Xz, Eqs. (5) and (6).
The data are taken from Ref. [20] for m+ and K+ and from Ref.
[21] for K .

( c~, cv ) (0,0) (0,0.34) (0.49,0) (0.49,0.34) Expt. data

0.39 0.39 0.39 0.39 0.439+0.03
0.34 0.27 0.28 0.24 0.28+0.07

—0.028 +0.0056 —0.049 +0.0001 —0.054+0.026

effective action: in the presence of the anomaly, the
effective action is not gauge invariant, and the current is
not conserved [26—31].

The explicit form of the anomaly in the absence of vec-
tor mesons can be derived in various ways. The key point
is to construct a functional, I ( U = (L gz, 1„,r„), which
transforms under the local G =U(3)I XU(3)~ as

5I Lit( U, l, r)

f d x el (dl) ——d1 (L~—R )
24~'

c~ =0.49 and cv=0 are not considered in this paper for
simplicity.

We also note that the charge radius of ~+ is a little
smaller than the actual value. This could be remedied if
we used a smaller value of I =730 MeV. This can be

P
understood in the following way: we regarded the p
meson as a fundamental pointhke particle in our formal-
ism. In actuality, this is not true, and p should be con-
sidered as a resonance with m~ scattered in the I =J = 1

state. The constraints from current algebra, unitarity,
and crossing symmetry can be approximately implement-
ed, and one obtains a modified p meson form factor [22].
However, such works have not been done yet for co and P.
So, we ignore such complications arising from the com-
posite nature of vector mesons hereafter, and regard Eqs.
(1) and (2) as the basic Lagrangians for our purposes.
Also, we will freely use Eq. (3) in the following.

C. The %less-Zumino anomaly in the absence of vector mesons

The Lagrangian in Eqs. (1) and (2) without I '"' has a
spurious symmetry (intrinsic parity, Po [23]) which is not
a true symmetry of underlying physics of QCD [24]. The
famous Wess-Zumino (WZ) anomaly [25] removes this
symmetry, and gives a consistent explanation for intrinsic
parity- (Po-) violating processes such as vr +yy, y ~—3rr,
K+K ~3~, etc. Furthermore, the amplitudes for those
Pp-violating processes are related to each other in the
chiral limit, forming another set of low-energy theorems.
Hence, the WZ term is indispensable to describe the
chiral dynamics of the lowest-lying mesons. At the quark
level, the anomaly is a manifestation of the fact that one
cannot retain chiral symmetry in the quantized theory of
fermions coupled to gauge fields [26]. This fact is
rejected in the gauge transformation property of the

(7)

o.=dU U
N,P=U 'dU, C= i-

240m.
(8)

a and 13 transform as U(3)L and U(3)z nonets respective-
ly under the global G =U(3)I XU(3)~. To begin with,
consider the gauge transformation property of Tr(a ).
Under local G =U(3)l XU(3)z transformations,

5U(x) =i [eL(x)U(x) U(x)e~ (—x)],
51(x)=dEI (x)+i [eL (x),1(x)]

5r(x) =deit (x)+i [e~ (x),r(x)],

it changes by

C5f,d'x Tr(a')= —5Ci f,d x Tr(deLa +de~f3 ) .

This can be removed by introducing the term

5Ci f,d x Tr(la +rP ),
whose gauge-transformation property is

which is the result of the calculation at the quark level
[28]. (X, is the number of colors of the quarks. ) This is
the anomaly-matching condition at the fundamental level
and the constituent level. The explicit form can be con-
veniently written in terms of the language of differential
forms [27]:

r« C f——,d x Tra +(covariantization),

where we define

5Ci6,d x Tr la +r =5Ci,d x Tr deLcz +de& +5C d x Tr deL lo, —o.'le+0.' I

—SC dxTrde& r —r + r

+5C d x Tr deL UrU 'cz —uUrU 'a+a UrU

—5Cf,d x Tr[de~(U 'lUP PU '1UP+13 U—'1U)] . (10)

We note that Eq. (9) is canceled by the first term of the right-hand side of Eq. (10). However, there are remaining terms
in Eq. (10) which are not equal to the anomaly condition, Eq. (7). Therefore, we proceed as before by adding terms
whose gauge transformations are canceled by the remainders in Eq. (10), and so on, until we end up with Eq. (7). The
final result is
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r„(U, l„,r„)=CJ,d'x Tr(a')

+5CJ,d x Tr[i(la +rP ) [—(dl 1+1dl)a+(dr r+r dr)P]+(dl dUrU ' d—r dU ' IU)

+(rU 'lUP lU—rU 'a )+—,'[(la) —(rP) ]+i[1a+r P]

+i[(dr r+r dr)U lU (dl—1+1dl)UrU ']+i [1UrU 'la+rU 'lUrP] .

+[r U 'lU —1 UrU '+ —,'(UrU '1) ]],

where M is a five-dimensional manifold whose boundary
is the ordinary Minkowski manifold M . This
6=U(3)L XU(3)R-invariant form of the anomaly was
used in the original paper by Fujiwara et al. [29]. How-
ever, this form of the anomaly is not consistent with
current algebra and modified PCAC in the following
sense. From the above Lagrangian, Eq. (1), we can con-
struct the left-handed and the right-handed currents jL„
and j&„. Then, we find that the axial-vector current J„'"'"
is given by

I„'"'"(x)= f D ~—(x) — e„&Q 3'(x)(3 A~(x) .

If we take the divergence of J„'"'"(x)and use the Euler-
Lagrange equation for vr(x) derived from Eq. (1), we can
show that the axial-vector current for the third com-
ponent of the isospin, A „'""',satisfies

I

gpJ3axial( ) y 2

+(1—
—,
'

) e„)3()"2 "(x)B A~(x),

where P o(x) is an interpolating pion field appearing in

the calculation in the Lehmann-Symanzik-Zimmermann
(LSZ) formalism. This is not consistent with the modified
PCAC relation [30] which has the coefficient 1 in front of
Q instead of (1 —

—,
'

) =—', . This in turn means that we get
too small a rate for m ~yy when it is calculated by the
current algebra and the modified PCAC in the LSZ for-
malism. To keep the consistency between the effective-
Lagrangian approach and the good old current-algebra
and PCAC calculation of m ~yy in the LSZ formalism,
we should modify the I.R-symmetric anomaly form, Eq.
(11). The correct answer is to keep the conservation of
vector currents, sacrificing that of axial-vector currents
as done by Bardeen [31]. Bardeen's form of the anomaly
satisfies the following condition under the local
G =U(3)L XU(3)R:

51 wz(U, l, r)= J d x (eL —eR ) F~ F~ — (F~—A +A—F~A+A F~)——A
24m

L R V 3 A 3 V (12)

where

I wz(U, l, r)=I LR(U, l, r) —I LR(U = 1, l, r) . (13)

This coincides with the original form of Mess and Zumi-
no. If we consider only electromagnetic fields as external
gauge fields, we have l„=r„=eQA„. Since
I LR(U = l, l, r) is antisymmetric under l~r, the two
forms of anomalies, I L~ and I ~z are identical.

D. The W'Z anomaly in the presence of vector mesons

Electromagnetic decays of vector mesons such as
co~~ y, co—+pm, etc. , are all intrinsic parity-violating

V= —,'(1+r), .A =
—,'(1 r), —

F~=dV+i(V +A ),
F~ =dA+i(VA+AV) .

For the vector transformation, eL=ez, and the above
anomaly vanishes identically. This in turn ensures the
conservation of the vector currents, as we anticipated.

The minimal solution to this equation is given simply
in terms of I LR(U, l, r) as

I

processes, so that we might be able to describe them in
the effective-Lagrangian approach by including terms
with the Levi-Civita tensor. One can achieve this by add-

ing homogeneous solutions of Eq. (12) to Eq. (13). Since
the newly added terms are homogeneous solutions of the
anomaly equation (i.e., gauge invariant, or 51=0), there
will be no additional anomaly and the anomalous low-

energy theorems remain intact.
The correct form of the WZ anomaly including vector

mesons is conveniently expressed in terms of the follow-

ing gauge-covariant entities [29]:

aL =DgL gL =aL —igI'+ll

aR Dk kR aR ig~++

aL(r) dkL(R) kL(R)

1=4.'1'4, r =OR 'r'4
F~=dV —ig V

F, =gL F, gL =gL(dl il')gL, —

FR =gR FR 4 gR(«Rir )gR
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There are four gauge invariants [i.e., homogeneous solu-
tions of the anomaly condition, Eq. (12)] which conserve
parity and charge conjugation but violate intrinsic parity,
since they contain the Levi-Civita tensor:

X,=Tr(alai, —aiiaL )
—

(gL, =g~ =1, V=O, l, r),
X2=Tr(aL azaLaz ) —(gL =gz =1, V=O, l, r ),

current is constructed. Also, we sometimes denote the
field content of the current in the parentheses. For exam-
ple, jL (m.y) will indicate that the current is constructed
from the Wess-Zumino anomaly and that it couples to
the pion nonet and a photon.

We first give the currents from X „and X~:

JL„= f —D„» i [m—,D„. ],
X3 i TrFv(aLAR aRaL ) (4L kR

= 1, V=O, l, r )

X4= i Tr(FL ar aii Fii a—ii aL ) —( gL =gii = 1, V =0, l, r ) .

jL„= [vr—,D„»] af (g—V~
—eQA„)

iaf [—», g V —eQA„], (17)

Here, the second term means the same expression as the
first term evaluated at (~=g~ =1, V=O. The general
solutions to the anomaly equation, Eq. (12), are the
Wess-Zumino term, Eq. (13), and any linear combinations
of the above X, 4( gL, g~, V, i, r):

4I'"' =I +g c;X; .

The coefficients c s are to be determined by fitting the
data on ~ —+ yy, co —+~ y, etc. In particular,

r'"-=I,—I SC(X,+Z, +c,r, +c,X,) i.

(16)

contains VV~ and y~ vertices, and there is no direct
~yy coupling. Therefore, complete vector-meson domi-
nance (VMD) is not realized in y vr vertices. The
w ~yy process is described by m. ~cop —+yy through the
Vy mixing, cu, p —+y. The first comes from Eq. (16), and
the second from Eq. (2). Also, our choice ci —cz= —1

gives the right value for co~3» [29]. From Eq. (16), we
get I (co~3»)=9. 1 MeV compared with the experimen-
tal value, 8.9+0.3 MeV. If we chose c&

—c2=+1 in Eq.
(16), we would have complete vector-meson dominance in
V~; i.e., there would be no direct y~ vertices. This also
would lead to I (co~3») =6. 1 MeV, which is about 70%
of the observed rate. We can easily read off the VV+ and
V»y vertices from this Lagrangian, Eq. (16). Before clos-
ing this subsection, we emphasize that our discussions in
the remaining of this paper do not depend on the specific
value of ci —c2, since Xi and Xz do not contribute any
processes we are concerned with.

