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Erratum: Self-energy of a thin charged shell in general relativity
[Phys. Rev. D 42, 4254 (1990)]

Markus Heusler, Claus Kiefer, and Norbert Straumann

In reference to our recent paper on the self-energy of a thin charged shell in general relativity, we want to note that,
subsequent to publication, related papers came to our attention which we had overlooked and where some of our results
had already been derived. Our Eq. (26) for the total energy of the shell was given by Kuchar" [1] and, in a more general
form, by Chase [2]. Kuchar" also found the lower bound (29) for the radius of the shell. We are grateful to Charles Cur-
ry for bringing these papers to our attention.

Furthermore, we would like to mention the following point. In our paper we restricted ourselves to the case where
the shell is outside the outer Nordstrom horizon, i.e., where the charge satisfies ~Q~ +G M. In the meantime, we re-
ceived a letter from Don Page in which he demonstrates how one can derive without this restriction the following gen-
eralized form of our energy bound (31) directly from the energy equation (26):
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We are grateful to Don Page for pointing this out to us.

[1]K. Kuchai, Czech, J. Phys. B 18, 435 (1968). [2] J. E. Chase, Nuovo Cimento 867, 136 (197O).
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Erratum: Trace anomaly in A.P theory near a fixed point
[Phys. Rev. D 40, 444 (1989)]

Satish D. Joglekar and Achla Mishra

(i) Equation (3.2) should read

2y (I,')
K(A)=exp f, , dA,

' K(A,"+5)+f
A, *+5 x*+5

(ii) Equation (3.4) should read

2y (A, ')Z I„(A,') g 2y (k")
P(A, ') x'+s P(A.")

K (A, ) =K (X*+5)
5

a

+Z I„(A,*)
a
—ZI~(A, *) .

A similar correction is needed in Eq. (3.11).
(iii) Equation (3.5) should read

K(A, )+ZI4(A, *)=(A,—A, *) [K(A,*i 5)5 +ZI„(A,*)5 ] .

1991 The American Physical Society

Erratum: Two-dimensional Euclidean anomalous effective actions
in exactly solvable Abelian models

[Phys. Rev. D 43, 4088 (1991)]
A. Bassetto, L. Griguolo, and R. Soldati

A page was missing from the original printed version of this paper. The entire corrected version of the article is
printed on the following pages.
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We study two-dimensional Euclidean models involving massless Dirac spinors coupled to topo-
logically trivial vector and axial-vector potentials in the compactifiable case as well as in the case of
constant field strengths. In both cases we derive the di8'erent forms of the anomalies and, in so do-

ing, clarify several delicate and controversial aspects involving regularization procedures, often de-
bated in the literature.

I. INTRODUCTION

In recent years a considerable amount of work has
been devoted to the study of fermionic effective actions
and, in particular, to calculations of their anomalous
transformation properties with respect to gauge symme-
try groups.

In order to compare different methods of regulariza-
tion, obviously leading to different results, it is worth in-
vestigating two-dimensional models involving fermion
fields coupled to Abelian vector and axial-vector (VAV)
gauge potentials, defined on a topologically trivial Eu-
clidean manifold.

In two dimensions for compactifiable and topologically
trivial potentials, the quantities detB and detB B, where
B is the Dirac operator, can be explicitly computed by
means, for instance, of the decoupling technique' to-
gether with Seeley's method extending the g-function
regularization. On the other hand in the case of con-
stant fields, thereby leading to a particular example of
noncompatifiable potentials, the eigen values and the
eigenfunctions of the Dirac operator can be explicitly ob-
tained using recently developed procedures. '

As a consequence one can compare detg and detg g
both in a compactifiable and in a noncompactifiable ex-
arnple and discuss their variations with respect to local-
ized gauge transformations.

In Sec. II we carefully examine the cornpactifiable case.
We first repeat the calculation of detg and afterwards we
use the same technique to evaluate detB B. This calcula-
tion shows that, in general, ~detg

~
AdetN g, which is at

variance with claims appearing in the literature. More-
over, it is shown that the gauge variation of detQ leads to
the consistent anomaly; det@ B is obviously invariant
under usual gauge transformations but a polar decompo-
sition of g gives rise under gauge variations to anomalies
in their "covariant" form.

Section III is devoted to obtaining the effective action
for the constant field case. Here the difference between
~detS

~
and detB g is even more dramatic. Section IV is

concerned with the derivation of the anomalies as varia-
tions of the effective actions under infinitesimal localized
gauge transformations using standard first-order pertur-
bation theory. The general features, which were present
in the compactifiable case, are recovered here in spite of
the fact that known theorems on elliptic operators cannot
be trivially extended to this case.

As a result of this investigation, the relations among
different recipes for obtaining the anomalies are clarified,
at least in this context. Moreover, the complete solution
of the constant field model may represent a first step to-
wards the comprehension of models involving open boun-
daries. ' In particular, in the constant field case, the
infinite Landau degeneracy of the spectrum plays a re-
markable role; one might wonder whether an analogous
phenomenon would also take place within a more general
context. These and other aspects are discussed further in
Sec. V, while some technical details are deferred to the
Appendixes.

II. THE EFFECTIVE ACTION
FOR COMPACTIFIABLE POTENTIALS

AND ITS CHIRAL ANOMALY

In this section we first present, for the sake of corn-
pleteness, some known results concerning the general
form of the effective action, defined by means of the /-
function regularization applied to the first-order elliptic
Dirac-Weyl operator @, in the case where the fermions
interact with the general vector V„and axial-vector A„
potentials. Then we apply the same rigorous technique to
the evaluation of the determinant of second-order non-
negative operators (@ g)' and (gP )' in order to
discuss the close relation between the two different
effective actions. In this comparison some new and in-
teresting features will emerge.

