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Hajicek s interesting and valuable comments on the time hypothesis bear on the difficulties of the
quantization process of a given classical theory, but they do not bear on the general issue of the viability
of quantum theory without time. These comments are carefully discussed.

Hajicek [1] presents a series of accurate comments on
the solution to the time issue in quantum gravity that was
proposed in Refs. [2,3]. I thank him for his insights, and
I take this opportunity to clarify certain aspects of the is-
sue. In spite of the exactness of several of Hajicek's re-
marks, I think that the proposed solution is still viable,
for the reasons explained below.

Hajicek raises two main criticisms of the ideas pro-
posed in Refs. [2 and 3] [points (1) and (2) at the begin-
ning of his paper], and a series of minor comments. Let
me start with the two main criticisms. The first one is the
fact that in order to define the "evolving constants" one
has first to solve the classical equations of motion. The
second is that the factor ordering of the evolving constant
is problematic. Both these facts are certainly true. How-
ever, there is a difference between the issue addressed in
Refs. [2,3] and the kind of difficulty raised by Hajicek.

The issue addressed in Refs. [2,3] is whether or not a
quantum theory without a well defined H-amiltonian time
evolution makes sense (See Ref.. [3] for a precise definition
of "without Hamiltonian time evolution" and for a dis-
cussion of the meaning, here, of "makes sense. ") On the
contrary, the problem considered by Hajicek in his corn-
ment is how difficult it is, given a classical theory
"without time, " to actually construct the corresponding
quantum theory (namely, a quantum theory that has the
given classical theory as its classical limit). The two
problems are distinct. To clarify the distinction with an
analogy, consider the problem: Can a quantum system
have infinite degrees of freedom? It may be relatively
easy to show that it is possible to define a consistent
quantum theory with infinite degrees of freedom (Dirac
constructed one in 1930), but it may be in practice very
difficult to construct quantum theories with infinite de-
grees of freedom starting from an assigned classical field

theory; in most cases, it may even be impossible.
The thesis presented and defended in Refs. [2,3] is not

that it is easy or that it is always possible to quantize a
system with vanishing Hamiltonian. The thesis is that,
contrary to many opposite claims in the literature, a
quantum system with a vanishing Hamiltonian (with "no
time") may be well defined and consistent. Thus, to my
understanding, Hajicek's comments are correct and
relevant to the general problem, but they do not bear on
the question addressed by the proposed solution of the

time issue.
Let me now discuss the specific criticisms. I disagree

with the statement, included in comment (2), that the
problem of finding a factor ordering for the observables is
not a well-defined mathematical problem. Indeed, the
well-defined problem is the following: Given the self-
adjoint operators L;, corresponding to the observables L;,
and a specified (classical) observable Q(L, ), is there an
ordering of Q =Q(E,. ) with the required properties'?
Here, as emphasized by Hajicek, the property required
(for the projectors to be defined) is that Q be normal. Of
course, in some cases the solution may be that there is no
such ordering, or that there is more than one (see below).

Hajicek notes that in standard quantum mechanics the
ordering is based on some choice of time. This is correct;
but, again, irrelevant: As an analogy, recall that very
often the quantum theory of a system, and in particular
the ordering of the Hamiltonian operator, is defined by
exploiting the symmetries of the system. This does not
mean that if we do not have any symmetry, then the
Hamiltonian operator does not exist. If there are no sym-
metries, then the Hamiltonian operator has to be found
without the help given by the symmetries. Similarly, if
there is no Hamiltonian time evolution, then the ordering
of the observables has to be defined without the help of
the unitary evolution operator. Notice that, in both
cases, if more than one ordering is available, this simply
means that the quantum properties of the system are not
determined by its classical limit. If no good ordering is
available, this may mean that there is no quantum theory
corresponding to that particular classical system.

An important comment by Hajicek is the detection of a
mistake in Ref. [2]. The mistake is the introduction of
spectral projection operators [Eq. (54) and the text just
preceding it] for an operator which is symmetric but, as
Hajicek explicitly shows, not normal. As Hajicek impli-
citly suggests, a better choice of ordering may correct the
problem. Here, indeed, I present the ordering that makes
the relevant operator diagonalizable. Therefore, the mis-
take can be corrected. Notice that this entire controversy
illuminates how the theory puts stringent (but not neces-
sary insoluble) constraints on the choice of the ordering
of the observables.

The classical evolving constant Qz(t) is (for every t) a
function on the phase space I . For any fixed t, this func-
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tion becomes imaginary on certain regions of the phase
space. The observable is real only on the region I (t) of
the phase space defined by

to be compared with Eq. (4). Note that in order to have a
sensible observable in the quantum theory, the "time" t
must satisfy

L, & 1(t —M) t2&2L, +M —$, (9)

(see Eq. (25) in Ref [2. ]). Physically, this means that the
motions described by this region of phase space never
reach a "time"

q& larger than t, because the system
"comes back in q,

" before qi =t (see the figure of Ref.
[2]). In Ref. [2] it was claimed that this fact has the
consequence that the quantum operator Qz(t) "develops
imaginary eigenvalues, " and the idea was to consider
only the self-adjoint projectors on the eigenspaces with
real eigenvalues. Hajicek notes that the consequences are
more serious than that, because Qz(t) is not normal and,
therefore, nondiagonalizable. Since at the classical level
Q~(t) is only meaningful on I (t), the problem can be cir-
cumvented by considering the "restriction" Q~(t) of
Qz(t) on I'(t), rather than Qz(t) itself. If P(t) is the
characteristic function of I (t),