We note that the m terms in jL" and jL cancel each other
if we set a =2 (VMD). Higher-order terms irrelevant to
our purposes are not shown here. We note that our mod-
el is different from the previous calculations using
current-field identities, which do not contain the
[»,g V„—eQA ] term. This term generates weak V»»
vertices.

Most important is the anomalous current from the
anomaly:

I'"' (U, l, r, V)=I (U, l, r)+1'"' (g,g, l, r, V) .

jL (»y)= [der, Q dA } .
30cie

(19)

There are other pieces involving ~, ~ y, my, etc., which
are irrelevant to our study of KL ~yl+ $ and
+L ~~ 'V'V.

[JA(» 7)]
(a}

[]wz(» 7 )]

In the absence of vector mesons, I z' =0 so that only
I wz( U, l, r) will contribute to the anomalous left-handed
current. So, we first consider jL . (For the anomaly and
the anomalous currents, we use the notation of
differential forms for simplicity. ) By setting i =eQA + W
in Eq. (16) and reading off the coefficients of W, we find
that

III. THE STRUCTURE OF THE

ICOSI

=1
WEAK LAGRANGIAN

A. The structure of the left-handed currents

To study nonleptonic decays of kaons, we need the
left-handed current in terms of meson fields. We can con-
struct currents either by the Noether method or by tak-
ing the functional derivative of the effective action with
respect to gauge fields l„and then setting l„=r& =eQA&.
Since our Lagrangian is already written in a fully gauged
form, we use the second method. We put superscripts to
the currents to identify from which Lagrangian the

[i(e)(v)

FICz. 2. Feynman diagrams for 8'+ ~m+y in our model: (a)
in the absence of vector mesons; (b) in the presence of vector
mesons.
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If we neglected vector mesons completely, this would
be the whole story, and the weak vertices from jz (my)
and other normal currents, jz and jz, should be able to
describe nonleptonic decays of kaons such as
ICz —+ye+e, Kz~m yy and so on, in which anomalies
take part. In this case, we will find that we plunge into
disagreements between the theoretical predictions and
the experimental data.

For example, the above jL (my) current can make a
real 8'boson decay into my with a large branching ratio.
[See Fig. 2(a).] Our calculation is nothing but the calcu-
lation done in Ref. [32] in a different language. They
used the triangle anomaly and PCAC, while we are using

I

the effective-Lagrangian method with the anomaly prop-
erly taken into account. Of course, it is not sensible to
use the effective Lagrangian when one of the external
particles has a huge mass compared to the chiral-
symmetry-breaking scale. The calculated number should
not be taken too seriously. However, we discuss it to
demonstrate that vector mesons cut ofF the bad high-
energy behavior of the chir al amplitude. This
phenomenon was observed in yy~m m [5], and we will
find a similar situation when we discuss Kl ~m yy (see
Secs. VI B and VI C.)

From the above current or the gauged Wess-Zumino
anomaly, Eq. (11),we find that

JR"{W(P, e)

~my�(k,

e') ) =—2m.af cos8c
e e'+ e"' ~k„e+ e&

sln8gr 8~ f

jl (my)= [dn, Q dA],30Cie
(21)

where the first term in the large parentheses comes from
the normal current jz, and is negligible compared to the
second term. This leads to the branching ratio
I (W~my)=1. 31(W~ev). Note that a recent mea-
surement [33] reports I ( W —

+my ) (5.8 X 10 I ( W
—mev).

Let us see what happens if we include vector mesons.
I z' generates the new pieces of currents relevant to our
discussions of 8'~m. y, Kz ~yl+l, and Ez ~m. yy:

jL ( Vy ) =30Cie tg V—eQA, Q d A ] . (22)

The total anomalous current is the sum of jz and jL .

jl'."' (rry) =jl. (~y )+Jr. (wy ) =0,
jI'"' ( Vy )=30Cie [g V eQ A, Q d—A ] .

(23)

(24)

Therefore, the second term in JR"(W—+my) becomes
zero. In the presence of vector mesons, we have an addi-
tional diagram [Fig. 2(b)]. We can easily evaluate it using
Eqs. (1) and (16), and the result is

2n.af cos8&
JR' '( W(P, e) ~my(k, e')) =-

SlnI9 w

fPZ

e" Pk e'& e2@2 2 ~2 p v-a Prn —
w

(25)

corresponding to I ( W~my ) =9.9 X 10 I ( W~ev).
This should be compared with the more refined calcula-
tions [34] based on QCD, B(W~my)=3X10 I (W
—+ev). This analysis may be taken as one piece of evi-
dence that the inclusion of vector mesons is very impor-
tant to control the high-energy behavior of chiral ampli-
tudes. In passing, we remark that jL" (Vy) will give
very important contributions to Kz ~y'l+ l and

KL ~m. yy (see Secs. V and VI). Also, it should be em-

phasized that (i) Eqs. (21) and (23) are the result of choos-
ing c3 and c~ as in Eq. (16), i.e., complete vector-meson
dominance in myy, or no direct ~yy coupling as de-
scribed at the end of the previous subsection, and (ii)
Tr[jL" (cry)] and Tr[jL"' ( Vy)] are nonvanishing even
in the case of SU(3)I XSU(3)z, in sharp contrast to
Tr(D„~). The second property, (ii), turns out to be very
important in Kz ~yl l and Kz ~m yy.

Finally, we comment on the inhuence of choosing
Bardeen's form of the anomaly instead of the left-right-
symmetric form. If we chose the left-right-symmetric
form, we would have

jp (yy)= —10Cie [QA, Q dA ] .

This would contribute to Ez —+yy, Ez —+y/+l, for ex-
ample. Although there is no definite restriction on such a
current from experiments, it can be excluded by the argu-
ments given in Sec. II C: We should keep vector currents
conserved, sacrificing the conservation of axial-vector
currents to get the right value for m —+yy in the LSZ for-
malism with modified PCAC.

B. The ~dS~ =1 weak Lagrangian
for nonleptonic decays of kaons

To study nonleptonic decays of kaons, we assume that
the effective weak Lagrangian has the following form in
terms of the U(3)L left-handed current jr„constructed
from the Lagrangian, Eq. (1):
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~AS = 1 ~SI= 1 /2 +~AI = ( /2 +~6I=3 /2
weak (8, 1) (27, 1) (27, 1)

c(1/2)6
t Tr(jpL jan%) —5, [(jpL )23+(JpL )32]Tr(jE)],

2

(26)

(27)

( (1/2)G

«~'~, i)"=
~2 I (JpL )»(jE)21+(j„I.)31(jE ) i2+-,' [(j„I.)23+(j„I.)32][9(j»L+j22L ) —(j iiL

—
j22L ) 6—Tr(j g )]], (28)

( (3/2)G
gI= 3/2 27 F

&(27, 11
= — t(j,L)13(B)21+(jpL)31(jE)i2+[(j,L)23+(jpL)32][jEii —jE22)] .

2
(29)

Comparing with the usual expressions for the SU(3)L
case [35], our expressions have additional terms contain-
ing Tr(jg), i.e., our expressions get reduced to the con-
ventional expressions for the SU(3)I X SU(3)I1 case if we
set Tr(jg)=0. In the previous subsection, however, we
have observed that Tr( jL"„' )%0 even for the
SU(3)L XSU(3)ii case. Therefore, we should not drop
terms containing Tr( jf ). Since the trace of normal
currents is at best proportional to B„go, these new terms
do not affect the processes such as K —+2m, 3m, etc. If we
work with the SU(3)L XSU(3)I, chiral Lagrangian
without vector mesons, the process KL ~~ yy is the first
place where we can see the effect of 5 and
Tr[jL"„' (iry)]. (See Sec. VIB for details. ) If we work
with the U(3)I XU(3)I1 chiral Lagrangian with or
without vector rnesons, the decay modes EL ~yy and
KL ~yl+I are also affected by these new terms.

To understand the above weak Lagrangians with
Tr(jI )%0, we consider the ~b,S~ =1 effective Lagrangian
in terms of quark fields. It is well known that [9,10]

6
X„„k'=g b, (p)0, (p)+H, .c. ,

01 (Su )v —A(ud)v —A (sd)v —A(uu )v —A

02=2(sd)v A(qq), „+0, ,

03 =(sd ) v „(uu ) v A +(su ) v „(ud ) v

+2(sd ) v „(dd ) v A
—3(sd ) v „(ss ) v

04=(sd)v „(uu)v „+(su)v „(ud)v
—(sd ) v —A(dd ) v —A

05 ( sd ) v —A ( qq ) v+ A

06= —8(SLq„)(qLdI, ) .

He«, (q'q')v „:—q IyP(1 —y, )q' and qI((L, = —,'(1+y, )q,

where q—= (u, d, s). Our definitions of 0 s are identical
with those of Ref. [9], except that the sign of 0, is

changed and 05 and 06 are switched. Typical values of
b s are b1 =2.5, b2=0. 09, b3 =0.08, b4=5b3 =0.44,
b5 = —0.015 and b6 = —0.066 at the hadronic scale [9].