In order to reach those results, it is essential to consid-
er external potentials suitably behaving at infinity in such
a way that the model can be set on a compact two-
dimensional sphere. The starting point is the classical ac-
tion
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S[V„,A„]=f d x gt(8 —i' —iehy5)it), (2.1)

where y'0=)0 i, PI = l0 2& ~5 0 3, cp~g~=l PP/5
Here we choose to work with two real VAV potentials.

Obviously, thanks to the properties of two-dimensional
Dirac algebra, this choice is equivalent to having only
one complex vector potential. Nevertheless, our choice is
more natural if one wants to subsequently perform an ex-
tension to complex-valued VAV potentials; we shall do so
when discussing det(B B )

'

The quantum effective action W [ V, A„] is defined as

W'[V„, A ]= ln—f2)g 2)/exp( —S[V„,A„]) . (2.2)

(In this section we are concerned with compactifiable and
topologically trivial potentials. In this case the Dirac-
Weyl operator does not possess a nontrivial kernel. )

The above path integral can be evaluated, for instance,
following the "decoupling" method, namely by the com-
putation of suitable Jacobians. These Jacobians obvious-
ly require regularization procedures to be mathematically
well defined. We shall use the g-regularization technique.

The crucial point is that, in two dimensions, the poten-
tials can be expressed as the sum of a "gradient"- and a
"curl"-type term, namely,

the antisymmetric tensor e„being normalized as eo& =1.
We introduce the decomposition (2.3) in Eq. (2.1) and no-
tice that the dependence on 0, is irrelevant because it can
be reabsorbed by the change of variables in Eq. (2.2):

P'(x) =e' (")P(x),

q't(x) —e
—(a(x)yt(x )

(2.5)

J=exp —2 f d x f dr Tr[Q „'y5P(x)],
0

(2.7)

where

ry~p(x) ry~p(x)„=e ' ge (2.8)

g='((I i' —icky—~ . (2.9)

which does not affect the integration measure.
The term concerning p(x) can also be reabsorbed by

the change of variables

g'(x) =e ' g(x),
(2.6)

Q'"(x) =g (x)e

which, however, gives rise to a nontrivial Jacobian. We
indeed have

and

v„=(a„a+e„,a.p)—1
e

A„=(a~+e„.a.~)—,1

e

(2.3)

(2.4)

It is worth noticing that the operator g is not Hermitian;
however, it is of an elliptic type and therefore the com-
plex power (g )

' can be defined.
The Jacobian J can be explicitly obtained by evaluating

Seeley's coefficients and the result turns out to be

J[V„, A„]=exp — f d x P(x)( ,'e„g„+—2ia„A„)
2%'

(2.10)

where F„=B„V—8 V„.
One can easily rewrite Eq. (2.10), taking Eq. (2.3) into account, in the form

J [ V„,A„]=exp BpB~fd'x V„S„„—",' V.—2ia„A„e,, ', V, (2.11)

Equation (2.2) becomes

W[V„,A„]=—lnJ[ V„,A„] ln f2)g 2)—/exp —fd xg (((I ieMy5)g— (2.12)

IV[ V„,A„]=—lnJ[ V„,A„]—lnJ[ A„],
where

(2.13)

2

J[A„]=exp f d x A„5 —e )e A

(2.14)

It is worthwhile noting that the potential V„couples only
in the Jacobian term and only with the divergence of A „.

The same procedure can obviously be repeated to per-
form the remaining functional integration, leading to the
well-known final result

In Eq. (2.13) we have disregarded trivial constant terms.
Again, in Eq. (2.14), the relevant part of A„ is of the
"gradient" type, namely, if B„A„=O, the potential A„
does not contribute to the effective action. To sum up we
can say that, in Eqs. (2.3) and (2.4), the interacting terms
are given by P and p, as was expected.

Since the effective action is obtained after a regulariza-
tion procedure, in general, it is determined up to polyno-
mial terms in the external fields of the correct canonical
dimension, preserving the invariance under the vector
transformation V ~V„—(1/e)a„8. We have chosen to
work with dimensionless potentials and the coupling con-
stant e with a canonical mass dimension equal to 1; how-
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ever, it is apparent from Eq. (2.1) that one is free to shift
the mass dimension from the coupling constant to the po-
tentials without any change in the theory. Thanks to this
freedom, it is clear that the only quantity which can be
added to the efFective action is ae fd x A„A„,a being a
subtraction dimensionless parameter. The same result
can be obtained by starting from a more general
definition' of the Jacobians in Eqs. (2.12) and (2.14).

The chiral cases correspond to the particular choices

V C

so that Eq. (2.13) becomes"

e aa
W[C„]=— f d x C„(5„+is„)

(2.15)

X(6 &+i@&„) C

—afd xC„C„'. (2.16)

It is clear that, in this case, no symmetry under the trans-
formations of the "gradient" type is present.

From Eq. (2.13) the derivation of the expression for the
chiral anomaly in its "consistent" form is straightfor-
ward. As a matter of fact, Eq. (2.13) is insensitive to the
transformation V„~V„—( I/e )8„8, whereas the
infinitesimal localized transformation 2„—+ 3„—( I/e)B„8 induces the variation

det~Q'

det~P
det('M g')
det( Rtg )

=exp[ i—Tr[(%ltd) '8 —(BVl ) '8]l, =o] .