P(t) =8( ,'(M t')+—L,)— (2)

[8(x)=1 if x &0, zero otherwise], then I consider the
classical observable

Q, (t)=Q, (r)P(t),

which satisfies

(3)

, Q, (t) on I (t),
Q, (t)= '

0 otherwise . (4)

P(t)=
m & (1/2A)(t —M)+ I

[rn)(m/ . (7)

P(t) is the projector on the subspace &(t) of the Hilbert
space of the theory spanned by the eigenstates

~
m ) of E,

with eigenvalue larger than —,'(t —M)+A'. Clearly,

(QQq(t)P) if ~P) and ~P) are in &(t),
(gQ (t)4

0 otherwise,

The quantum operator corresponding to the classical ob-
servable Qz(t) is defined by

Q, (t) =P(t)Q, (t)P(t)

(note the symmetric ordering chosen). Up to now, I have
only chosen a slightly different observable than the one
used in Ref. [2]. Now I introduce the key correction on
the ordering by choosing for P(t) the ordering

P(t) =8( ,'(M r')+E, —i'-) . —

Note the crucial —A term, which of course disappears in
the classical limit. It is straightforward to show that
Qz(t) is diagonalizable. The spectral projection operators
used in Ref. [2] must be considered as the spectral projec-
tion operators defined by Q~(t). Note that P(t) can be
written as

while in the classical theory it has to satisfy

t2&2L, +M . (10)

From the way it is obtained, this equation only holds in
the points where q~ = T. A more accurate notation is

8Q(T;q„,p„)
[qr(q. p. »«q. p. )]

T=q~(q„,p„)

= Iq(q„,p„),K(q„,p„)I . (12)

Therefore the equation cannot be integrated in the way
suggested by Hajicek. Certainly, as Hajicek correctly
concludes, no rearrangement of Eqs. (15) and (16) in Ref.
[3] may change the fact that the complete construction of
the evolving constants amounts to solving the classical
equations of motions. The reason I presented Eqs. (15)
and (16) in Ref. [3] is to provide a general intrinsic
definition of the evolving constants.

The difficulty of giving sense to Eq. (30) of Ref. [3], em-
phasized by Hajicek, is certainly real. The comment in
Ref. [3] (one may try to give meaning to this equation in a
representation in which qz. is diagonal) refers of course to
a standard constraint quantization scheme in which
operators are defined also on the unconstrained state
space. There is no reason for which a quantum system
without time should necessarily be defined by group rep-
resentation theory rather than standard Dirac constraint
theory.

Finally, as far as Eq. (32) in Ref. [3] is concerned, I
agree with Hajicek that this equation is wrong. In gen-
eral, it does not follow from Eqs. (29) and (30) of Ref. [3]
because of ordering difticulties in taking the derivative.
Thus, as Hajicek points out, if' we want to define intrinsi-
cally the evolving constants in the quantum theory, we
must use Eqs. (29) and (30) of Ref [3]. The . reason I ten-
tatively introduced this intrinsic definition is the hope
that some approximation scheme may be developed in or-
der to construct the quantum evolving observables order
by order, without solving the classical theory first.

The problems with Eq. (32) of Ref. [3] and the bad no-
tation of Eq. (17) in Ref. [3] were earlier pointed out to
me also by Jacobson [4]. The fact that the presence of a

It is essentially this small discrepancy that leads to the
difficulty with the diagonalization of Q(t) discovered by
Hajicek. Physically, this means that in the quantum
theory the measurement of Qz(t) loses sense slightly ear-
lier than in the classical theory. I think that this aspect
of the Heisenberg principle, pointed out by Hajicek s
comment, may deserve to be studied.

Another criticism raised by Hajicek is a consequence
of a misunderstanding of Eq. (17) of Ref. [3], due to the
very poor notation used. The equation is

i)Q( 7')
[q~,K] = [q, K I .
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time and a Hamiltonian provide the factor ordering for
every t, while in the formalism without time the factor or-
dering problem is more serious (one has to find a good or-
dering for each t), was repeatedly pointed out also by
Kuchar" [5].

In conclusion, it is important to make a distinction be-
tween two questions: (a) Does a quantum theory without
Hamiltonian time evolution make sense as a physical
theory? (b) How difficult is it to find such a theory if we
only know its classical limit? To my understanding,

Hajicek's comments do not invalidate the main claim of
Refs. [2,3], namely, that question (a) has a positive
answer: A quantum theory without time can be well
defined, consistent, have a sensible classical limit and a
well-defined probabilistic interpretation. On the other
hand, Hajicek's comments bear on question (b) and on
the di%culty of actually constructing the quantum theory
starting from a given classical theory. Hajicek's com-
ments are certainly helpful in reaching a deeper insight
into this conceptually dif5cult subject.
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