We identify the ( V —A) current of quark fields with
the left-handed current of meson fields by setting
(q Iq ') v A

=2(jL );. [36]. Then, the operator 01, which
has the largest Wilson coefficient b1 and transforms as

b,I=—,
' (SL, II1 ), becomes

01 = (su ) v —A ("") v —A (s" ) v —A ("") v —A

"(jL )13(jg)21 (JL )23(JL)11

(JLpJE)23 (JLp)23T (JE)

If we take the sum of 01 and its Hermitian conjugate, we
end up with Eq. (27) with 5F =1. The other two equa-
tions, Eqs. (28) and (29), can be derived from chiral repre-
sentations of 03 and 04 in a similar manner. 03 and 04
transform as (27I, 121) with b,I=—,

' and —,
' respectively,

while the other four operators transform as (SI, II( ) with
AI= —,'. Therefore, 03 and 04 do not mix with other
operators under QCD corrections, and their Wilson
coefficients, b3 and b4 retain the relation b4=5b3 [9].
Therefore, we set C(27/ '=5C27 ' in Eqs. (28) and (29).
The operator 02 becomes

02 (JLpJtL )23+(JLp)23Tr(JE )

The operator 05 becomes

[j(L )23+(JL )23]T (JR )

Since its Wilson coefficient b5 is smaller than others for
operators with hI= —,', we will ignore this term. 06 can
be shown to have a similar form as 01 if factorization
holds [37]. Therefore, the b,I=—,', (SI, lI, ) piece can be

written as Eq. (27) with an arbitrary parameter 5, which
is a combination of b1, b2, and b6. Note that 5 = 1 if we
have 0, only. (5F —1) measures the contributions of oth-
er operators than 01 to AI= —,

' amplitudes. In the 1/X,
approach, the leading term has a single trace over the
fiavor indices [36], and the term with 5 is suppressed
with respect to the usual term, Tr( jLpgk, 6). This
amounts to setting 5 =0 in the leading order in the 1/X,
expansion. This is possible since the two terms in Eq.
(27) separately have the right chiral transformation prop-
erty. On the other hand, if we assume that the Tr(jI„)
term is suppressed with respect to other terms in Eq. (28)
and drop it, the remainder does not have the right chiral
transformation property. Based on the 1/X, expansion
argument, we expect 5 to be rather small. We find that
this is true from the analyses in Secs. V and VI.

In this paper, we assume CI' invariance, so that the
coefficients C's in Eqs. (27)—(29) are real. Therefore,
there appear three independent unknown parameters
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=5C(
8 & 27 & 27 27 a p

interaction level.

C. Determination of C's from K ~am

To fix those parameters, we consider K, ~m+ m

K, ~m mo, and K +~m
+n.o The relevant Feynman dia-

grams are shown in Fig. 3 ~ There would be no direct
K m ~ weak coupling, because we set a =2. The invariant
matrix elements are

W(l(, ) ~7r+7r )

iGF
8

~ (C(l/2)+C(1/2)+C(3/2) )(2p2 2 2
)27 27 P +

C( 1/2) +C( 1/2) +C(3/2) 4 478 27 27

8 27 27

This inconsistency comes from our neglecting the phase
shift in the final pions. The right relations are

IC( /2)+C(1/2)+C(3/2)e'
I

4 47

IC", "'+C,""'—2C,""'e' ' "'I =4.21 .

Here, we assumed that the final-state interactions of
pions change the phases, but not the modulus of ampli-
tudes. From these two equations with C27

' =0. 14, we
get

C( 1/2) +C( 1/2) 4 38 C(3/2) 0 14 g g 53 3o
8 27 . ~ 27 ~ 0 2

iGF (C(1/2)+C(1/2) —2C(3/2) )(2p2 2 2)
43/2 27 27 K PO

JN(K+~, 7r+~ )= — (3C' ')(P —p )
LGFf.

27 K n4 2
(30)

K) K vr K)

K) K, K

(b)

7r'(P( }

7r'(P2 }

+{P1 PP)

It is amusing to observe that we recover the same results
one would get from the lowest-order chiral perturbation
theory without vector mesons. This is the result of our
use of the KSRF relation: we have used Eq. (3) to replace
2g f by m +. We can calculate the decay width for
each process from the above amplitudes, and compare
with the experimental data [38] using

1 , I p. l

r(I(C 7r7r ) = I~(rC
8m Pl K

First of all, we can easily find that C 27
' =0. 14 from the

observed K +~~+m rate. But this value of C 27
' is not

consistent with two equations we get from K 1 decays.
Specifically, we have

(31)

From the phase-shift analysis on the m ~ scattering exper-
iments [39], we have 5O

—52=(53+5)', which agrees with
the determination Eq. (31). The other solution
50 —52= —53.3 (mod 360') is excluded by the above
data. If we chose the opposite sign for C", ' +C27 ', we
would get the wrong phase shift, 50—52 lying between 90'
and 270'.

From C' ' =5C2 ', we have

C" ' =4 35 C" ' =0 03

This completes our discussion of the basic setup for
studying nonleptonic decays of kaons.

IV. K ~el +i

In this section, we study K~~l + I decays which are
suppressed as a consequence of the flavor-changing neu-
tral current [40]. Among various modes, only
K +~~+e +e has been seen, with branching ratio
(2.7+0.5) X 10 [41]. E~)rl+l modes were discussed
in great detail in the context of chiral perturbation theory
[42], and the decay width for K+ ~7r+e+e was used to
fix a parameter appearing in the 0 (p ) weak Lagrangian.
Then, the spectra of K + —+~+e +e and the decay modes
K + ~m+p+p, K& ~m e +e, K& ~m p+p were ana-
lyzed. Therefore, K +~~+e +e is an important process
in ChPT, because it is used as an input to fix a parameter
which is not constrained by chiral symmetry alone. In
our case, the short-distance contributions to K~m I +l
from y, Z -exchange penguin diagrams and the W-
exchange box diagram generate two new operators
[11,12]:

e 2

Q7V 4
( d)V —A(

K K
2

Q7 ~
— (sd }v —z ( ll )„ (32)

(c)

FIG. 3. Feynman diagrams for (a) K& ~m+~, (b) K& ~m
and (c) K +~m+ ~ . (Solid circles are strong vertices, and solid
squares are weak vertices. )

with their Hermitian conjugate. In terms of chiral fields,
they generate a new effective weak Lagrangian of the
form

2

4m
[(JLp)23+(JL)J,)32][C7V(/l ) V+C7+ (ll ) „].
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The imaginary parts of the Wilson coefficients of Q7v and
Q7„are reliably calculated in the standard model with
leading logarithmic perturbative QCD corrections in-
cluded. They contribute to direct CP violation from the
decay amplitude in K —+el+i . On the contrary, the
real parts of the Wilson coefficients of Q7v and Q7„,
which we are interested in here, are sensitive to the long-
distance contribution, and the main contribution comes
from the momentum scale below the charm-quark mass,
where the leading-logarithmic perturbative QCD is not
that reliable. Therefore, it is dangerous to use the real
parts of c7~ and c7„obtained in the quark level calcula-
tions. In the following, we will assume that the contribu-
tion of Q7„ is negligible compared to other contributions,
i.e., only the electromagnetic penguin diagram is con-
sidered among three kinds of the short distance contribu-
tions. %e factor out some trivial factors such as GF,
e /4m, and so on from e7v, defining a new parameter Cz
[see Eq. (37)]. Then, we fix C7 from the best fit to
B(E+~n.+e+e ), and predict other processes such as
ICI ~n. p+p, Ez~m e+e, etc. %'e have a twofold
ambiguity for Cz and for the predictions, just as ChPT
does. For the parameter 5, we set 5 =0 in this section.
This choice of parameter will be justified in Sec. VI, and
we can absorb the change in 5 into the change in C7.
The answer will not change very much.

A. X+~a.+e+e and EC+~a.+p+p

The Feynman diagrams for K+~m. +l+l are shown
in Fig. 4. The general structure of the amplitude for
E+~m+y* is

At„(E+~n+y*)=f, (s)(Pz+p )„+f2(s)q„,
with q =Pz —p„and s=q . Current conservation re-
quires f, (0)=0. As long as the operator Q7~ is neglect-
ed, the q„-dependent part does not contribute to
K+~m+e+e . Therefore, we will ignore fz(s) in the

gy =P, &,$
K' ~+

P, &,

(b)

K

(c)

FIG. 4. Feynman diagrams for lt +~++I+I . (a), (b), and
(c) refer to F„Fb,F, defined in Eqs. (35)—(37). (Solid circles are
strong vertices, and solid squares are weak vertices. )

following. In Fig. 4, it looks like double counting of the
first graph in (a) and the first graph in (b). However,
those two are generated by di6'erent left-handed currents,
the former by jI"X jL" in Eq. (17), and the latter by
jL"XjL. Also, note that diagrams in (a) and diagrams in
(b) are separately gauge invariant. If we omitted the first
graph from (a) or (b), gauge invariance would be spoiled.
The last graph in Fig. 4(c) is generated by the operator
Q7 V'

Evaluation of the Feynman diagrams shown in Fig. 4
leads to the following expressions (each subscript denotes
the Feynman diagrams in Fig. 4):

C(&/2) +C(&/2) +C(3/2)
At„(E+~rP+y*)= GFf'e(P~+p )„F(s),

2 2

F(s)=F,(s)+Fb(s)+F, (s),
2 2

F, (s) =1— f (s) — [—,
' f (s)+ —,

' f (s)+ —,
' f~(s)],

(34)

(35)

F, (s)=—

Fb(s)= —[2——f (s)——,'f (s) ——,'f~(s)],
f ,(s)

C~s'i '[f (s) ——,'f (s)+ —,'f~(s) —
4, + ', 5p( f„(s) f~(s))]— —

(36)

+C2'7~ '[2+f (s) —f (s) —2f~(s)]+2C~i7 '[1—f (s)]+C7
Pl~

(37)

where

2
APE Vfv(s)=

~v s

Note that each of F„Fb, and F, is gauge invariant by it-
self. If the vector mesons were neglected (which corre-
sponds to a =0), we would get F=0 at the tree level,
since Fb =F, =0 if a =0. Also, F, (0)=0 if the kaon and
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the pion are on the mass shell, which is a consequence of
gauge invariance and chiral symmetry as noted in Ref.
[42]. The form factors arise from the chiral loops (7r7r,
KK, and K7r loops) in ChPT. In our approach, we get
the form factors immediately by vector meson domi-
nance. We set 5F =0. The new parameter C7 in F, (s) is
the coefticient of the chiral representation of the operator
Q7& defined in Eq. (32).