(2.22)

If we choose i/=I, then obviously Eq. (2.22) becomes
unity, expressing the vanishing of the (consistent) vector
anomaly, whereas Eq. (2.23) obviously gives the (con-
sistent) axial anomaly.

A different choice of 'M is provided by the polar
decomposition of operator g

(2.24)

I@I being defined as [g g]' . In general, the operator
U is only partially isometric, but in this case it turns out
to be unitary [see parenthetical remark following Eq. (2.2)
and Ref. 9]. Setting Vl= U in Eq. (2.18) we get

We stress that the quantity in the exponent does not van-
ish for a general unitary operator ii'.

By performing an infinitesimal gauge transformation of
an axial-vector type [A„~A„—(1/e)B„g], we analo-
gously get

detnB' det(Vl (B')
det+g det(Vl 8)

=exp[ i Tr[(—%ltd ) 'y, y+(O'M ) 'y5p]l, =0].

(2.23)

S W= " fa'x 8(x)[e, (8 V —8 V )
—2iB„A„] .

277
detL, B=detU detl@ I,

and, consequently, from Eqs. (2.22) and (2.23),

(2.25)

det&g =det Vl det( %ltd ) . (2.18)

Were we considering operators acting in a finite-
dimensional space (matrices), we would obviously have

det&Q =det@ . (2.19)

The last term can be reabsorbed by a redefinition of the
Lagrangian subtracting a local counterterm, as we have
already explained.

At this point we would like to compare the above re-
sults with the ones following from possible alternative
definitions of the quantum effective action, still in the to-
pologically trivial compactifiable case. ' To this purpose
let us introduce a unitary operator Vl acting in the space
of the spinors and define

and

det~g'

det~g
=exp[ i Tr[IB—I

'8 —(UIBI U ) '8]l, =o]

(2.26)

det~Z'

det~g

=exp[ i Tr[IBI 'yzy+(Ul@I U ) 'yzq&]l, =o],
(2.27)

respectively.
The definition (2.24) together with the possibility of in-

verting Ig I, owing to the absence of null eigenvalues, al-
lows us to set Eqs. (2.26) and (2.27) in the form

For infinite-dimensional operators, this is not the case.
We now perform on g an infinitesimal gauge transfor-

mation of a vector type [ V„—+ V„—(1/e)8„8] and get

det~Q'

det~g
=exp[ i Tr[(g g) '8 —(gg ) '8]l, 0]—

O'=@+i [g,8]
and from Eq. (2.18) we obtain

(2.20) (2.28)

detB'=detVl det('M P') . (2.21)

One can easily convince oneself that, using the
regularization technique,

det~Z'

det~Q
=exp[ i Tr[(Q Q) 'y—5p

+ (PP ) 'y5@ ] I, =0], (2.29)
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=exp i J e„(c}„A —c) A„)8(x)d x
277detUg

(2.30)

respectively. Evaluation of relevant Seeley's coefficients
eventually gives

detUg'

that, in order to fully exploit the general properties of the
effective action, one should consider complex VAV po-
tentials. In this way the procedure adopted in Ref. 14 for
obtaining the anomalies in their "covariant" form is
justified. This can also be checked directly in the expres-
sion one obtains for

detUZ'

det Ug

. e=exp i e„,(c)„V —c) V„)y(x)d x
2m

det(B B ) = f2)itj 2) (1je xp( —S [ V„, A „])

—2@'[V,3 ]=e P P (2.38)

(2 3 1) where we have defined

namely, the vector and axial-vector anomalies, respec-
tively, in their "covariant" form. ' [The distinction be-
tween "consistent" and "covariant" forms of gauge
anomalies is standard in the non-Abelian case. The form-
er follows from an infinitesimal variation of detQ, the
latter from a variation of det(g B) with respect to com-
plex extensions of the gauge group as we shall see below.
In this context we adopt the same terminology also for
the Abelian case. ]

The expressions (2.28) and (2.29) are quite remarkable
because they provide the link with the Fujikawa prescrip-
tion for computing anomalies' as well as with the
anomalies obtained by performing "extended, " i.e.,
nonunitary, gauge transformations on ~g~. ' The first
point is realized by formally writing

detN= f2)f X)/exp f ( —/ting)d x, (2.32)

S[V„,A„]=f d x P g gg . (2.39)

By using the decoupling technique, one immediately
shows that &[V„,A„] depends neither on cc nor on p
[see Eqs. (2.3) and (2.4)]. As a consequence, we can take
them as equal to zero.

The next step is to perform the change of variables

/~exp[y~f3(x)+ cr(x)]P,

Pt~Ptexp[ —y513(x)—o.(x) ] .
(2.40)

Under this change of variables, which entails a trivial
Jacobian, Eq. (2.39) becomes

S= f d x f (rl 2ieI—" 2ieA—y5)BQ . (2.41)

In order to go on, one has to be careful because nonlo-
cal transformations are to be considered. As a matter of
fact, under the change of variables

and by inserting, in Eq. (2.32), the polar decomposition
(2.24), followed by a change of integration variables

detg= f2)(Uy)l)/exp f [ y~B~g]d x—. (2.33)

This equation naturally leads us to the definition (2.25).
By transferring the whole variation on the measure

(2.34)

g~ —(e '81( ),

S can be written as

(2.42)

n'= U(/el+5 el) . (2.35)

