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The fermion gap equation for QCD is usually posed as a simple variant of the Baker-Johnson-Willey
equation, with ad hoc cutoffs for infrared singularities in the running charge imposed as needed, and no
confinement effects taken into account. While we too omit confinement effects, we replace the ad hoc
cutoffs with a physically consistent picture of QCD, with a dynamically generated gluon mass m serving

as an infrared regulator, and study not only the fermion gap equation but also nonlinear vertex equations
which determine the running charge. Fermion loops are included in the vertex equations, which allows

us to study the dependence of a, (q ) on the fermion constituent mass M. As one might expect from the
one-loop running charge, a, (0) is an increasing function of M. When we use a standard form of the fer-

mion gap equation and leave out all confinement effects, the relations between a, (0) and M which follow

from the gap equation and the vertex equation are inconsistent with each other, for any value of the

gluon mass m. Although our model is crude, this suggests that confinement plays an important role in

chiral-symmetry breakdown in QCD. Furthermore, lack of confinement above the deconfining tempera-

ture may explain why the chiral-symmetry-restoration temperature is so close to the deconfining temper-
ature.

I. INTRODUCTION

Countless papers have been written on chiral-
symmetry breakdown (CSB) as embodied in fermion gap
equations in gauge theories since the days of Baker,
Johnson, and Willey (BJW) [1]. There have been applica-
tions to fixed-point (QED-like) theories [2], to QCD
[3—10], to technicolor [11],and to gauged Nambu —Jona-
Lasinio models [12]. For the most part, these works are
based on simple modifications of the original BJW work,
which was intended to apply to weakly coupled fixed-
point QED with emphasis on control of the ultraviolet
behavior. Thus the gap equation is studied in the Landau
gauge, where ultraviolet vertex corrections are unimpor-
tant, and even for a confining theory such as QCD only
single-gluon forces are kept, with no reference to the
confining forces.

However, since QCD is not a fixed-point theory, cer-
tain modifications are needed to incorporate a running
charge and asymptotic freedom. Here is where the trou-
ble starts, because the perturbatively defined running
charge is infrared singular. Different authors have used
different sorts of cutoffs, usually prescribed in an ad hoc
way; for example, Higashijima [4] uses the perturbative
running charge down to a certain momentum, then stops
the running, while Atkinson and Johnson [6] add what
amounts to a gluon mass term in the running charge but
keep the gluon propagator massless. Haeri [8], as well as
Haeri and Haeri [10], consistently invoke both a running
charge and a gluon propagator modified by gluon mass
generation [13]; thus their infrared cutoff is not ad hoc,
but physically motivated. We will do the same in this
work. Various other ad hoc prescriptions occur in the
literature [7,9].

Another kind of infrared singularity is important, both

for QCD and for fixed-point theories; this is associated
with vanishing fermion mass. Such a singularity occurs
in the usual gap equation when it is linearized, so that
both the gluon and the fermion propagators are massless.
One obvious way [14] to get rid of this kind of fermion in-
frared singularity is to keep the fermion self-energy in the
denominator of the fermion propagator, which we will
term the nonlinear BJW equation. However, this is not
the only kind of fermion-mass infrared singularity.
Another kind appears in the running charge itself, and
comes from fermion loops (i.e., the unquenched theory).
Of course, if CSB does occur then the fermion mass M is
not zero, and no singularity arises. There is an important
difference between would-be gluonic and fermionic in-
frared mass singularities; the running charge a, (q ) at
small momentum decreases as the gluon mass increases,
and increases as the fermion mass increases.

Similarly, the fermion gap equation shows that as a, (0)
is increased, larger values of M result; for a, (0) less than
a critical value a„ there is no CSB (i.e., M =0). There
are thus two relations between a, (0) and M, one from the

gap equation and one from the running charge, and it is
our purpose here to study, in a physically motivated pic-
ture of QCD, these two relations to see if they are con-
sistent. In order to furnish a basis for comparison with
earlier work, we will use a standard form of the gap equa-
tion, and omit all references to confinement.

Our new contribution is an analysis of some coupled
nonlinear Schwinger-Dyson equations which determine
the running charge a, (q ) and its dependence on M. We
have already studied these equations for quarkless QCD
[15],and will not describe the program leading to them in
full detail. It is enough for now to say that the vertex
equations are highly simplified versions of real-world
Schwinger-Dyson equations which have the crucial prop-
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erties of being gauge invariant and usable at all momenta
from 0 to oo. (The usual way of introducing the running
charge via the renormalization group is, of course, useful
only at large momentum. )

If, in these equations, the gluon is kept massless the
solution necessarily has a spacelike singularity, as one
would have expected from the one-loop running charge.
Moreover, the P function which can be extracted from
the vertex is a sum to all orders in g, with the
coefficients all of one sign and showing factorial growth
(as is known to happen from other considerations [16]).
The cure for these singularities is that a gluon mass is
spontaneously generated, as was shown some time ago
[13] from a study of the gauge-invariant gluon propaga-
tor, constructed with the same techniques used later [15]
to calculate gauge-invariant gluon vertices. Various con-
siderations, including the original mass-generation study
[13] as well as fitting [15] the vertex-equation solution to
a, (0)=0.5, suggest that the gluon mass m is around 500
MeV. However, for our purposes here we will let m be a
free parameter (it is not determined by the vertex equa-
tions alone), which we can tune to adjust a, (0). Obvious-
ly decreasing m results in increasing a, (0). In fact, there
is a critical value I, below which a, (q ) becomes singu-
lar.