The invariant amplitude for K+ —+n.+e+e becomes

(C(1/2) +C(1/2) +C(3/2) )G f2e2
At(K+~7r e+e )= 27 27 F vr

2 2

C = —0 01+0.o3 —0 61+ o—004 r —004 ~

We note that the case C7 =0 is close to the first solution,
and may be regarded as the same within the experimental
error and the intrinsic uncertainties in the chiral-
Lagrangian approach. This is consistent with zero, and
implies that the short-distance contribution of the elec-
tromagnetic penguin diagram (Q7) ) is not that important
in K+ ~m+e+e . The other solution C7 = —0.61
would imply that the operator Q7), is as important as
other operators, 01 6 defined in Sec. III (b). For these
two values of C7,

X u(k)(P)r+p )„y"v(k'),F(s) (8 (K+ ~7r+e+e

(1 9+ ) X 10 for C7 = —0.01+() ()4,

(2.9+o 6) X 10 for C7 = —0.61+0 ()4 .
and the decay rate is given by

I (K+ ~7r+e+e )
' 1/2

4I",

The difference in the branching ratio is the result of
difference in the spectra at low m„. For small s,

F ( s ) = (
—1.01+1.85 —0.96—0. 53C7 )

m

27"I
X 1+ F(z),—(39)

1

Z

= —(0. 12+0.53C7 )
mp

where A(a, b, c)=a +b +c 2(ah+b—c+ca), z =q2/

Io= (
C(1/2) +C(1/2) +C(3/2) )G f 2

8 27 27

2v'2 12'
=1.83X10 "GeV.

for C7 =0. This is to be compared with the experimental
data [41]

Using the above amplitude and assuming the SU(3)f-
symmetric relation, C27

' =5C27 ', we get the branching
ratio [for 7(K ) = 1.24 X 10 ' sec]

8 (K+ —+7r+e+e ) =2. 1 X 10

where the first, the second, and the last two terms corre-
spond to Figs. 4(a), 4(b), and 4(c), respectively. We note
that there is a destructive interference between the first
term (the charge radius term) and the second term, and
the result is quite small for C7=0. This is why we ob-
serve rather different branching ratios and spectra for
different C7's. In Fig. 5, we show a plot of
8 (K+ +7r+e+e ) —with and without the cut as functions
of C7. Also, the fact that F (s) is small for small s renders
F(s) sensitive to C27G) s in spite of its smallness. If we
neglect C27 s,

i0.0

8 (K+ —+7r+e+e ),„~,=(2.7+0.5) X 10

The agreement is quite good, considering that we com-
pletely neglected the short-distance contribution by
choosing C7=0. However, the effective-mass spectrum
of the e+e pair for C7=0 is very different from the
phase-space spectrum at low m„. Since the branching
ratio was obtained assuming that the spectrum obeys the
phase spectrum, we should be rather careful. In fact, a
cut with m„) 140 MeV (i.e. , s &0.08m + ) was applied
in the experiment, to reject background events from K2
Dalitz decay with one soft photon unobserved. Their re-
sult with the cut is

8(K+~7r+e+e ),„,=(1.5+0.3) X 10

8.0
I

6.0

4.0

2.0

0 l l

—0.8 -0.6 -0.4 -0.2 0 0.2 0.4

If we relax the condition C7 =0 and fix C7 from the best
fit to 8 (K+ ~7r+e+e ),„„we have a twofold ambiguity
in C7..

FIG. 5. Dependence of 8(K+~m+e+e ) on C, : dash-
dotted line for 8 (K+~~+e+ e ),„„solid line for
8 {K+~m e+e };with the measured B (K+ ~n+e+e ),„,.
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TABLE II. Branching ratios for K~el+1 in case C7 is fixed from the best fit to K+~~+e+e
with m„140 MeV; for Kl —+n/ l, the quoted branching ratios are for indirect CP violation as dis-
cussed in the text. The experimental data are taken from Ref. [38], except for KL +n— e+. e, the data
of which are taken from Refs. [42] and [43] (in the parentheses).

C7

K+ ~m+p p (10 )

Kz ~~"e+e (10 )

~'p+p- (10-')
KL~+ e+e (10 ")
KI a pp (10 ")

0 61+0.03

140 06
3.81+o.12

0 01+0.03

1 9+0.4

27.0 0'9

7.10

Expt. data

2.6+0.5
&2.3X10
&4.5X10 '

& 5.5(7.5) X10
&1.2X10 '

F(s) = —(0. 18+0.53C7)
fPl

I I I

I

CD

+.

C3

2.0 &

I.6 —'

0.8—

o 0.4—

I0
0.3 0.4

z = mes/mk

0.2 0.5 0.6

and the branching ratio for K+ —+m+e+e (with the cut)

would be 3.6X10 when C7=0, which is larger than
twice the experimental value. On the while, it becomes
0.4X 10 when C7 = —0.61. This clearly shows that the
AI= —,

' rule does not mean that C27's are always negligi-
ble. For %+~~+@+p, we find that the branching ra-
tio is predicted to be about (3.5 or 7.0) X 10, which is
well below the present experimental upper limit,
2. 3X10 . See Table II for detail. In the limit of SU(3)f
symmetry (equal vector meson masses), we get
C7= —0.32, or —0.88. However, the branching ratios
remain essentially the same.

The spectra for K+~~+e+e and K+ —+~+p+p
are shown in Fig. 6. As mentioned above, our spectrum
of K ~~+e+e for C7= —0.01 is very difFerent from
the phase-space spectrum and the spectrum for
C7= —0.61 in the low-invariant-mass region. The case
C7 = —0.01 is in sharp contrast to the ChPT calculation
which is fairly close to the phase-space spectrum. Above
this cut, all the spectra are more or less the same, and we
cannot distinguish two models from the spectrum mea-
surement with the cut m„140 MeV. Therefore, the
spectrum measurement of K ~~+e+e at low m„can

7.0

5.0—

~ 4.0—

3.0—

=P QJ,

K) Kp

(a)

P, QJ,

(b)

o
0 I

O. i 0.2 0.3 0.4
2 2z= m /mk

0.5 0.6

P, GJ, )
+o —+o

, K K, K

FICz. 6. Dilepton spectra in (a) K+ ~~+e e and (b)
K+~~+p+p . (Solid line for C7= —0.01, dashed line for
C7= —0.61, and dash-dotted line for the phase-space spec-
trum. )

FIG. 7. Feynman diagrams for K, ~~ 1+1 . (a), (b), and (c)
refer to F„FI„F,defined in Eqs. (43)—(45). (Solid circles are
strong vertices, and solid squares are weak vertices. )
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fix the twofold ambiguity in C7. If C7 = —0.01 is exclud-
ed by experimental data, then we may not ignore c7„any
more, and we need data on E+~m+p+p to fix c7~.
For the moment, we will content ourselves with c7„=0.

B. Ks~~ e+e, Ks~m p+p, and KL, ~m e+e

Now, we turn to K, ~~ I+I . The relevant Feynman
diagrams are shown in Fig. 7, and we get

C(&/2) +C( &/2) 2C(3/2)
Jk1,„(E,~n. y*)= GFf e(P~+p )„F(s),

2 2

F (s) =F,(s)+Fb(s)+F, (s),
2172 ~F, (s)=, , [—,

' fp(s) —
—,',f (s) ——,

' f~(s)],
m/ —m

F,(s)= [-,' f (s) ,' f (s) —,'—f&(s))—, —

(41)

(42)

(43)

(44)

F,(s)=— f~*(s)
C", i '[T4 —f (s)+ —,'f (s) ——2f~(s) ——25 (f„(s)—f~(s))]

—C2q '[2+f (s) —f (s) —2f~(s)] —2C27 '] —2C27 '[1—f (s)] C7-
m~

(45)

4.0 For small s, we have

l~
+

|

5.0

2.0

I.O

00

2.4

2.0—

O. I 0.2 0.5 0:4 0.5 0.6

2 = Alee/rIlk

F(s)=(0.01+0.15+1.06+0.58C7) I
= ( 1.22+ 0.58C7 )

teal

We note that Fig. 4(c) gives the most dominant contribu-
tion to IC&~m e +e . The branching ratios for
Kz~m e+e and Kz~m. p+p can be calculated as be-
fore, and the results for two values of C27

' are given in
Table II. The predicted branching ratios are stable in the
SU(3)f limit (equal vector-meson masses) as before. The
spectra are shown in Fig. 8.

Since K& decays promptly, it is very dificult to mea-
sure these decay modes. However, Ez~m e+e is still
very interesting and important, since it contributes to the
indirect CP-violating part of KL ~~ e+e through mix-
ing. Using the above value for E

&
~~ e+e and the re-

lation

B (EL ~me+e )cp~.~y, o'i, i|o„

=3.1X10 B(Es~~ e+e ),
l.2—

~0.8—
C)

0.4—

we get

L ~ e e )c~p~vialation

(27 Q+oo. 99) X1Q ii for C7= —0 Ql+o. o3

(14.0+ ) X 10 " for C7= —0.61+o o4 . (46)

0 I

O. I 0.2 0.5 0.4 0.5
2 2

Z = Al~~/mk

0.6

FIG. 8. Dilepton spectra in (a} Kz —+ vr e e and (b}
K&~m p+p . (Solid line for C7= —0.01 and dashed line for
C7 = —0.61.}

This is still well below the recent bounds from BNL [43]
and Fermilab [44], whose new upper limits to
B(KL~+ e+e ) are (5.5 and 7.5)X10 9, respectively.
However, our predictions are substantially larger than
ChPT predictions, 1.5X10 " or 1.5X10 ' . lf our ap-
proach is a reasonable scheme for K~~l+l, it would
be less probable to observe direct CP violation in
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KL —+m e+e . This is bad news, since we then have to
look for rarer decays such as K —+~vv to study direct CP
violation in the standard model [45].

C. Discussions

In ChPT, only the b,I=
—,', (8L, 1) piece of the weak La-

grangian was considered [42]. If we assume this with
C7=0, we get B(K+~m. e+e ),„,=3.6X10, which
is too large compared with the measured value,
( 1.5+0.3 ) X 10 . In our approach, we could get a
reasonably correct result only when we included the
b,I=—,

' and —', pieces arising from the (27L, 1+ ) weak La-
grangian. In ChPT, there was a twofold ambiguity as a
result of our lack of knowledge of a coefficient in the
O(p ) weak chiral Lagrangian. In our approach, we fix

C7 using the data on K+ ~m+e+e, and have a twofold
ambiguity for C7 which will be eventually resolved by
measuring the branching ratio of K+ +n+p—+p, . a,nd/or
the spectrum measurement at low m„ if possible. For
C7= —0.61, the short-distance contribution is not negli-
gible, and Q7„may be as important as Q7i . In this case,
both f &

and f2 in Eq. (33) can contribute to K ~lrl+/
For 1 =e, we can still neglect fz(s) and terms proportion-
al to m, , and we need to add IC7„fx, (z)I to IF(z)/Iz I

in Eq. (39). For l =p, Eq. (40) gets more complicated
since we cannot neglect fz(s) any more. Therefore, the
predictions for C7= —0.61 should be considered with
these possible corrections from Q7„.