(this equation can be interpreted as a definition of 5U;
keeping in mind that U +5 U is no longer unitary), we re-
cover Fujikawa's recipe and results. Alternatively, by
transferring the whole variation on ~B ~, we can write

S= d~x t —2ieA y5 (2.43)

However, the corresponding Jacobian J is given by

lnJ= —f dr co'(r) (2.44)
0

Here we remark that 5~0~ does not coincide with the
variations of ~g ~

under the vector and axial-vector gauge
transformations, as the latter would obviously only entail
phase transformations and thereby would not affect
det~B ~. On the other hand, one can show that S~B ~

cor-
responds to the variations of Q g under the "extended"
transformations

with

co'(r) = lim Tr[(g„8) ' '5(B „r))]
s~o

and

8„=8—2ie&(1 —r) 2ieA y5, 0—~ r ~ 1,

(2.45)

and

A„—+A ——e„Q ge" 5 representing the variation under transformation (2.42)
with an infinitesimal P.

Quantity (2.45) can be computed using Seeley's
methods (see Appendix A); the final result is

Vp~ V„——e„9 cp,
l

e
(2.37)

respectively, which alter the Hermiticity properties of the
potentials V„and 2„. As a consequence, one realizes

J=exp

and therefore 8'becomes

P P~ g2
(2.46)
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2
W= fdx V„5

—
—,'ln f2)P Xi/exp —f d x Pt(r) —2ieA@5)gg

y't y't 2o(x)
(2.48)

which transforms 8 2ie—Ay5 into rt, but involves the
nontrivial Jacobian

(2.47)

We can finally decouple field A„ through the last change
of variable

increase at infinity. The previous technique does not ap-
ply to this case, in turn, the problem of determining the
spectrum and the eigenfunctions for the relevant fermion-
ic determinants can be explicitly solved.

The interest in this study is twofold: it provides us
with detailed expressions whose variations can be com-
pared with the corresponding quantities obtained by
means of procedures proposed by Andrianov and
Bonora' and by Fujikawa in turn, this comparison al-
lows us to point out the differences related to the un-
bounded nature of the potentials, a problem which is now
starting to be investigated on a more general basis. '

Once again, we consider Eq. (2.1) and choose for the
potentials the quantities

6x2'2
J=exp fd x A„5„— A . (2.49)

a2 Bx x Bw
p —+,p ——

2 2 ' 2 2

(3.1)

To sum up, the final result is, up to irrelevant terms,

B~
V

2
W= fd x V„5„,—2'

+A 6P P~ g2
(2.50)

(2.51)

follows. By performing the infinitesimal transformations
(2.36) and (2.37) in Eq. (2.50), one immediately recovers
Eqs. (2.30) and (2.31).

We would like to conclude this section by remarking
that only the choice Vl=I leads, under infinitesimal
gauge variations, to the anomalies in their "consistent"
form. As a matter of fact, only in this case do successive
variations obey the usual group composition law. If, in-
stead, we first operate a polar decomposition, neither the

~ ~

variation 5U, nor the variation 5~@
~

are genuine gauge
transformation s. This is the ultimate reason why
anomalies in the "covariant" form unavoidably ensue.

III. THE EFFECTIVE ACTION
FOR CONSTANT FIELDS

In this section we shall consider the same effective ac-
tion, but for vector and axial-vector potentials which do
not allow a compactification of the model on a two-
dimensional sphere. To be more specific, we shall choose
uniform and constant fields leading to potentials which

One can easily realize that, starting from operator BB,
the same result will follow.

Equation (2.50) is apparently gauge invariant, as was
expected from the starting definition. If we compare Eq.
(2.50) with Eq. (2.13), we notice that, in spite of the fact
that the same regularization technique is adopted, the
usually claimed relation

~
W~ = W does not apply; i.e., W~

is not, in general, gauge invariant. Nevertheless, as we
have already explained, we are free to add the local coun-
terterm e a fd x A A„ to W. If we choose a =1, gauge
invariance is restored for

~ W~ and the equality

with constant @ and B. We remark that B„V„=O,name-
ly, we have not introduced in V„a term of the "gradient"
type, which would be irrelevant at this stage.

The operator g =rl ie+ —ieA —
y5 is not Hermitian, as

is well known. The first method in order to evaluate its
determinant is by replacing the term ieA y5 with euWy5.
Then B(a) is Hermitian as long as a is real. It is easy to
show that choice (3.1) for real a is equivalent to the fol-
lowing:

(6 —ap)x (6 —ap)r
2 '

2
(3.2)

Bx
2

'
B~
2

a, =-,'(a,—ia„) . (3.3)

Field B does not enter the spectrum of @(a) because it
can be canceled by a phase transformation on the wave
function, in agreement with the result in the corn-
pactifiable case.

Next we introduce the operators

kz

k
(3.4)

z being the complex conjugate of z and k =et/2, which
we have chosen positive for the sake of definiteness, and
the operators

and then we can set p=O, by redefining D. We remark,
however, that, should o; take its "physical" value i, the
resulting field would no longer be Hermitian. The prob-
lem of evaluating the spectrum of g(a) will be solved
algebraically. We shall, of course, recover the well-
known Landau levels; in addition, we shall obtain an
orthonormal Segal-Bargmann basis, which is necessary to
neatly discuss degeneracy and to perform first-order per-
turbation theory (see Sec. IV).