The running charge receives contributions from fer-
mions as well as gluons, so in this paper we modify the
vertex equations to account for ferrnionic terms. Fer-
mion loops, like gluon loops, are infrared singular at
M=O except that they contribute with opposite sign:
Decreasing M decreases a, (0).

The study of the vertex equation, then, leads us to one
relation between M and a, (0), at fixed gluon mass m. A
second relation comes from the fermion gap equation,
which has the same general trend: The smaller a, (0) is,
the smaller the fermion mass M, and finally, as mentioned
above, for a, (0) less than some critical value, CSB be-
comes impossible.

The question now is whether the two relations we have
discussed are consistent. One may imagine the following
possibilities.

(1) The relations are the same, and give no information
beyond the gap equation itself. This would be an inex-
plicable miracle.

(2) They are consistent, and yield (for fixed m) deter-
minate values for M and a, (0) rather than only one rela-
tion between them.

(3) They are inconsistent. Insofar as we can trust our
crude models, the third alternative is what we find.

The reason for inconsistency is simply that the gluon
mass m required to achieve CSB in the fermion gap equa-
tion is so small that the vertex equation is singular, i.e.,
m & m, . Thus there is no self-consistent way, within the
context of the model, to make the running charge large
enough to account for CSB. In fact, the situation is even
worse: Not only is there no CSB, but with the fermionic
mass M =0, QCD itself fails because of the fermionic in-
frared singularities in a, (0).

So the model we use is wrong; where does it fail? We
believe the answer is that confinement has not been ac-
counted for; confining forces will certainly break chiral

symmetry, as we discuss below. To be fair, there are
many other deficiencies in both the gap equation and the
vertex equation which could lead to the failure of the
model. For example, the kind of BJW equation we (and
others) use is best suited to dealing with ultraviolet mo-
menta, not infrared; for small momenta in gauge theories,
there is another approach [8,10,17] based on the gauge
technique. The gauge technique is accurate in the in-
frared in its simplest form and can also be made accurate
in the ultraviolet, as King [17] and Haeri [8] have shown.
Moreover, a recent investigation [10] of the ultraviolet-
improved gauge-technique gap equation, which uses mas-
sive gluons as we do, leads to one of our conclusions:
There is no CSB for the gluon mass larger than about 0.1

GeV, far smaller than the physical value. (These authors
do not study the vertex equation, as we do here. ) The
vertex equations we use are highly simplified, but they
work so well [15] in both the ultraviolet and the infrared
regimes that we have no real reason to suspect that they
are the cause of the inconsistencies we have found. As
for the fundamental aspect of the gluon mass, numerous
lattice workers [18] have confirmed the existence of such
a mass, with a value at least as great as the original esti-
mate [13]of 500 MeV.

One should note that quite aside from any of our
present considerations, the critical values of a, (0) quoted
by several workers from the ferrnion gap equation are
substantially larger than one finds either phenomenologi-
cally or on the lattice. Higashijima [4] gives a, =0.74,
and Atkinson and Johnson [6] give a, =1.2. But char-
monium phenomenology [19] yields a, (0)=0.5, and re-
cent lattice calculations [20] give a, (0)=0.45. A gluon
mass of 500 MeV also yields a, (0)=0.5, when used [13]
in our vertex equations. So it might not be surprising
that single-gluon exchange is not enough to drive CSB.
Nevertheless, it is worthwhile to examine, as we do,
whether there can be consistency between CSB and the
Schwinger-Dyson equations that determine the running
charge, quite aside from what appear to be reasonable
values for a, (0) from lattice or phenomenological con-
siderations.

This is not the place to discuss in detail how
confinement might repair this inconsistency, but we will
review very brieAy some of the salient points in this re-
gard as well as what appears to be the reason for why
confinement is widely neglected nowadays in CSB.

A decade or so ago, several authors [21—23] pointed
out that confinement was sufficient to ensure CSB. Un-
fortunately, others, in referring to these works, some-
times interpreted them as saying that confinement was
necessary for CSB, which is quite a different thing.

These ideas were soon challenged by computer simula-
tions in quenched SU(2). Kogut et al. [24] claimed that
the essential parameter governing CSB was the product
g C~, where g (at an appropriate scale) is the gauge cou-
pling constant, and C~ =I (I + 1) is the Casimir eigenval-
ue for the fermions of isospin I which developed a con-
densate ((ff)%0). It is, of course, natural to interpret
this product as measuring the strength of short-range
single-gluon forces and to claim that such forces are dom-
inant in CSB. Kogut et al. [24] also found CSB both for
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fermions which could be confined [isospin N+ —,
' for

SU(2), where N is an integer ~ 0] and those which were
not (integral isospin), adding weight to the case against
an important role for confinement.

However, things are not so simple. Even for
unconfined fermion representations there are stringlike
forces which rise linearly for a while, then break with the
formation of a gluon pair [25]. For I = 1, the string-
breaking energy to form such a pair is quite comparable
to the energy at which the I =

—,
' string breaks because of

formation of a qq pair. Moreover, the strength of the
linearly rising string forces grows with increasing I (al-
though not at the same rate as for single-gluon exchange).
The simplest model of the string strength envisages a par-
ticle of isospin I as being in effect composed of X quarks,
where X =21. Such a particle will be joined to a similar
one by % strings, so the string force should be propor-
tional to N or to 2I. The increase of the string tension
with I has been seen numerically [26] and explicitly
modeled [27] in a picture of confinement [28] based on
vortices of finite extent [29].