In the calculations based on the effective Hamiltonian
expressed in terms of quark fields [9—12], we have two
crucial points: calculation of the Wilson coefficients and
evaluation of the matrix elements of the four-quark
operators between two states, IK) and Im.l+l ). The
electromagnetic penguin diagram gives only a quarter of
the decay rate for K+ —+~+e+e, and it is important to
calculate the contributions from other operators up to
O(e ). However, the @CD corrections to the Wilson
coefficients of those operators are very large, and even
change their signs. Therefore, we should be- cautious in
working in this framework as emphasized in Refs.
[10—12]. Also, it is usually assumed that the sd y elec-
tromagnetic penguin diagram is the largest contribution
to KL —+m e+e, for example. However, the analysis
done in Refs. [11] and [46] shows that the sdy elec-
tromagnetic penguin diagram alone predicts too small de-
cay rates for weak radiative decays of kaons and hype-
rons, and nonelectromagnetic penguin contributions are
also important. Therefore, it is dangerous to consider
only the sdy contribution in discussing K —+al I . The
importance of another operator, sdyg where g is the
gluon, in weak radiative decays of hyperons was con-
sidered in Ref. [47], but there are still uncertainties com-
ing from evaluation of the matrix element of such an
operator. To evaluate the matrix elements of the four-
quark operators, we need to know the relations between
quark fields and meson fields. It is usually done by com-
paring the left-handed current from the efFective La-
grangian and the left-handed current from the standard
model. However, the Wilson coefficients in the quark

picture are renormalization-scale dependence, and it is
not clear how to identify the scale in the quark picture
with some scale in the meson picture. This is important
to guarantee that the S-matrix elements be independent
of the renormalization scale. Thus, it is not that simple
to get quantitative results on nonleptonic kaon decays in
the quark picture.

A.. KL —+yy

To begin with, we define a form factor Fprr(q ) by

JN, (P~y(q, e)y(q', e'))=e„, @"eq' e'~Fpzr(q ), (47)

where we set q' =0 while q is arbitrary. Here P denotes
a CP-odd pseudoscalar meson such as m, q, q', etc. For
KL ~yy, the branching ratio is measured [37] to be
B(KL —+yy)=(5. 70+0.27) X 10 . From

2

r(P yy)= IF» (O)l',
64m.

we can determine IF+ ~r(0)I:K~yy

IF (0) I
=(3.43+0.08) X 10 ' MeV (48)

In our model, only the pseudoscalar pole diagrams con-
tribute to KL —+yy (see Fig. 9):

Fx ~y(0) =—a(K, lro) F r(0) F„rr(0)
mz 1 —r 1 —r

F„rr(0)
1 r~l

(49)

where /=a(K2l))/a(Kzlr ), g'=a(Kll)')/a(Kl~ ), and
1 p Pl p /Pl x . In the above equation, F„~l, ( 0 ) and

L

F„, (0) depend on the mixing angle between F18 and llo
and their decay constants. However, we can avoid refer-
ring to those quantities by directly using the measure-
ments [48] of l), l)'~yy. From

V. KL, ~yy AND KL, ~pl+i

In this section, we discuss KL yy, KL ye+e, and
KL ~yp+p . In these processes, the pseudoscalar poles
give the main contributions, though the form factor of
the of-mass-shell photon is governed by vector meson
form factors. In calculating these decay modes, there are
some uncertainties. First of all, we need to understand
the eff'ect of the SU(3)f singlet r)0, its decay constant, its
mixing with the SU(3)f-octet isoscalar mls, and the rela-
tions among a(K2lr ), a (K2lls) and a(Kzllo). For each
quantity, there is some uncertainty. Therefore, we start
with general analyses without assuming nonet symmetry.
Then, we will do the numerical analysis with some
specific assumptions. It will be found that the deviation
of the form factor of the virtual photon in KL ~y/+I
from the p form factor has some correlation with the
spectrum of the low-energy photon pair in KL ~~ yy.
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2 & , l, '9

FIG. 9. Feynman diagram for KL ~yy.

r(K,
dI (K yl+1 )

ds

3
27712a 1 l—

3'lT S

x 1—

1+
m~ s

1/2
4ml

IF „(s)I',
I (g~yy) =(0.51+0.02+0.04) keV

I (il'~yy)=(4. 7+0.5+0.5) keV,

we easily find that [49]

F„~~(0)=(2.49+0.10)X 10 MeV

F„rr(0)=(3.28+0.24) X 10 MeV

For a(K2n. ), there are two values in the literature: (i)
one is the naive value obtained from the chiral Lagrang-
ian, and (ii) the other is gotten from Ks~2vr with final
interactions taken into account [50]. For the moment, we

parametrize a (Kz~ ) by

with s =q .
The Feynman diagrams for KI ~yl+I are shown in

Fig. 10. First of all, Fig. 10(a) is very similar to Fig. 9 for
KI ~yy, and was considered in Ref. [54]. The off-shell

photon can be dominated by vector mesons, p, ai, and P.
Its contribution to FK rz(s) is

F (s) 4.32$F—„&r(s) 0.45(—'F„~r(s)
F( ) (s)—

1 4.32/0. 45(
(51)

where

or

a(Kzvr )

2m~

2GFf'
v'2

F...(s)=

F rr(s)=fp(s),
", X„f (s) —', Y~~f~(—s)—

10~ 2 y

a (K2~0) = —(3.55p ) X 10 MeV MeV

Case (i) corresponds to p=1.00, and the case (ii) to
p =0.82. In terms of the three parameters g, g', and p,
Eqs. (48) and (49) reduce to

", X„ f (s)—',Y„~f~(—s)—
F ~ (s)= 10~ 2 yn'p

We neglected the mass difference between p and co, and
set f (s) =f (s). Here, X„, X„. , Y„&, and Y„.& are
given by

p(1 —4. 32/ —0.45(') =+0.89 . (50)
sin8& =0.72,

1/2f cosOp f
f &3 f

l.

This is one relation among g, g', and p obtained from the
data on KL ~yy.

In passing, we shortly discuss K&~yy. Both ChPT
[51] and the pion rescattering model [52] predict
8 (Ks~yy)=2. OX 10, compared to the measured
value of (2.4+1.2) X 10 [53]. For this decay mode, the
main contribution comes from the pion loop, and there is
no kaon loop contribution in ChPT. Therefore, it occurs
through Ez~vr+m ~yy. In our model, vector meson
contribution modifies m+m —+yy. But it is higher order
and has been shown to be negligible in Ref. [5].

Kp vr', q, q'

B. K, yl+1-

Now, we turn to KL~yI+I . First, we normalize
I (KI ~yl+l ) to I (KL~yy) for convenience. If we
renormalize Fi, (q ) to Fpz (0) by defining

F (q)
F

Kp

so that Fp (0)= 1, we can easily derive that FIG. 10. Feynman diagrams for It L ~yl+I
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'9P f cos8p =0.57,

sin8p =0.60, (52)

cos0& = —1.07,

1/2
sin 8p f

fo
2 cos8p f 1/2

v'3 fo 3

2 siI10p f~
1/2

v'3 fo 3

012 ' —086
F~'rr(s) =fp(s)+ [fp(s) f—~(s)]

(53)

We note that there is some deviation from the pure p
form factor in general, unless 0.12$—0.86/=0.

The second diagram, Fig. 10(b), was considered in Ref.
[55]. The weak vertex with two vector mesons is coming
from the left-handed current.

where we used the following values [49] for fs, fo, and
6Ip.

=1.23, =1.04, Op = —20.8' .fo

Then, we find that

j~„= 2f 2 —(g V„eQA—„) .

The other vertex. , K*K2y, comes from the anomalous La-
grangian involving Vny in Eq. (16). Evaluation of Fig.
10(b) leads to

(1 r'„)f—~,(s)
F(b)

2p(1 —4.32(—0.45$')

X[C(s' '
—,'[2 —f (s) —f~(s) —5 (f (s) —f~(s))] C27 '[—1 f~(s)]——C27 '[1—f (s)]j . (54)

If Fig. 10(a) and 10(b) were all the relevant diagrams to
EL —+yl+I, we would get into trouble unless we intro-
duced some arbitrary constant multiplying the vector-
meson contribution, FI()~z(s), to reduce its relativeK2rr
strength compared to F'z'z (s). This was actually done2rr
in Ref. [55]. In our approach, we cannot introduce such
an arbitrary constant. The relative strengths and signs
among chiral amplitudes and vector Ineson amplitudes
are all fixed from the beginning, since they are all gen-
erated from the same Lagrangian.

In our model, this trouble actually does not occur,
since there is another diagram, Fig. 10(c), which contains
a weak Vmy vertex. The octet piece of this new diagram
largely cancels that of Fig. 10(b), as shown below. I.et us
note that the anomalous left-handed current, Eq. (24),
can produce a weak Vmy vertex when it is combined with
a normal current, jI„= f D„n. —These new weak Vmy
vertices take part in Xl ~y l+ I and KL ~m yy, and
can be read ofF from the following Lagrangians:

C(1/2) G
(V1ry)= — g e" ~B A(8, 1) ctl7Ir 'p v

X &2m (K~)s+K*p) 2K2 (
—

p +—egg) p
—v2$ p+ () Ap

—25 K (3p +co) ~+&2/ & BA&—
3g

C(1/2)G
&(27 () = — g~~r &" Bp A ~

—&2m' (K~s+K~)s)+2K2 4p~p
—3V2 P~p

— 8~A p2 g

( (3/2)G

&(27 ()
= — g e" B„A„2&2m (K'p+K*p)+2K p p+3co p BAB-

'Y p g

Here, V &—=8 V&, and

(55)

(57)

30Cieg
geom@

=

F" (s)=—

3eg
8m. f

From this, we can evaluate Fig. 10(c) and the result is

1 —
~
2

2p (1—4.32/ —0.45$')

X [C(s'~ '
—,'[2—f (s) —f~(s) —5 (6—5f (s) —f~(s))]+C~7~ '[1—2f (s)+f~(s)]+C(27 '[1—f (s)]I .