First we introduce the complex variable z =~+ix
=pe' . Then,
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i
~

kz
Vk 2

(3.5) (,)
Vk „ , kIzI'

5+(o+exp

They satisfy the algebra

[5,5+ ]=[o),co+ ]= 1, (3.6)

kIzI'
=&k/2mexp — ( —ized'k ) (

—(z&k )"
2

all the other commutators vanishing.
In terms of those operators we have

0 6
g =2V'k

+
(3.7)

Henceforth, an infinite degeneracy is present related to
the action of co+. The spectrum is easily obtained, realiz-
ing that

6=0
(
—kIzI )

hf

[the series is actually
easy to check that the

(q)

(q)
—0'n —]

4n(+) ~2 (q)
9'n

&n!q!
I (q —h +1)I (n —h +1)

(3.15)

a finite sum as h +min(n, q)], it is
eigenfunctions of Q,

n =0, 1, . . . , g &

=—0, (3.16)

g =4k
0

(3.8)

correspond to the eigenvalues +2&nk.
The determinant of Q can be defined by omitting the

null eigenvalue and by means of the g-function-
regularization technique:

describing harmonic oscillators. As a consequence, the
eigenvalues are g )=Q g (A,„/A ) (3.17)

A,„=4kn,
namely,

A,„=+2Vkn, n =0, 1, . . . .

(3.9)

(3.10)

A being a dimensionful regularization parameter and Q
being the degeneracy (which does not depend on n) asso-
ciated to any eigenvalue. We get

S

In order to discuss their degeneracy, it is useful to real-
ize a representation of the algebra (3.6) in the Segal-
Bargmann space of analytic functions, which becomes a
Hilbert space when endowed with the measure

dp= exp( —k IzI )dz dz
k
2'

in the usual definition of the scalar product. The kernel
of Q is described by the functions ( ), where

4k2=0
A

g(s), (3.18)

2kPmax=0 &

Pmax —R

q ~kR

(3.19)

g(s) being the Riemann g function.
To evaluate 0, we count the number of eigenfunctions

(3.16) for n =0, whose maximum lies inside a circle of
(large) radius R in the complex plane

&—0'o=0 .

The solutions are

(3.1 1)
Then, recalling that there is a one-to-one correspondence
between the degenerate basis for any other value of n, due
to the fact that co+ and 6+ commute, we get

go=exp ——Izl' f,(z),k (3.12) qmax 2kS0=2 g -2k fdp', „=2kR'=
q

(3.20)

co+lpo — ( i k ztpo (3.13)

Then the polynomials

fo(z) being an analytic function of z. The degeneracy can
be resolved by noticing that

the factor 2 being due to the extra (+ ) degeneracy and S
being a (large) two-dimensional area. The same result
would follow by considering the behavior of the heat ker-
nel for small values of the "temperature. " The effective
action takes the expression

(q) «k)'
qfo~ zi, q=0 1, . . . ,Qq(

(3.14)

eS( 8—
a)M )

1
e ( g —ap )20— ln (3.21)

provide us with an orthonormal basis with respect to the
mentioned measure.

Now the "excited" states can be obtained acting with
6+ on yo; each one of them is degenerate according to
Eq. (3.14). If we define

It exhibits the logarithmic behavior which is characteris-
tic of unbounded potentials. '

The case with et&0 does not entail new features,
apart from the different shift due to the p quantity, ac-
cording to Eq. (3.2). We remark that Eq. (3.21), although
quite different from Eq. (2.13), depends neither on B nor
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on a possible "gradient" term in V„, in agreement with
the result obtained in the compactifiable case. One might
define the determinant of Q, by continuing Eq. (3.21) to
n =i. In this way a complex result will obviously ensue.

A different procedure is started by considering the two
positive operators g g and gg . As their spectra are in-
variant under "gradient"-type transformations, we can
choose the potentials as in Eq. (3.1) with p, =O. Thereby,
we get

e(8 B—)
2lC} +lz

e(A+B)
2l Bz —lZ

and thereby

r t
——UI 4ik, in, 4k, m ],

X t =U[4ik, i(p+1),4k (q+1)],
(3.32)

namely, the first spectral set possesses the null eigenvalue
twice, whereas X y does not.

Thus, changes of sign of k„k2 alter the kernel of Q,
without altering the index of g. This phenomenon has
already been noticed in Ref. 6, in the four-dimensional
case.

If we disregard the null eigenvalue, the g functions
turn out to be

0 5,+k,
(3.22)

=g(s) 0, 41k, I

A
+02

A
(3.33)

[5,, 5t] = [5,5t] =1 . (3.23)

where we have set ki =e(8 B)/2, —k2 =e( 6+B)/2 and
we have chosen them positive for the time being. We
have the commutation relations

where

1,2
ik, , iS

(3.34)

Correspondingly, we introduce the operators in analogy with Eq. (3.20). Then,

l + 1,2

7

(3.24)
—,'g~@t(0)= —,'g' t@(0)

', +ik, iln (3.35)

such that

Z
2

(3.25)
Equation (3.35) bears no relation to Eq. (3.21) unless

we have trivially A„=O. As a consequence, should one
define

whereas

[co„roti]= [co~, cot~] = 1 .