In view of these remarks, it is not clear to us that the
results of Kogut et al. [24] decisively rule out confining
forces as important for CSB. It is likely that both
confining forces and short-range single-gluon forces con-
tribute, and indeed the work we report here suggests that
single-gluon forces are not enough. While it is not our
purpose here to belabor the issue of confinement, it may
be worthwhile to review how confinement leads to CSB in
one model [23], which uses the time-honored device of
imitating confinement with an effective propagator.

P~ (k2 2)3

and then find [23], for the one-loop quark mass,

(1.2)

16' M
(1.3)

As p —+0 the quark mass approaches infinity, which
might naively be taken as a signal for confinement. How-
ever, the static potential derived from (1.2) has a similar
infrared divergence; in a color-singlet qq state one finds

V(r) = — + r +O(p)
S~p 8~

(1.4)

so that the physically relevant quantity

+g„+k„k terms,P~ k4

where&, =1.9 GeV. We hasten to say that the effective
propagator has nothing to do with the true gluon propa-
gator, which is short ranged because of gluon mass gen-
eration [13];single-gluon effects must be added [30] to the
propagator (1.1). Let us leave the latter aside for the mo-
ment, and ask what the confining potential does by itself.
If we naively calculate the one-loop quark self-energy, the
result is ultraviolet convergent but linearly infrared diver-
gent. So we regularize (1.1) to

2M+ V(r) = +0 Inp (1.5)

II. SCHWINGER-DYSON EQUATIONS FOR VERTICES

In QCD there are two fundamental proper vertices:
The three-gluon vertex I"'&' and the quark-gluon vertexI'. Each of these is gauge dependent and not a suitable
candidate for further investigation. There are two nearly
equivalent ways to modify these vertices into gauge-
independent quantities. The first way [13,15], which is
systematic and in principle exact, extracts from the S ma-
trix or similar gauge-invariant quantity all graphs having
a vertex structure plus pieces of other graphs which come
from four- and higher-point functions. These pieces also
have a vertex structure which arises from pinching out
internal lines through elementary Ward identities; it has
been thoroughly described and successfully applied to the
calculation of the modified three-gluon vertex f''t3' at
one-loop level in Ref. [15]. Not only is f' gauge invari-
ant, it also obeys a Ward identity involving the gauge-
invariant self-energies ft„'", introduced in Ref. [13]. An

is free of linear infrared divergences. There is no such
cancellation for quark combinations which are not color
singlets [31]. The remaining logarithmic divergence is re-
placed by a finite quantity, after the recognition that cal-
culating the quark self-energy with a loop graph contain-
ing a free-quark propagator is unjustified when confining
forces are present. Various ways of getting around this
difficulty were discussed in Ref. [23], with the upshot that
the effective quark mass M is approximately JR/2' =300
MeV. The only importance of this formula to us is that it
shows that confinement does not yield a typical gap equa-
tion, with M appearing on both sides, but rather that the
mass arises directly from the string tension.

In this paper we restrict our investigation to QCD with
two light Aavors. Actually, the original motivation for a
study of this sort was to apply it to technicolor or grand-
unified theories, especially those with a small coefficient b
in the P function (13= bg + — ), coming from a near
cancellation of fermions and scalars with gluons. Here,
on the one hand, the running charge (proportional to
b ') can be large without confinement; on the other
hand, the vertex equation is very sensitive to changes in
the fermion masses because of the near cancellation. We
will return to the study of CSB in such theories on a later
occasion.

Our paper is organized as follows. In Sec. II we derive
in a heuristic way the coupled Schwinger-Dyson equa-
tions for the QCD vertices in the presence of quarks and
argue that they successfully reproduce the
renormalization-group (RG) results as well as the usual
Feynman-diagram infrared divergences. Section III is de-
voted to a qualitative, analytical study of the properties
of the vertex equations with particular emphasis on the
role of the quarks. In Sec. IV we report the results from
solving the vertex equations numerically. Finally, in Sec.
V we incorporate our solutions into some standard ver-
sions of the fermion gap equation and study the compati-
bility of the whole program.
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essential element of the construction of this or any other
gauge-invariant vertex is the decomposition of the ele-
mentary three-gluon vertex into two parts, one of which
generates a naive Ward identity on one (and only one)
line in any convenient covariant gauge, and the other,
called the pinch part, generates vertex contributions
which cancel either with other gluon graphs or with
ghost graphs. (A slightly different procedure, leading to
the same results, applies for ghost-free gauges [13].) The
decomposition of the bare vertex I '

& (we drop an
overall structure-constant factor ie,b, ) is, for the kine-
matics of Fig. 1,

hg
r =

0

a, o

r„",'.= f'„".'.+g-'[k„'..+(q +k)~.„],
f'„',' = —(2k+q) g„„+2q g„—2q g„

+(1—g ')[k„g +(q+k)~ „].

(2.1)

(2.2)

FIG. 2. One-loop graphs for the modified fermion vertex, us-

ing the gluon vertex of Fig. 1.

Here g is a gauge parameter, defined in the bare gluon
propagator:

d„(k)=
k

—g„+(1+()
q

One easily verifies that

q f'„'' =d„'(q+k) —d„'(k)

(2.3)

(2.4) I „=2q„g —2q,g„—(2k+q) g (2.6)

where ~ is the fermion representation matrix, df is its di-
mension, Cf its Dynkin index, and I „[15,32] is given

by f'
„'

' of (2.2) in the Feynman gauge g= 1:

C~ 0

I)q
)I + pinch port

and that the purely longitudinal pinch part [difference be-
tween I' ' and f' ' ' in (2.1)] pinches out lines in a graph
to which it is attached.