(58)

(59)
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By comparing the octet piece of FK' and FK', we find
2yy 2yy'

that s/m terms cancel and the leading term is of order
(s/m ) for small s if 5 =0. The actual form factor
Fx (s) is the sum of three diagrams, Figs. 10(a), 10(b),K2yy
and 10(c):

(60)

Only the first form factor contributes to KL —+yy when
s =q =0, and reduces to 1, which is the case of the pre-
vious subsection. The other two vanish at s =q =0:
F'lt '~r(0) =Fx'r~(0) =0, and do not contribute toK2yy K2yy

C. Numerical analysis

For a (Kzrjo), we make the following ansatz:
1/2

~ (+290) 2

a(K2~ )

C( I/2)
8

8 27 27

Up to now, we have left g, g' and p unspecified. To
analyze the data on KL yy and KL yI+I, we start
by assuming SU(3)f symmetry, which enables us to write
down

g (It ) C( i/2) 9C(1/2)

a (lt ~0) i/3 C(1/2) +C( i/2) 2C(3/2) f

in this section [see Fig. 14(b)]:

—0.06~5 ~0.20 for 5„=0.54 . (63)

10

cr) 6—

AJ
hC

PU

To simplify the following discussions, we will consider
only this choice of parameters in the rest of this section.
In Fig. 11(a), we give the plot of ~Fz &&(s) ~

for

5 =0.00+o'o& and 5„=0.54. The other case, 5„=0.13
and 5 = —1.5+o4 is shown in Fig. 11(b). (The 5 =0
case is also shown for comparison. 5 =0 is clearly ex-
eluded for 5„=0.13.) However, this case will be exclud-
ed in the next section on the grounds that it leads to too
large a branching ratio, and the two-photon spectrum at
low myy in the process KL ~m yy is enhanced too much
in contrast to the recent measurement.

For the above choice of 5„and 5~, Eq. (63), we predict

X (2—35„) .

Here, we introduced a new parameter, 5„. If there were
no QCD axial anomaly and rlo were the ninth Nambu-
Goldstone boson, we would have 5„=5 . However, 5„ is
different from 5 in general, and nonet symmetry in the
pseudoscalar-nonet sector would be realized when
5„=5&. Assuming the above equations with 5„
unspecified, we can express g and g' in terms of 5„only.
Plugging these expressions with 0& = —20. 8' into Eq. (50)
obtained from the data on KL ~yy, we get

'0

10

(bj

I

0.2
I I

0.4 0.6
Z = S/mk

I

0.8 1.0

1 —4.32(—0.45$'=1.79—5.295 =+ 0.89

For p =0.82, we have two solutions for 5„:
5„=0.13 or 0.54 . (61)

—0.3 & 5 +0.4 for 5„=0.54,
—1.9 5 —1.2 for 5 =0.13 . (62)

For each 5„, and for various values of 5, we can make
plots for ~Fz (s)~ with varying 5, and then compareK2yy
with the measured one in KL ~ye+e . Thus, we obtain

0
0

I

0.2
I

0.4 0.6
Z =S/P)k

I

0.8 1.0

These constraints on 5 are not that tight, although there
is little difference in the branching ratios of KL ~ye e
and EL~yp+p . In the next section on KL~vr yy, we
will find that the recent measurement of the two-photon
spectrum in the decay mode XL —+m yy also provides us
with a constraint on 5 that is stronger than what we got

FIG. 11. Plots of ~Fz rr(s)~ . (a) For 5„=0.54: thick solidK2

line for 5~ =0.0, dotted line for 5~ = —0.06, dash-dotted line for
5~=0.20, and thin solid line for 5 =0.64. (b) For 5„=0.13:
Solid line for 5~ = —1.5, dotted line for 5~ = —1.2, dash-dotted
line for 5~ = —1.9, and thin solid line for 5~ =0. In (a) and (b),
the dashed line is for the pure p form factor, and the short-
dashed line is for pure QED. The data are taken from Ref. [13].
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If one can measure B (EL ~yp+p ) accurately
enough, we get a tighter constraint for 5z. Or, the pre-
cise measurement of ~Fx rr(s)~ at large s around mx,E'~ rr L
say, will do the same job. The measurements of
EL ~ye+e and XL ~yp+p are still uncertain, and
are to be used to distinguish various models. Under-
standing these decays more accurately is very important,
since they can be backgrounds for rarer decays such as
EI —+m e+e and EL —+m. p+p

0.8— VI. KI ~m yy AND ITS CONTRIBUTION
TG KI —+m e+e

0
0 0.2 0.4 0.6 0.8

Z = s jfIlk

l.o l.2

FIG. 12. Dimuon spectrum in EL~yp, +p for 5„=0.54:
Solid line for 6~=0.0, dotted line for 6~= —0.06, dash-dotted
line for 5~ =0.20, and dashed line for the phase-space spectrum.

that

I (E~ yy)

r(E, yy)

dl (EI ~ye e )

ds

=(1 67 )X 10 (1.58X10 )

dI (EI -+yp+p )

ds

=(7~ 45 o'i5)X 10 (4. 10X 10 )

The rates for the phase-space spectra, Fx (s) =1, are2rr
shown in the parentheses. In particular, we have

I (EI ~ye+e )
=22.4 (38.5) .

I «L ~yV+C

For EI —+ye+e, there is very little di6'erence, and both
values are in good agreement with the recent measure-
ments B(EL —+ye+e )=(9.2+0.5+0.5)X10 [13]and
(9. 1+0.4+o4)X10 [14]. The spectrum of the Dalitz
pair from Ez ~ye e is dominated by the 1/s factor.
For the process KL —+yp+p, our model predicts that
the branching ratio of KL ~yp+p is enhanced over the
phase-space value by almost a factor of 2. This is in con-
trast to the ChPT prediction, where the branching ratio
is essentially the same as the phase-space value [1]. The
present measurement of B(EI ~yp+p ) =(2.8+2. 8)
X10 cannot distinguish our prediction from others.
The dimuon spectrum in EL ~yp p is shown in Fig.
12 with the phase-space spectrum.

A. Present status of KL, ~m yy

KL ~m yy is an interesting process not only for its
own sake, but also for its contribution as a dominant in-
termediate state to the CP-conserving two-photon-
exchange process [1,2] in EI ~w e+e . Since
EL~a e+e has the potential to display the efFect of
direct CP violation predicted by the standard model with
three families [11,12], it is very important to understand
the possible background through KL m yy~m e+e

For EJ ~m yy, the main contributions come from the
chiral loop [1] or two-pion intermediate state [3], and
possibly from vector-meson exchange [4,5]. There is con-
sensus about the first contribution. Both ChPT and the
rescattering model predict B (EL ~m yy) to be around
7 X 10, and the two-photon spectrum is peaked around
mrr ——300 MeV, though the peak in the pion rescattering
model is located at slightly higher err than the peak in
ChPT. Since two photons produced through this process
have total angular momenta J=0 and m, is very small,
they are not efFective in making the e+e pair as a result
of helicity suppression. In fact, the branching ratio of
EL —+m e+e through the exchange of two photons in
J =0 is estimated to be around 10 ' [1],which is small
compared to the branching ratio of Kz ~m e+e with
direct CP violation [12] (around 10 "). If the two-
photon contribution were indeed so small, we could
safely ignore the CP-conserving contribution to
EI ~m e+e . However, the exchange of vector mesons
produces both J=O and J=2 photons, and the J=2
photons can produce the e+e pair without any suppres-
sion. The two-photon spectrum with both chiral loop
and the vector-meson amplitudes included exhibits
enhancement below the pion pair threshold. Unfor-
tunately, there has been no consensus about the impor-
tance of the vector-meson contributions despite various
attempts.

Recent data [6] reported observation of some signals,
but their result is puzzling, rather than resolving the
theoretical discrepancies. The spectrum seems to be con-
sistent with the assumption that the vector mesons are
not important. Specifically,

1 (0~m~~ ~ 100 MeV)+I (170 MeV~m r ~240 MeV)R= &0.12 .I (O~mrz ~100 MeV)+I"(170 MeV~m )
(64)
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The branching ratio for m zz 280 MeV is large
[(2.1+0.6) X 10 ], which is too large compared with the
prediction, 7 X 10

Therefore, it should be worthwhile to study the subject
more carefully. In the previous study of the vector-
meson contribution to KL ~m. yy, only one diagram
[Fig. 13(a)] was considered [4,5] among many possible di-
agrams [Figs. 13(a)—13(e)]. In particular, direct emis-
sions of vector meson(s) were ignored without any
justification. There has been some suggestion (weak de-
formation model) by Ecker et al. [56] regarding this pos-
sibility, which predicts a rather small contribution of the
vector mesons to EI ~m yy. However, their assumption
is highly nontrivial, and it lies beyond the scope of chiral
symmetry. One has to await, for example, precise mea-
surement of E+~~+yy to test their model. In our
model, we can study the direct emissions of the vector
meson(s) in a systematic way with chiral symmetry
respected at every stage. In the rest of this section, we
give a detailed analysis of this problem in our framework.

Before we consider the individual diagrams contribut-
ing to EL ~+ yy, we note that the general form of the
amplitude for Kl ~sr y y is given by [1,5]

g loop
ch

2I
1 —— I'"

s

2I
1—

B100P 0ch

Kp

where Gso.m~ /+=5. 24X10

2m +

s

1s
2m +

(67)

JR(EL (P)~m(p)+ y(. k, e)y( k', e') ) K K& Tr' + {k,e —k, e'}

= A (s, r, u )(k e'k ' e kk'e ~')—

P-kP. k'
+8(s, t,u), e e' . (65)

)'{k, e} v {k', &' }

Then the decay rate is obtained by integrating the follow-
ing expression over s:

{k',e'}

(c)

7r' + (k, e k', e'}

+
2

(m pm' ru)
S2 77

K~ P~

T(k, &) )'(k', &' j

+ {k,&—k', &'}

where the limits of the integration are [s =(k +k')~]

to r t), 0 s (rn~ m p)

t, 0
=

—,
'

[ ( rn~ +m 0
—s )

K+0 K+0

)'{k, ~) v(k', ~')

+ (k, &-k', &')

+Q(mz +m 0
—s) —4m, mz ] .

Here, A =2„.},+Ay and 8 =B,h+By, where A, h and
3~ denote the chiral amplitude and vector-meson ampli-
tude, and similarly for B,h and 8&. Note that dI /ds
gives the spectrum of two photons.