Now gN and B g become

k, 5,5, 0

k25252

[~i,5i]= [mi, 5i]= [&2,52]= [&2,52]=0, (3.26)

(3.27)

(3.28)

idet'N(a=i)i =[det'(BB )]'~

where the prime means that the null eigenvalue is disre-
garded, the difference between the definitions of det'B ac-
cording to Eqs. (3.21) and (3.35), respectively, would not
simply be a phase factor. Moreover, at variance with the
compactifiable case, this difference cannot be eliminated
by adding a suitable polynomial counterterm to the
effective action.

k 25252

1,5~151
(3.29)

IV. THE CHIRAL ANOMALY
IN THE CASE OF CONSTANT FIELDS

X g= UI4ki(n +1),4k2m ],
X t = U[4k2(p +1),4kiq j,

(3.30a)

(3.30b)

with n, m, p, q=0, 1, . . .. We notice that the null eigen-
value is present in both the spectral sets. Regarding this
we remark that if in Eq. (3.22) we choose k, (Ok2 )0 it fol-
lows that

5',Qk,
5',Q —k,

(3.31)

It is clear from the above expressions that the eigenvalue
equations for the up and down components decouple.

Therefore, the sets of the eigenvalues are, respectively,

We are interested in obtaining the variation of the
effective action we have studied in the preceding section,
under an infinitesimal localized gauge transformation.
The general method in Sec. II requires a compactification
of the problem and therefore does not apply, whereas an
explicit solution of the Dirac equation for arbitrary (non-
compact) potentials is not easily available. Nevertheless,
if we are only interested in infinitesimal variations, we
can apply first-order perturbation theory, using the eigen-
values and the eigenfunctions of the preceding section as
unperturbed solutions.

As a first step we shall compute the variation of the ei-
genvalues (3.10) of the Hermitian operator B(a). The
calculation is complicated by the circumstance that each
eigenvalue is infinitely degenerate. One can easily check
that a transformation on the vector field V„—+ V&
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+(1/e)B 8 does not infiuence the spectrum. Therefore,
let us study the transformation A„~A„+(1/e)B„8, 8
being any infinitesimal function of (r, x) with compact
support.

The perturbation matrix for the eigenvalue A,„ is

M'"'=+2a&nk f 8(z,z)dz dz(g'„'q&'"' g'—' y'"' )

n~1, (4.1)

where the eigenfunctions are the ones defined in Eq.
(3.15); the plus or minus sign coincides with the sign
chosen for X„and the null eigenvalue remains unper-
turbed. The indices (q, r) refer to the degeneracy con-
trolled by the operators co+.

The matrix M'"' is Hermitian; as a consequence, it can
be set in a diagonal form by a suitable unitary transfor-
mation on the basis. As the operators co and 6 commute,
the unitary operator implementing this transformation in
the whole Hilbert space is block diagonal.

The transformation obviously depends on (9. However,
we will show that the anomaly does not depend on the
basis. Let us therefore write, in the diagonal basis,

M'"„'=+2a&nk 5 „8(z,z )dz dz(g '„~'g'„' g'„',g'„—', )
q, r

B) that, if 8 is a real positive measure,

~ 6(q'e-"=O &e.n n
q=0

From Eq. (4.3) we derive

g&2+s&2(s) =g&2(s) —4a g (A,„/A ) '(0„—O„,)
n=1

+4as g (A,„/A )
n=1

(4.6)

2(0) =g' 2(0)+4a00 . (4.8)

Nevertheless, the limit @~0will be safe only in a suitable
region of the complex s plane, Res &0 in the present case.

Following this procedure we finally get

Xln(A, „/A )(8„—O„)) . (4.7)

Usually, without the extra damping factor, Eq. (4.7) is
considered for large enough Res and then analytically
continued at s =0. In our case, the convergence in n (for
any value of s) is actually guaranteed by parameter e, so
that the limit s~0 in the series can be naively per-
formed, giving

=+2a&nk n, „(8'„"—8'„",) . (4.2) (4.9)

Now, if we consider the variation of g &(s), we get

g~, +s~,(s) =(~~(s) 4as —g g (k'„/A') '(8'„"—8'„~', ) .
n=1 q

(4.3)

As we shall discuss in the following, Eq. (4.3) involves
delicate considerations related to the degeneracy labeled
by the index q of the spectrum. We remark that the in-
dices n and q appear symmetrically at the level of the
eigenfunctions, whereas the g-function technique ap-
parently regularizes only the n dependence. Because of
this fact, a careful limit will be necessary in order to han-
dle the dependence on q properly. The first evidence of
the crucial role this degeneracy plays was encountered
when evaluating dimension Q. As a matter of fact, in
Appendix B we show that

g 8„~'=8= dz dz 8(z,z),k

0 2' (4.4)

0(q) —
aqua(q)

n ~e n (4.5)

quantity 0 being independent of n. The sum over q, be-
ing a trace, can be computed in any basis, in particular,
using the eigenfunctions q&'„~' of Eq. (3.15). As a conse-
quence, the variation in Eq. (4.3) should vanish, in spite
of the fact that perturbation 8(z, z ) is localized.

One reaches a completely different conclusion if one
first restricts the sum over q introducing a suitable cutoff,
which is removed only at the very end of the calculation.
The simplest way to achieve this goal is by introducing a
damping factor in Eq. (4.3), namely,

with

(1,2)
0'n, 'q

' 1/2
1,2

2n
k(2

(g, ~)"(~),~)'exp
n!q!

(4.11)

are eigenfunctions of the operator BN corresponding to
the spectrum [(3.30a)], whereas

(2)
0'n, q

(Q)
4n, q 0

0
(d)

4m, r (1) ~ mrna —0 r
0'm, r

(4.12)

in full agreement with the result (2.17) of the com-
pactifiable case, in spite of the different form the effective
action takes in the two instances. In order to obtain the
covariant form of the anomalies, we can start by consid-
ering variations of the operators gg and 8 g, as given
in Eqs. (3.28) and (3.29).