We can also use f'' ' to construct modified fermion-
gluon vertices. The case where the fermion lines are on
shell and the gluon line is off shell has been discussed in
Ref. [32], and the details of the construction for all lines
off shell will be given in a separate report by one of us
(J.P.). It turns out that for our purposes it is enough, at
the one-loop level, to use the graphs of Fig. 2 in the Feyn-
man gauge, so that at this level we define

Pig 1C + NC
(2m) 2 df

xf d k y~S (p +q —k) S (p —k)y

4 T I 'V pva"S( —k) I
2 k (k+q)

(2.5)

Note that the pinch part of the three-gluon vertex does
not appear. It then follows the f' ' obeys the Ward iden-

tity

q f".= '[&(p) —&(P)] (2.7)

Zq(p)
S(p) =

(gf —M)
(2.8)

where X(p) is the fermion self-energy in the Feynman
gauge [actually, (2.7) holds in any gauge, as long as the
hatted vertex in Fig. 2 is chosen as in (2.2)]. This same
vertex, but for any g, was used in Ref. [32] and by Haeri
[8] in his study of the fermion gap equation. As Haeri
shows, the use of f'' allows us to separate out, in a
gauge-covariant way, the fermionic contributions to the
running charge from other effects, and we will make use
of this important feature in our study of the fermion gap
equation.

There is a second approximate but heuristically useful
approach to constructing vertices which are gauge invari-
ant both on shell and in the UV region of rnomenta. One
considers, instead of the usual proper vertices, half-
proper vertices formed by multiplying each leg of a prop-
er vertex by a momentum- and spin-dependent dimen-
sionless factor which is extracted from the corresponding
propagator. To illustrate, we write the fermion propaga-
tor in any gauge as

p, b v, c

FIG. 1. Decomposition of the bare three-gluon vertex into a
part f' satisfying a Ward identity on the line marked with a A,
plus a pinch part.

and form the half-proper vertex by multiplying each
proper-vertex leg by Zz~ (p), and each gluon leg by a fac-
tor Z3 (q), where Z3 is defined in terms of the gluon
propagator by extracting the pole term in analogy to
(2.8). It is easy to verify that the combination of renor-
malization constants which renormalizes a half-proper
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b,„,(q) = —q„,+
q

23(q)
+gauge terms,

q pl

(2.11)

with m the gluon mass. Finally, we have already dis-
cussed the form of the fermion propagator (2.8). To indi-
cate that we are in principle dealin with gauge-invariant
propagators and vertices, we use 2 instead of Zz as in
(2.8).

Now introduce the half-proper vertices

vertex is gauge invariant, and that the UV behavior of
this vertex as dictated by the RG is also gauge invariant.
Moreover, all gauge-dependent terms in the on-shell
half-proper vertex vanish. Even when dealing with the
exactly gauge-invariant vertices f', we find it convenient
to use this half-proper formalism.

In principle, our goal should be to write down exactly
the Schwin ger-Dyson equations for the half-proper
gauge-invariant vertices. In practice, this is far beyond
our powers, and we will proceed by an extension of the
approximations of Ref. [15]. First, we consider only the
vertex equations truncated at one dressed loop, where al1
vertices and propagators are fully dressed. Truncation of
the exact equations at the one-dressed-loop level is al-
ready a serious step, since it is not in principle gauge in-
variant even for group-invariant vertices. However, since
we will not deal with the exact one-dressed-loop equa-
tions but rather approximations to them, it is easy to en-
force gauge invariance.

Second, we will ignore all complications of spin, except
for the owers of momentum that they induce. For ex-
ample, & has a term of the form

".P, (qi q2 'qj)= I:(qi —q2),g.P+c P ]"s
where f' is dimensionless. Similarly, a representative
term in is of the form

f'.=y.f'/,
with f'& dimensionless; the gauge-independent [13] prop-
agator is of the form

(a)
2

(c)

)I
(I

(I

,
i

I

I(
I)
I(

2
(e)

(two graphs)

FIG. 4. One-loop graphs for the half-proper fermion vertex

«qi q~ q3) = [&3(qi »3(q»&(q3)]'"1,
&(qi q2 q3)=[&2(ql)~2(q2)~(q3)] 1 f .

(2.12)

(2.13)

Following Ref. [15] we write one-loop equations which
respect the dimensionless nature of 0 and I', but which
otherwise ignore spin. The (cubic) integral equations that
P and 0 satisfy must each lead to the correct UV behav-
ior as dictated by the RG; since this behavior is that I'
and 0 vanish the same way the usual running charge
does, it is necessary that there be no inhomogeneous
terms in these equations. Moreover, these equations
must model the IR singu1arities which occur when m
and/or M=O. Since potential IR divergences are very
important in what follows, we are careful to construct
equations which faithfully represent the one-loop diver-
gences of perturbation theory which arise from the
graphs of Fig. 3 (for 0) and Fig. 4 (for P). A final approx-
imation is that I' and 0 will be taken to depend only on
one momentum, presumably representative of any of the
three momenta when these are all nearly equal. The final
equations which we postulate, corresponding to the
dressed-loop graphs of Fig. 5, are

(a) (b)
(two graphs)

(c)
(two grophs)

(d)
(three graphs)

(e)
{three graphs)

(&)
(three graphs)

+ C

)I
I

Ja

FICr. 3. One-loop contributions to the half-proper three-
gluon vertex C. The open square makes a special vertex formed
from a box graph by pinching; see Ref. [15].