We quote the result for A, h (s, t, u ) of 0 (p ) due to the
chiral loop from Ref. [1] without repeating the explicit
calculation here:

Kp

)'(k, & j

7r' + {k, e—k, e')

7(k', ~')

FIG. 13. Feynman diagrams for KL ~~ yy of O(p ): (a) —(e)
with vector mesons, (f) without vector mesons (Sec. VI B).
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FIG. 14. R vs 5~: without vector mesons (dash-dotted line,
Sec. VIB); with vector mesons with 5„=0.54 (solid line). The
horizontal line is R,„p, =0.12.
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FIG. 15. 8(KI ~m"yy) vs 5~ with (dash-dotted line) and
without (solid line) the cut m» ~280 MeV: (a) without vector
mesons (Sec. VI 8), (b) with vector mesons with 5„=0.54. Hor-
izontal lines are the data with the cut at 90% C.L.

FIG. 16. The spectrum of two photons in KL~~ yy. (a)
Without vector mesons (Sec. VIB): dotted line for 5~=0.08,
solid line for 5~ =0.33, and dash-dotted line for 5~ =0,64. (b)
With vector mesons with 5„=0.54: dotted line for 5~ = —0.06,
solid line for 5~=0.0, and dash-dotted line for 5~=0.20. (c)
With vector mesons with 5„=0.13: dotted line for 5~ = —1.9,
solid line for 5~= —1.5, and dash-dotted line for 5~= —1.2.
Dashed line for ChPT to 0 (p ) (chiral loop) in (a), (b), and (c).
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and

1 ——[arcsin(&z /2) ] (z ~ 4),4
Z

F(z)= .
11+—ln
z

1+&1—4/z
1 —&1—4/z

t =(P —k) =m~ 2P k—,

s =(P —p) =(k+k') =2k k',

2

(z ~4),

We simply note that this amplitude contains only a
EI=

—,
' contribution.

B. %'hat happens without vector mesons?

If we did not consider vector mesons at all, we would
reach the same trouble as we encountered in the study of
8'—+my and EL ~yl+I . The troublemaker is the same
as before: the anomalous current from the Wess-Zumino
anomaly has nonvanishing my component:

j (my)= [dm. , g dA ] .
30Cie

u =(P —k') =m —2P k' .K~
This current, by itself, generates the effective weak La-
grangian (we consider the octet piece only for simplicity)

C( &/2)G

[ F. F'~[a.~+ a~-+a.~- a~+ —4(1 —35 )a ~'a~, ]

+2F.,F& [a ~ a.K++-a ~+ a.K ——4(1 —35, )a"~'a.K, ]] . (68)

C(1/2) G

2 16mf„.
(69)

This is the only 0 (p ) contribution in the absence of vec-
tor mesons, and corresponds to a&=0.7(l —35 ) in the
notation of Ecker et al. [56]. It should be emphasized
that existence of this amplitude and its dependence on 5
have nothing to do with U(3)f instead of SU(3)f or vector
mesons. They result from the left-handed current
jL (m.y) and its trace being nonzero. We also note that
only I( L

—+m yy is affected by 5 . For arbitrary values of
5, we note that ai can be either positive or negative. In
other words, we can have either destructive or construc-
tive interference between the chiral loop amplitude [Eq.
(68)] of O(p ) and the O(p ) chiral amplitude [Eq. (70)]
originating from I wz, even in the absence of vector
mesons.

From the measurement of the two-photon spectrum
R,„,we can get information on 5 . In Fig. 14, we plot R
vs 5~ (dash-dotted line), and R,„~, (0.12 at 90% C.L.
(dashed line). We find the allowed range for 5 is

O. OS~5, ~0.64.

This produces two photons both in J=0 and J =2 states,
and its contributions to A,„and B,h amplitudes are [see
Fig. 13(A]

C( &/2)6

2 16m. f

l5.0

l0.0

7.5

5.0

C)
2.5

p l

—04

l5.0

l2.5—
OJ

lo.p

7.5

5.0

2.5

-0.2 0.2

(0j

04

In Fig. 15(a), we show the branching ratio of KL ~n. yy
with and without the cut (m ~

~ 280 MeV), and find that

4. 5 X 10 ~ B (KL ~m yy ),„,~ 8.8 X 10
p l

-0.4 -0.2 0.2 04

and

5.6 X 10 ~ B (KL —+m yy ) ~ 12.7 X 10

Two-photon spectra for 5 =0.08 (dotted), 0.33 (solid),

FIG. 17. B(KI ~vr e+e )~;
' vs 5~: (a) without vector

mesons {Sec.VI 8), {b) with vector mesons with 5„=0.54. Al-
lowed ranges of 5~ from R ~0.12 are shown in the horizontal
bars.
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and 0.64 (dash-dotted) are shown in Fig. 16(a) along with
0 (p ) CPT prediction (dashed). For 5~ in this range, the
imaginary part of the CP-conserving two-photon contri-
bution to KL ~m e+e is constrained to be

B (Kz +v—r e +e ) i
z"' ( 1.8 X 10

using the result of Ref. [56]. It is very small for a certain
range of 5 . [See Fig. 17(a).] Lacking the precise mea-
surement of B(KL ~ir yy), we cannot get better a con-
straint on 5 . This upper bound on B (KL ~m e+e ) ~zz'

is marginal and it can interfere with the direct CP-
violating amplitude if the branching ratio of the latter is
of order 10 ' . The 6 obtained in this subsection is less
favored than the 6 obtained in Sec. VC and the next
subsection, since (i) we did not include the vector meson
contributions to KL ~m yy here and (ii) the form factor
of e+e is slightly shifted upwards from the best fit in
Sec. V C. [See Fig. 11(a) for 5F =0.64; the thin solid line
for example. ] But, reason (ii) is less stringent than (i).

C. Vector-meson contributions to KL ~m yy

In this subsection, we will concentrate on the A v and
Bv amplitudes which are 0(p ). To produce two pho-
tons both in J =0 and in J =2, we need two vertices with
the Levi-Civita tensor, i.e., two vertices from the Wess-
Zumino anomaly. The Wess-Zumino anomaly contains
VPy vertices, which generate the Feynman diagrams in
Fig. 13. Qnly Fig. 13(a) was considered in the previous
analysis [4,5]. Figure 13(b) was neglected because it is
suppressed by factor m /mz compared with Fig. 13(a).

This is not true if 6„=0.54, for which the q pole dom-
inates in EI ~yy. Therefore, we include this diagram in
this paper. All the other diagrams are generated by the
left-handed currents containing vector-meson fields. In
particular, Figs. 13(d) and 13(e) have weak Vvry vertices,

I

v=p, co

Bv~ = g Gvs [fv(t)+ fv(u )] .
V=p, co

The coupling constants Gv's are of the form

(70)

a (%2m )

2' mK
2 2

2

1 1 1+—
9 1 y2 3 1 7

2 Vp

I

2 nP

a(K~m )

2&i ~ PlK2 2
2

I

+— X„
1 l'

7l'

where X„and X„are defined in Eq. (53). First of all,
from Eqs. (3) and (16) we can show that

29' m v
Q)7f r 32 3f2 f2

Next, using the values of 6„obtained in Sec. V, we find
that Gvmtt (:—G mz +G mz ) has two possible

values:

whose effects were already seen in the previous section on
KL ~ye+I . In passing, we remark that there is no sign
ambiguity at all between the 0 (p ) chiral loop amplitude
and the 0 (p ) vector meson amplitudes, since all the am-
plitudes are generated from the same Lagrangian.

First, we consider Fig. 13(a). From the result of Ref.
[5], we have

A v') = g Gv[f v(t)(t +mx )+fv(u)(u +ms )],

6 IV KL &2 16rr f 2 9 1 r3 1 r„"——1 —r„
3.3 X 10 for 6„=0. 13,
0.2X10 for 6„=0.54 .

The first one is essentially the same as one taken in the
previous analysis [4,5] assuming naive nonet symmetry
for a(Keir ), a(K2ils), and a(Kzilo). However, we will

see that the second one is preferred by the form factor in

KL ~yl+I and the two-photon spectrum in

KL ~m. yy, if we include the vector meson contributions
in a systematic way.

Figure 13(b) can be evaluated in the same way as Fig.
13(a), and the result is

A~"'=G, [(t +mz)f, (t)+(u +m~)fz+(u)],
(72)

B' '=G „[f,(t)+f,(u)],

where

GFmz ~ 2pr4 2

&2 16~ f 1 —r
(73)

This is negligible compared to Eq. (71) with 5„=0.13,
but it is not true for Eq. (71) with 5„=0.54.

In our model, we have three more diagrams which
were not considered in the previous studies [see Figs.
13(c)—13(e)]. In these diagrams, the vector-meson ex-
change is essential. Figure 13(c) contains one normal
weak vertex and two anomalous VPy vertices. This dia-
gram gives
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GFg (~)— F + [C(1/2) ( 1 3g )+4C(1/2) +C(3/2) ]

X[f,(t)f (t)(mtt+t)+f, (u)f (u)(m)r+ u)],
(74)

[C(1/2)( 1 3g )+4C(1/2) +C(3/2) ]S p 27 27

We can observe that there are large cancellations among
diagrams with weak VV vertices and diagrams with weak
Vmy vertices both in Ki ~yl+l and K~~m yy as
long as 5 =0. We expect this to be a general
phenomenon.

First, let us consider R in case all the vector meson
contributions are taken into account. From Fig. 14 (solid
line), we find that

Xs[f,(t)f (t)+f,(u)f (u)] . —0.06&5 ~0.20 for 5 =0.54 . (77)

Figures 13(d) and 13(e) are generated by anomalous weak
Vmy vertices. The relevant effective weak Lagrangians
were given in Eqs. (56)—(58) when we discussed
KL ~yl+1 . The p and co exchange diagrams [Fig.
13(d)] yield

For this range of 5, the branching ratio of
8(KL ~7r yy) with and without the cut is [see Fig.
15(b)]

4.6X10 ~8(KL ~7r yy, mr~ ~280 MeV)

GFg(d) [ C(1/2)(1+3/ )
&Z 16~'f 2 p

+ 8.7X10

5. 8 X 10 ~ 8 (KL ~7r y y ) ~ 12.6 X 10

(78)

(79)

8 (d)—
V

2C(1/2) +5C(3/2)
)27 27

X —,'[f (t)(mg+t)+f (u)(mz+u)],
(75)

[C(1/2)( 1+3fi ) 2C(1/2) + 5C(3/2))
&2 167r~f p 27 27

X [f~~(t)+ fx~(u)—] .K

X —[f (t)+f (u)] .
2

The K' exchange generates Fig. 13(e) with

g (~)— [C(1/2) +C(1/2) 2( (3/2)
]

GF
v ~2 16 3f2 s 27 27

X ,'[f +(t)(mz—+t)+f,(u)(mz+u)],
(76)

8 (e) — P ~ t C(1/2) +C(1/2) 2C(3/2) ]v =
&2 16n~f 2

In particular, 8(KI ~7r yy)=5. 7X10 for 5 =0.
This is slightly smaller than the predictions by CPT and
the pion rescattering model, (6.3 and 7.5) X 10, respec-
tively In .Table III, we give R8, (Kz ~7r yy), „„
8(KL ~7r yy) for diFerent values of 5 in the case
6„=0.54. Considering the intrinsic uncertainties in the
calculations based on the effective Lagrangian or current
algebra and PCAC, the isospin breaking effect which is
neglected, and the experimental error, it would be
difficult to distinguish various predictions. We note tQat
this range of 5p is compatible with that obtained in Sec.
V C and is actually more stringent.