From those expressions one immediately realizes that
the functions

(i)
V'n, q

(Q) n, q 0,
(4.10)

0(d)— t2~, mr 0,
V'm, r

where e is a positive parameter which will eventually be
set equal to zero. Then one can prove (see the Appendix

are eigenfunctions of Q Q, corresponding to the spec-
trum [(3.30b)]. Now, from Eq. (3.22), we derive
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gy(d), =2+mk, (t(."),„, y("), ,
—=0,

Nf'„"q) =2(rr'(n + l)kzp'„"+)( q,
(4.13)

namely, Q turns eigenfunctions of B @ into eigenfunc-
tions of BB .

now consider the infinitesimal variation 8
~(1—y~a)g(1 —y~a), leading to

5(&t&)= —y~aQ Q Q&—y5a 2P y—sag . (4.14)

Taking the matrix elements between eigenfunctions f„
we get the first-order corrections to the eigenvalues. For
instance,

M(q, r) (y(u) 5(@t@)q(u) )

=8k2(n +1)
X f dz ~~a(z z)(%',q9', 0' +),qV' +), )

(4.15)

in full agreement with Eq. (2.31). The same procedure
applies to the variation g~(1 —8)g(1+8} and to the
different choices of sign for k1 and k2.

In conclusion we can say that, in spite of the quite
different form the effective action takes in the
compactifiable and the noncompatifiable cases, its varia-
tions under infinitesimal transformations of compact sup-
port are given by the same expressions.

It is now instructive to compare these results with the
ones obtained directly by means of a path-integral calcu-
lation of Eq. (2.2), according to the suggestion proposed
by Fujikawa. As we have noticed in Sec. II, the path in-
tegral has only a formal meaning and requires a specific
regularization. In the present case we know the spectral
sets of P B and BB [Eqs. (4.10} and (4.12)] explicitly
and also the partially isometric operator U [Eqs. (4.13)].
We can now evaluate action S in Eq. (2.1) by expanding
spinor g on the basis of the eigenstates of B B and f on
the basis of BB,namely,

where we have used Eqs. (4.12). An analogous equation
holds for the down components. Moreover, we can
choose a basis in which M„ is diagonal. Then,

(a„qq'„"q+b„,y'„'q ),
n, q =0

(4.21)

M„' '=8kz(n+1)[a'„q'(kz) —a'„+ ()kz)], n ~0

and

M'q'= —8k, m[a' '(k, ) —a' ' i(k, )], m ~1 .

The variation occurring in the g function is

5g t (s)= —2s +[a(q)(k2) —a(q+), (k2)]A,„'
n, q

+2$ y a'q'(k, ) —a(q), (k, )]A,
m, q

leading to the anomaly

5(' t (0)= —2g [a() '(kz)+ao '(k, )]

(4.16)

(4.17)

(4.18)

(4.19)

yt(u)+I3 yt(d) )
m, r=0

Taking Eq. (4.13) into account, we get

S—= f d x g B$=2 g Q(n+ 1)k2a„qP„+,
n=0
q=0

+2 g Qnk, b„a„) . (4.22)
n=1
q=0

We notice that, in Eq. (4.22), the Grassmann
coefficients Po and bo do not appear. As a conse-
quence, the generating functional

5$' t (0)=—k, +k2 f a(z, z)dz dz

e
CXdZ dZ

7T
(4.20)

I

(again see Appendix B).
Now the trace can be computed in basis (4.12) and we

get

Z ( V„,A„)=exp( —W[ V, A„]),

if naively computed via Berezin integration, would van-
ish. Let us therefore try to redefine the functional in-
tegral over g and gt by omitting the integrations over
Po „and bo q. This would correspond to a modified
definition of the determinant. In doing so, one immedi-
ately gets

n=0
q=0

m=1
r=0

s=0
t=0

k=1
t=O

f + da„g db „g da(, g dPl, ,exp —2 g Q(j+1)k2aj) P~+) ~
—2 g Qjk)b ) a

j=0 j=1
k=0 k=0

= ~det'e'u ~'"=~det'ua'~'" (4.23)

where the infinite products appearing on the left-hand
side are supposed. to be regularized, by means for instance
of the g-function technique.

As we have already noticed, Eq. (4.23) is invariant un-
der the usual gauge transformations on the vector and

axial-vector potentials. The first lesson we learn is that
the quantity in Eq. (4.23) has nothing to do with ~det'B ~.

The second remark concerns the integrations over the
variables Po „and bo q

we have omitted. The correspond-
ing measure of integration g dbo q gdPo „ is not gauge
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invariant. We indeed have

bo [9]=f $0 q'(z, z)e'@"f(z,z)dz dz

bo q(0)+i f go q
(z z)0(z z)g(z z)dz dz

where

=b„(o)+iy b„„(o)e,",'.„„,
n, r

(4.24)

e,",'.„„=f dz dz e(z,z)q,",'(z, z)q'„'„'(z, z) . (4.25)

We are interested in the change of variables ho q(0)
~bo q(0) for infinitesimal 0. The variation of the mea-
sure turns out to be

ik, f dz dz 8(z z ),
2m'

(4.26)

in full agreement with Eq. (4.20). The analogous calcula-
tion for Po „gives the term involving k2.

We conclude that the covariant anomalies can be ob-
tained either by varying the full fermionic integration
measure or by performing infinitesimal local transforma-
tions belonging to a noncompact gauge group on quantity
[det'8 8]', as we have already discussed in the com-
pact case. In this example involving constant fields, one
recovers the remarkable fact that the covariant anomalies
are related to the density of the degeneracy of the eigen-
values. Whether this feature generalizes to arbitrary
noncompactifiable Dirac-type operators is an interesting
open problem, at least to our knowledge.