FIG. 5. One-dressed loop graph structure of the Schwinger-
Dyson equations for I' (solid circle) and C (open circle). The
numbers C; are given in the text.
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d kG (k)(q)=
27r (k —m )[(k+q) —m ]

F(q)= d k 0 (k)P(k)
2~ (k —m )[(k+q) —m ]

d P (k)
2~ (k —M )[(k+q) —M ]

d kP (k)
2~z ~ (k' —M')[(k+q)' M—']

(2.14)

2 df f (kz —Mz)[(k —q) —M ][(k+q) —m ]

27T2

1

y
d kk G(k)P (k)

(k —m )[(k —q) —m ][(k+q) —M ]
g X dkP (k)
2~z df (k —M )[(k+q) —m ]

(2.15)

where b i =11C&l48m and bz 2n l48—n . Cz is the
quadratic Casimir operator for the adjoint representation
[for SU(zV), Cz =N] and n is the number of quark fami-
lies in the fundamental representation. Throughout this
paper we will restrict ourselves to the case of two light
quark flavors (n =2). It is now easy to see how the above
equations in the UV reproduce the known
renormalization-group results. Indeed, if we consider
large values of q and neglect all masses, the last three
terms of (2.15) add up to zero. Then C(q)=P(q) is the
solution of the system, which reduces to one equation,
namely,

b b—6 '(k)
2~2 k (k+q)

(2.16)

This is of course, the same equation we found in Ref.
[15],with b replaced by b, bz, and its u—ltraviolet behav-
ior is that of the usual running coupling. Of equal impor-
tance is to realize that Eqs. (2.14) and. (2.15) reproduce
correctly the infrared divergences of the one-loop Feyn-
man diagrams, when the masses involved go to zero.
This fact justifies in retrospect their particular form. To
be precise, the first term in (2.14) reproduces the same
divergences as graphs 3a+2c+3d+3f when m~0,
whereas the second term reproduces the divergences of
the graphs 3b +3e as M~O. Similarly, the first term in
(2.15) reproduces the divergences of graph 4d as m —+0
and the second reproduces the divergences of graphs 4c
as M~O. The last three terms of (2.15) correspond to
graphs 4a +4b+4e. It is important to notice that they
are infrared divergent if both m and M go to zero. Furth-
ermore, as we already mentioned, their sum vanishes in
the UV. This suggests a significant simplification to our
program. Since we are mainly interested in the infrared
behavior of the running coupling when M ~0, but keep-
ing m&0 and of order A, we can neglect the last three
terms of (2.15), as long as we consider quark masses
smaller than the gluon masses. Under this restriction,
omission of the aforementioned terms will not affect the
behavior of the coupling in either the infrared or the ul-
traviolet regimes. With these terms omitted F(q)=6(q)
solves the system (2.14) and (2.15), which now becomes
one single equation:

6(q)=
2wz (kz —m )[(k+q) —m ]

2vrz (k' —M )[(k +q)' —M']

III. QUALITATIVE BEHAVIOR OF VERTEX MASS
SINGULARITIES.

In Sec. II we presented drastically simplified vertex
equations, based on capturing both the UV and IR be-
havior of the two equations. In this section, we make
some qualitative remarks on just what this IR behavior
is, both in connection with IR fermion mass singularities
and in connection with a popular approximation in which
the integral equation (2.17) is replaced by a difFerent
equation.

We can do the angular integrations in this equation,
which then becomes

G(x)= J dy G ( y)[ b, K( xy, m) bzK(x, y, M)]—,

(3.1)

with the definitions

x =q, G(x)=gG(x), (3.2)

K(x,y, p)=
y+p
X [(x+y+p )+[(x+y+p ) —4xy] ~

]

p=m orM. (3.3)

To gain some insight on the general properties of Eq.
(3.1), we first consider its quarkless version, with bz =0,
already discussed in Ref. [15]. In the absence of quarks,
(3.1) is scale-free, and clearly G depends on the single
variable qlm only. Therefore, at this point, (3.1) either
has a solution for every positive value of I, or it has no
solution at all. We will now try to single out those solu-

(2.17)

Even in this simplified version, the integral equation
(2.17) has a rich structure, which we will investigate in
the next two sections, both analytically and numerically.
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tions of (3.1) which have physical interest by imposing
certain physically motivated boundary conditions on the
original integral equation. It will turn out that these
boundary conditions will profoundly affect the general
scaling properties of the solutions, as we explain below.

The most general solution G(x) may vanish for finite
x, including x =0, but such solutions are of no apparent
physical interest. For example, if 6 (0)=0, we can hard-
ly expect chiral-symmetry breaking to occur. So, we im-
pose the condition that 6 (x) )0 for every finite positive
x, with G(ao)=0. With G)0 it is easy to show [see
(3.9,10) below] that 6(x) is a strictly monotone decreas-
ing function of x (but with quarks present this need not
be true). Since the P function is essentially xG(x), this
monotone decrease ensures that P &0.

The quarkless equation (3.1) is scale-free, so we tem-
porarily measure all momenta in units of m. For any
finite m, (3.1) at x =0 reads

G(0)= b, I—d
(y +1) (3.4)

The massless equation corresponds to replacing y + 1 by
y, and it has no acceptable solution since the massless
version of (3.4) requires G(0) =0. There is a continuum
of solutions to (3.1), distinguished by the value of G at
some large (y ))1) momentum, just as in perturbative
QCD. We require

1
G(y, )=

i/2 yo )) 1
(b, lnyo)'

(3.5)

In effect, this normalization condition has introduced a
renormalization point p via yo=p /m . The form (3.5)
is demanded by the self-consistent large-x behavior
G(x)=(b& lnx) '~, which is easily established by using
this form in the integral on the right-hand side (RHS) of
(3.1).