One of the main messages of this paper is that there is
a small range of 5p or 5„=0.54, for which (i) the predic-
tion of the form factor of e+e in EL ~ye+e agrees
with the recent measurement, and (ii) the two-photon
spectrum at low mz& is not as enhanced as reported in
the previous analyses but consistent with the measure-
ment if we correctly include the vector-meson contribu-

TABLE III. R, B(EL~m yy), „„B(I(L ~~ yy), a&d B(EL~w e+e )2y' for differe&t values of 6~
for 5„=0.54.

—0.06
—0.04
—0.02

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.&4

0.16
0.18
0.20

R
(%)

11.4
7.7
4.7
2.5
1.2
0.7
1.0
1.8
3.1

4.7
6.5
8.4

10.3
12.3

B (EL w yy), „,
(10- )

4.6
4.8
5.0
5.2
5.5
5.7
6.0
6.3
6.7
7.0
7.4
7.8
8.3
8.7

B(Kg —+m yy)
(10 ')

5.8
5.7
5.6
5.7
5.9
6.2
6.6
7.1

7.8
8.5
9.3

10.3
11.4
12.6

B (Q& ~m e+e )

( 10
—I2)

0.30
0.17
0.08
0.02

2X10-'
0.01
0.06
0.15
0.26
0.41
0.61
0.83
1.09
1.38
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5„=0.54, —0.06~5 ~0.20 . (80)

Considering 5 —5„measures nonet symmetry breaking
in our approach, Eq. (80) corresponds to the case with
nonet symmetry not badly broken. [See also Eq. (62).]
For 5„=0.54, we have /=0. 54 and g'= —0.57. If nonet
symmetry were not broken at all, we would have (=0.02
and g'= —1.94. Other choices are not compatible either
with the measurement of the form factor of K& ~ye+e
or with the observed two-photon spectrum in KL ~m. yy.

D. Implications for K& ~~ e+e

To study the two-photon contribution to
K&~m e+e, we erst consider the limit of in6nitely
heavy vector mesons. In this limit, we have fv=l,
equivalent to setting t =u =0 in the arguments of fv.
Then, the invariant amplitude 3 v becomes

A~(s, o, o) = — C8' 'av(3m~+m —s), (81)
2 16' f

and a similar expression for Bv(s, o,o). Our av is related

toad in Ref. [55] by

av=0. 7av ~

We list each contribution to av from Figs. 13(a)—13(e) in
Table IV. There is a cancellation of the octet amplitudes
among Figs. 13(c)—13(e) in this limit. In total, we have

av=(0. 10—4.505 ) for 5„=0.54,

so that

—0.80 ~ a v ~ +0.37,
or

0.56~av ~0.26 . (82)

This value of av is consistent with zero.

tions. If we choose 5 =0.13 and —1.9~6 & —1.2 ob-
tained in Sec. VC, we get too large values of R and
B(Kz +n—yy) that are not consistent with the experi-
mental data. We show two-photon spectra for certain
values of 5~ in Fig. 16(b) for 5„=0.54 and in Fig. 16(c)
for 5„=0.13. Figure 16(c) is clearly excluded by too
large Rgypf arid branching ratio:

2.6xlO-'~B(SC, "yy) ~6.4xlO-'

for —1.9~5 ~ —1.2.
We note that our predictions for B(ICz -n. yy) are less
than the data by more than one standard deviation. As
far as our model is concerned, however, there is no way
to make the branching ratio consistent with the data.
Any attempts lead to inconsistency with other data. We
would have to await more refined measurement of
I(,z~m. yy to say more about comparison of the theory
and the experimental data. If we include vector mesons
in the hidden-symmetry scheme, the only solution which
leads to a consistent description of the available data on
rare kaon decays (except Xz -~+a y) is

TABLE IV. Contributions to C8' 'a~ of each diagram in
Fig, 13. Nv is defined in Eq. (82).

Fig. 13(i)

(a)

( (1/2)y(i)
8 V

9 101 2
9 1 ~2 3 1 ~2 „P

1 ~2 9P

(b)

(c)

(d)

(e)

Total

2pv

1 —r 2

C(1/2) (1 g )+4C(1/2) + C'(3/2)

1[c(l/2)(1+8 ) 2C(l/2)+5C(3/2) ]

1
( C(1/2) + g(1/2) 2g(3/2) )8 27 27

C(,'")(0. 10—4.505, )

Our result on KL ~~"yy implies that the CP-
conserving two-photon contribution to Kz ~m e +e is
less than 1.4X 10 ' in the branching ratio [Fig. 17(b)],
using the result of Ecker et al. [56]. The direct CP
violating contribution to EL ~n. e+e is estimated to be
around 10 " [12]. In viewing the result of Sec. IV on
X&~m. e+e, we expect that KL —+m. e+e occurs
mainly through the indirect CP-violating one-photon-
exchange process with B(Xz-me+e )=(1.4 or
2.7) X 10 '. The present upper limit is still far above
our model (about a factor of 20 or so). However, there is
a chance that this level of sensitivity can be reached by
expenrnents in the near future. Since ChPT predicts a
smaller branching ratio for this decay mode, observation
of the signal at the level of 10 ' should be able to distin-
guish between these two predictions, and will provide us
with an important piece of information regarding the
effects of long-distance physics in nonleptonic kaon de-
cays.

VII. SUMMARY AND OUTLOOK

A. Summary of the results

In the present paper, we studied a certain class of kaon
decays where the effects of vector mesons are important.
From our Lagrangian, Eq. (1), the left-handed current
could be constructed in a unique way. Vector-meson
contributions to the left-handed current generated some
weak vertices containing vector mesons, such as weak
V~~, VV, V~y, etc. In particular, we included the
anomalous left-handed current constructed from the
Wess-Zumino anomaly I"~z and I v' . These new ver-
tices were important to understand Kz ~y l + l and
K~ ~a yy in a systematic way. These new vertices gen-
erate new Feynman diagrams and give the predictions for
Kz~ye+e and Kz ~m yy which are consistent with
the data for a certain choice of parameters.

In E + —+m+ e +e, we could determine
C7 = —0.01+o o~ or —0.61+o ~4 from the best 6t to
B(K+-m+e+e ). This parameter measures the short-
distance contribution of the electromagnetic penguin dia-
gram to the process E' —+m.l+l . The twofold ambiguity
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can be lifted by the spectrum measurement of
K+ —+m. +e+e at low m„. For either value of C7, we
are led to rather large branching ratios for the indirect
CP-violating KL ~m e+e at the level of a few parts in
10 ' . We found that the form factor ~Fz rz(s)~ mea-

K2VV

sured in KL ~ye e has some correlation with the
two-photon spectrum for KL~~ yy. This correlation
comes through g and g' or 5„defined in Sec. V. Intro-
ducing a parameter 5„characterizing nonet-symmetry
breaking in a(Ezrlo)la(IC'zm. ), we find that 5„=0.54
gives correct spectra both for the form factor in
KL ~ye+e and KL ~~ yy for —0.06 5 0.20.

Summarizing, the choice of 5„=0.54 and
—0.06 ~ 6 ~ 0.20 gives satisfactory descriptions for
KI. ~yy, Ki. ~ye+e, and KL ~m. yy. It is important
to include the anomalous left-handed current to describe
KL ~yl+l and KL ~m yy. We predict
8(ICL ~yp+p ) =4.3 X 10, and this is one of the tests
that can distinguish our model from others. We also pre-
dict that the branching ratio of KL~n e+e is about
(1.4 or 2.7) X 10 ', and it is mainly indirectly CP violat-
ing. This is larger than the lowest order ChPT predic-
tion, and it should be a crucial test of our model.

B. Outlook

improvement may affect the analysis of K&~m. e+e a
lot, since we already noticed it in the electromagnetic
charge radius of K . Also, the resonance nature of vector
mesons, which was neglected in this paper, should be im-
plemented if possible.

To improve our understanding of kaon decays, we need
the effective Lagrangian which is successful in the phe-
nomenology of strong and electromagnetic interactions of
pseudoscalar mesons and vector mesons (and axial-vector
mesons, if possible). In particular, SU(3)f -symmetry-
breaking effects should be encoded in the effective La-
grangian in such a way that the theoretical predictions
agree with the low-energy data, e.g., electromagnetic
charge radii of mesons, ~m scattering length, yy~mm. ,
and many more. We also need more precise measure-
ments of these quantities to establish the validity of such
an effective Lagrangian. Furthermore, we need to know
how the Wilson coeKcients and the hadronic matrix ele-
ments depend on the scale below —1 GeV. Then we can
probe the structure of the weak Hamiltonian, and after
all, we may be able to find the relations between the
quark picture and the meson picture which can explain
the nonleptonic kaon decays including the AI= —,

' rule
[36].

We can try to improve our calculations within our
model. In Sec. IIB, we considered symmetry-breaking
effects, and calculated electromagnetic charge radii of

+, K+,. and IC' . (See Table I.) And then we chose
c„=c&=0 for simplicity. We note that c~ =0.49 and
c~=0 give the right relations for vector-meson masses
and electromagnetic charge radii of m. +, K+, and K .
Therefore, we may choose this set of parameters. Then,
the left-handed current contains a small piece with a m~
component, and the weak Lagrangian has new ~em and
Vmm vertices, and complete vector-meson dominance is
broken even for a =2. Another improvement can be
made for the choice of a. We chose a =2 in this paper.
However, a =2. 16 gives a better fit to I =ag f and
I (p~mm. ). For this value of a, complete vector-meson
dominance is slightly broken, and we get a better number
for the electromagnetic charge radius of m+. This kind of
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