V. CONCLUDING REMARKS

Although they are probably unphysical, two-dimen-
sional models allow detailed explicit calculations to be
performed which, in turn, lead to the clarifying of several
delicate features concerning the origin and the form of
the anomalies.

The study of compactifiable potentials in Sec. II has
shown that, in general, there is no equality between
~det@~ and (detP B)', B being the Dirac operator in
the presence of vector and axial-vector gauge potentials.
We have shown that, while gauge variations of detg give
rise to anomalies in their consistent form, by considering
variations after a polar decomposition of the Dirac
operator, one instead recovers the "covariant" form of
the anomalies.

The same difference appears even more drastically in a

We compute the expression (2.45),

lim Tr[(g„8) ' '5(N„8)],s~0
(Al)

using Seeley's coefficients for evaluating the trace in s =0,
as an analytic continuation. The first step concerns the
explicit writing of the infinitesimal variation of (B„8)un-
der (2.42):

5(B„8)= —2ysP(a„8) —(B„)2Py58 . (A2)

The insertion of (A2) into the trace (Al) leads to the
only nonvanishing contribution:

lim Tr[(g„8) '2Py5]
s —+0

= f d x Tr[KO(x, x;B„8)2y5P(x)], (A3)

where Ko(x,x;P„8) is the analytic continuation in s =0
of the continuous kernel K, (x,y;g„8)„,belonging to
the operator (g„8) ' which are well defined for
Re(s) ) 1. The quantity

Tr[KO(x, x;g„8)2y5P]

is found with the help of Seeley's coefficients:

Tr[KO(x, x;B„8)2y,P]

—f f dt Tr[b 4(x, g, it)2l3y5] . (A4)
(2qr)' 2

The coe%cient b 4(x, g, i, ) can be obtained by the
equations

model characterized by constant fields, namely, with po-
tentials increasing at infinity. In this case, the decoupling
techniques do not work; however, the model is exactly
solvable in terms of eigenvalues and eigenfunctions, so
that the above features can again be explicitly tested.

One can appreciate even more the difference of regular-
izing the theory by analytically continuing the operator
(B) ', a procedure which eventually leads under gauge
transformations to the consistent form of the anomalies,
or by first considering the polar decomposition B= U ~P ~

and then transferring the variation of Q either on U or on
~8~ [see Eqs. (2.34) and (2.35)].

Finally, in the case of constant fields, one verifies that
the "covariant" form of the anomaly appears to be relat-
ed to the degeneracy of the null eigenvalue and that the
integral of the vector anomaly coincides with the index of
the Dirac operator. It might be interesting to investigate
whether these properties persist for more general non-
compact potentials.

APPENDIX A

a

b i(a —A )+X b
a . ai =0—, l )0; j( l,j +k + ~a ~

=1,
Bxj a! (A5)

where o; is the multiindex defined by with

&„8= g A (x)D
a~r

fa/= ga,
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and

a (xg)= g A (x)P,
ta(=m-j

(A6)

W (W)
G ( w w )

—y g(q)e —Eq

o n!q!
n=0

so that

az=g

a& = —2eA'(1 r)g——2eggy~,

aO=0,

and

2"
b &(x,g, k) =

2 3 iea„[2A(1—'r)/+2' gy~]
(g2 g)3 P

2

+ [2A(1 I )g —2ggy—~] .
(g2 g)3

(A7)

(A8)

Obviously,

=Go(w„wze ') .

n
co QJ Wi

e 'dwzG, (w„wz)= g O„(e) .
0 n!

Now, from Eq. (3.15), we get

g'„~ =fdz dz g(z, z) e ' n!q!(klzl )"+~k

( —klzl')-" ( —k fzl')-~
h !(q —h )!(n —h )! . j !(q —j)!(n —j)!

(B3)

(B4)

Then, one obtains'

G,(w„w2)= —f dz dz e "i'i g(z, z)

The explicit calculation of (A4) using (A8) gives

lim Tr[(@„8) '213y~]= f d x „eg""f3(x)(1 r) . —
s~O

The Jacobian turns out to be [(2.44) and (2.45)]

eJ[A„]=exp —f dr f d x e„g"P(x)(1—r)

(A9)
& g ( —1)'I, (2(lklzl'w )'")

q=0

XI (2(klzl~w2e ')'~ }

/I (2(w w e )
~ } (B5)

=exp ——f d'x A,e,„ag(x)

Remembering that

~,(x)=a.~(x)+e„ap(x),
we immediately find

(A 10)
I being the modified Bessel function of order q. Equa-
tion (B3) now gives' '

n
Wi m, e0„(e)= e

o n! " 2m

X f dz dz g(z, z)e

J[A ]=exp
2

fd x A„5 — " 2 . (All)
7T

XIO(2(k lzl w, )' (1—e ') } . (B6)

From Eq. (B6) one immediately sees that

APPENDIX 8

In this appendix we study the behavior of the quantity

8„(0)= f dz dz g(z, z)=0k
2m

(B7)

e (e)= y g'„~'e-'&
q=0

(B1)
independent of n and that, for a suitable y & 1,

8 (e) &y"(e)& (B8)

of Eq. (4.6). To this purpose we introduce the generating
function

if g(z, z) is any real positive measure, as we wanted to
prove.
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