In applying (3.5) to physical processes, we have in
mind that p is fixed (say, @=100GeV), and that at this
value of p, G (yo) has a certain value (G /4~=0. 1, say).
Let us see what happens [15] when we decrease m, keep-
ing p and G(yo) fixed. Clearly, yo increases, and our
numerics show that as yo increases, G (0) increases
[perhaps not surprising given the monotone decreasing
property of G (y)]. Eventually, G is so large that the con-
dition (3.4) on 6 (0) cannot be maintained, because of the
G growth on the RHS. There is a largest value of yo
(smallest value of m) for which (3.4) can be satisfied; there
are no solutions for m less than the critical value m, .

Conversely, for every m )m, (3.1) has a solution, as we
exhibit in Sec. IV and in Ref. [1] by numerical tech-
niques. Of course, as m becomes 0(p) the functional
form of 6(yo) is not that given in (3.5), which only ap-
plies at large yo. These solutions satisfy (3.4), because
even though G (y) gets smaller for small y as m increases,
the RHS can be as big as the LHS because of the large-y
contribution, which is nearly divergent.

It must be clear now that the existence of the critical
mass I, in this scale-free equation comes about because
the renormalization procedure of fixing p and 6(p) in-
troduces a second mass scale, through dimensional

b,G(0)= —f dyyG (y)
(y+m )

b2

(y+M )

(3.6)

For M ((m, the b2 term is dangerous because it has an
infrared divergence, but of opposite sign to the pure
gluon case. We estimate the RHS of (3.6) by setting
G (y)=G (0) in the small-y (y & 1) part of the b2 in-
tegral, and observing that the remaining integral is
roughly (bi b2 )/bi times th—e corresponding pure-gluon
integral (3.4). Then, taking into account the b-coefficient
scaling b '~ as shown in (3.5) and required for con-
sistency at large x in (3.1), we have roughly

I b,+6(0)= — b2G (0)ln—1

2
GI(0) .

(3.7)

We expect that G, (0) will not be too different from the
pure-gluon case, where it is O(bi '~~).

For 2-fiavor QCD b2 «b, (b2/b, =4/33) so the first

transmutation.
The imposition of the boundary condition (3.5) invali-

dates the original scaling argument that since G depends
only on q/m only, it either has a solution for every m or
no solution at all. Simply stated, one cannot satisfy both
equation (3.1) and condition (3.5) for sufficiently small m.
Since the presence of the boundary condition alters
things so drastically, we suggest that the reader in what
follows considers Eq. (3.1) implicitly accompanied by the
boundary condition (3.5). It is only after the inclusion of
the boundary condition (3.5) that the concept of the criti-
cal mass can make sense. At this point we must em-
phasize that we consider the previous arguments as sug-
gestive at best, and they do not in any sense constitute a
proof of the existence of a critical mass. However, earlier
numerical work supports this qualitative picture. Indeed,
when solved numerically, Eq. (3.1) supplemented with the
boundary condition (3.5) has no nontrivial solutions for
m less than a critical value m, . This, it turns out, is not
true (and correspondingly is not seen in our numerical
work) for the fermion mass M, in spite of the similar ap-
pearance of the infrared divergences in (3.1) as m or
M~0. Instead, for sufficiently large gluon mass m, there
is a solution to (3.1) for every positive M. For M & m the
vertex decreases as M decreases, as one might expect
from the one-loop vertex, finally vanishing at logarithmic
rate at M=O. On the other hand, for M )m, G(0) can
be larger than without fermions, but only by a factor of
b, (b, b2) ' w—hich is nearly 1 for 2-fiavor QCD. (In
other gauge models this enhancement could be large, and
lead to chiral-symmetry breakdown without
confinement. )

Now consider adding the quarks, i.e., using the full
equation (3.1), but always keeping m )m, . With two
mass scales, it is convenient to return to conventional
momentum units, and at x =0 (3.1) reads



1292 JOANNIS PAPAVASSILIOU AND JOHN M. CORNWALL

—b) /b2M-me (3.8)

(negative) term on the RHS of (3.7) is not very important
when M ~m . But when M (&m this first term be-
comes dominant; if we estimate both G(0) and Gi(0) by
b

&
', the two terms on the RHS are of equal importance

when

—bl /b2In the opposite case of M»me ' ' there is no
problem finding numerical solutions, as reported in Sec.
IV. Furthermore, unlike the quarkless case, where G(x)
is a monotonically decreasing function in the whole inter-
val 0 to + ~, when quarks are included G (x) can display
a maximum, if M is less than a critical value. Indeed, in
the quarkless case (b2=0) differentiating (3.1) with
respect to x (denoted with overdot) gives us

For smaller M the vertex function is smaller than in the
pure gluon case, eventually vanishing at M=O, but with
no critical value of M below which there are no solutions.

G(x)=b, f dy G (y)K(x,y, m),
0

with

(3.9)

K(x,y, m) =-~ y [+(y+x+m ) —4yx +x+m —y]
(y +m )[y +x +m ++(y +x +m ) —4yx ] +(y +x +m z

)
2 —4yx

(3.10)

Obviously, since K(x,y, m) ~0 for all values of x and y,
G(x) &0 between 0 and ~. The inclusion of fermions
changes things since now

G(x)= f dy G (y)[b, K(y, x, m) bzK(x—,y, M)], (3.11)
0

and therefore if the values of M are small enough so that
the nearly infrared divergent fermionic kernel becomes
large enough to overcome the small b 2 factor
(b2/b, =4/33), G(x) may actually change sign. Beyond
this qualitative observation we can say no more. Howev-
er, as we will see in Sec. IV, the numerical solutions of
our equation display the features described above.

Finally, we conclude this section with some comments
on the validity of a standard approximation frequently
used when dealing with Schwinger-Dyson equations [33].
Let us for simplicity consider once again the quarkless
case (b2=0). In the absence of masses (3.1) can be im-
mediately transformed into a differential equation just by
differentiating twice with respect to x (see, for example,
Ref. [15]):

yG yGG(x)= dy +b, dyx+m 0 y+m ~ (y+m )

(3.14)

~ 2G && xG
x+m 2 (x+m )

(3.15)

which, of course, for m =0 reproduces (3.12).
This differential equation must be implemented with

two boundary conditions. These are furnished by the in-
tegral equation (3.15) itself:

and

G(0)=b, f dy
(y+m )

(3.16)

x yGG(x) =—
(x+m ) 0 y+m

(3.17)

By differentiating with respect to x twice, we arrive at the
differential equation

~ 2G bi G (x)
x 2 x

(3.12) G(0) =0 . (3.18)

1

(k+q) —m
8(k —

q )k2 —m~

which can be solved very easily with standard numerical
methods. As shown in Ref. [15],this equation necessarily
leads to a singularity in the IR region, so it is tempting to
regularize the inverse powers of x with a gluon mass.
One commonly offered justification for such a regulariza-
tion is the so-called 8-function approximation to the ker-
nel of the integral equation (3.1):

The 8-function approximation leads automatically to
G(0)=0 for all gluon masses m. Our experience [15] in
solving the original integral equation (3.1) for m »A,
where A is the RG mass, is that G(0) is small compared
to m, so the 0-function approximation works. But for
m SA, the physically relevant case, G(0) is not small;
indeed, it diverges like m for small m, as one expects
on dimensional grounds. Here, the 8-function approxi-
mation is definitely not good. From (3.9) and (3.10), the
actual value of G(0) is

+ 0(q —k ).
Nl

(3.13)
G(0)= b, m f-

(y+m )
(3.19)

With such an approximation for the kernel and after per-
forrning the angular integration, instead of (3.1) we have

which difFers substantially in form from the approximate
(3.17), and is never zero.

Adding fermionic terms does not change this situation.
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IV. NUMERICAL RESULTS FOR THE VERTEX
EQUATION

g—=g(p)=6(q'=p') . (4.1)

Before we proceed, we make an additional comment on
a technical point we found to be essential for the stability
of our numerical algorithm. Since the integration vari-
able in Eq. (3.1) runs between 0 and oo, its numerical
treatment requires the introduction of an ultraviolet
cutoff Ao (not to be confused with the RG mass A), much
larger than any other quark or gluon mass present. In
doing so, particular care must be taken so that our equa-
tion will be supplemented with the appropriate boundary
condition, which will compensate for the contributions
between Ao and ~ that are omitted by cutting the in-
tegral off. To be specific, after introducing the UV cutoff
Ao (3.1) becomes

Ao
2

G (x)=f dy G'(y)[b, K(x,y, m ) b2K(—x,y, M)]

+(b, bz) f dy 6 —(y)K(x,y), (4.2)
Ao

In this section we report the results from solving (3.1)
numerically, show that these results are accurately ap-
proximated by physically motivated fitting functions, and
extract from the results a nonperturbative P function.
This P function reduces to the usual one for very small
values of the coupling constant g.

The reader may be surprised to find that a homogene-
ous equation such as (3.1) has a RG, which one normally
associates with the existence of a divergent inhomogene-
ous term which is used to compensate the divergences of
the integral. We will see that the integral (3.1) converges,
since G -(lny) ' at large y, so no inhomogeneous term
is necessary. But it is necessary to introduce a mass scale
for the argument of the logarithm, which we do in the
usual way by replacing y by yA, where A is the RG
mass. The connection between A and the coupling con-
stant g [introduced in the original form of the vertex
equation (2.17)] at any mass scale p is the usual one:

S(AO) = [(b & b2 )ln—AO+ —,'(b, b2 )—ln(lnAO) ]

—
—,
' [(b

& b2 )lnAO—+ —,'(b, b2 )ln—(lnAO) ]

X 1+ 1

lnAO
(4.8)

This boundary condition is very stable against variations
of Ao. In particular our results change only by less than
l%%uo when Ao undergoes changes of six orders of magni-
tude (10 —10 ).

Note, by the way, that the solution (4.7) is precisely of
the form given by the RG, although all but the leading
term have somewhat different coef6cients from those
found by using the real P function of QCD. Further
analysis of the all-orders P function implied by (4.7) is
given in Ref. [15],where it is shown that the approximate
P function, like the true QCD P function, has a factorially
divergent power-series expansion in powers of g . This
divergence is an artifact of the massless large-x expan-
sion, and is cured [15] by the inclusion of masses [see
(4.20) below].

Figure 6 shows numerical results for the running cou-
pling a, (q ), defined by

a, (q )=G (q )/4n. . (4.9)

This can be evaluated directly in terms of the explicit
large-x solution for G given in Ref. [15]. In presenting
the following two equations, we simplify the notation
with the understanding that all dimensionful arguments
of logarithms are to be divided by A . The large-x solu-
tion for G is

G(x) = 1
(4.7)

[(b
& b2—)lnx +—', (b

& b2 )—ln(lnx)+ ]'~

where the omitted terms are negligible for large x. Using
this form for 6 in (4.6), we find

where we have safely neglected all masses compared to
the integration variable y )Ao in the second term in the
RHS of (4.2). Let us call this term S (Ao): 0.6 —= 1.2foal

A

S(A )=(b, b) f dy—6'(y)
y+x+ y —x

and, for x (Ao,

(4.3)
/

0 4-/
I
Fpq

S(AO) = G (y)
Ao

(4.4)

Using the difFerential equation (3.13), which 6 (x)
satisfies for large values of x, we have

S(AO) = —f [yG(y)+26(y)],
0

where the overdots indicate differentiation with respect
to y. (4.5) can be integrated by parts, giving

0.2-

0
0 )0

p

10
2

)P 2
3

p =103

20 50

S(AO)= —(6+yG)i "2 .
0

(4.6) FICi. 6. Running coupling a, (q ) vs q for various fermion
masses and gluon mass fixed at m = 1.2A.
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In interpreting these results, it is very convenient to keep
in mind a function which is both a physically motivated
[13] approximation to a, (q ) for all q and also a very
reasonable fit to our numerical data, again for all q in-
cluding q =0. This function recognizes the role of mass
generation in taming the logarithmic IR divergences
which would be found by extrapolating (4.7) to the IR. It
reads

with

1c=b, ln
1 2

b2—b, ln
1 2

&0.

a, (q,„)= 4' c +(b, b—z)ln
g(m —M )

A

(4.14)

(4.15)

q +~m
G(q )= b, ln q +/M

2 A2

—1/2

(4.10)

It follows that

1

4m(b, b)2—1 n(g m/A )
(4.16)

m, =1.1A (4.11)

in what follows.
Let us now concentrate on the behavior of the strong

coupling in the infrared, which is one of the central issues
of our investigation. We will keep the discussion rather
general, with bi, b2, and g unspecified —anticipating that
the generic form of (4.10) may persist to more general
cases—although of course we have only checked the
SU(3) case with two families of fermions in the funda-
mental representation.

From (4.10) we have

a, (0)= 1 1

z z (4'2)
4~ b, In(gm /A ) b~ ln(gM —/A )

Originally [13] it was suggested that /=4, representing
the usual two-particle thresholds. We find that choosing
/=4. 8 fits the data of Fig. 6 to within 5%%uo or better, over
a range of fermion masses from 10 A to A. This fit to
the vertex suggests that m, =g '~ A=0. 46A, so that for
m & m, the vertex is singular (at q =0 G would be imagi-

nary, unless M is very small). Actually, our numerical
computations break down (for any quark mass M) at a
larger critical mass, with m, =1.1A, but are quite well

behaved even for a slightly larger m, as Fig. 6 shows
(m = 1.2A). So we will adopt the value

P=2q = b i
G-2dG q

q'+pm' (4.17)

Inverting (4.10) we have

1
q +pm =A exp

b, G
(4.18)

and so (4.17) becomes

which is just the quarkless vertex at q =0, multiplied by
bi(bi bz) '—. This latter number is greater than unity
(but not by much for QCD), so fermions can slightly
enhance the running coupling, but this is not a particu-
larly important effect. What will be much more impor-
tant for the fermion gap equation, studied in Sec. V, is
that the maximum value of a, is limited by the gluon
mass.

We end our discussion with the derivation of the P
function corresponding to the running coupling of (4.10).
Given G (q ), this P function is of course superfluous but
is of heuristic interest for comparison with previous con-
structs. Let us omit the quarks for the moment (b2=0).
Then

2
qmax

= b2m —b1M

b1 —b2
(4.13)

as long as M & m (b~ Ibi )'~ . The value of a, (q,„)is

It is now clear from (4.12) that if M takes values smaller
than M, =A&/, its effect is to decrease the value of
a, (0). This is of course something we anticipated based
on the qualitative discussion of the previous section. For
the case at hand, /=4. 8 and so M, =0.46A (see also Fig.
6). a, (0) reaches its maximum value a, '"(0) when
m =M =m„= l. 1A. Substituting in (4.10), with

bi =33/48vr and b2=4/48vr, a, '"(0)=0.73, a rather
moderate value. We can already anticipate trouble with
the fermion gap equation, which will (see Sec. V) require
rather larger values of a, (0). For small enough values of
M, a, (q ) has a maximum at q,„&0:

2

P= —biG 1 —
g —exp

m 1

A b1G
(4.19)

z 2 b22
q +pm q +/M

(4.20)

Now we cannot invert (4.10) exactly but only approxi-
mately. Assuming that m and M are approximately of
the same order, we find

The explicit appearance of a factor exp( —1/b, G ) multi-
plying the contribution of the gluon mass term should be
considered indicative of the nonperturbative nature of the
entire approach. If we include quarks, the equivalent of
(4.17) becomes
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P= —(b, b—~)G . 1 —g
b)(m /A) b—~(M/A)

b, —b2

1
X exp

(b, b—
~ )G

1+0 exp
(b, b~ )—G

(4.21)

which, of course, for bz =0 reduces to (4.19).

V. RUNNING COUPLING AND THE FERMION
GAP EQUATION

of any confinement effects, the infrared dynamics of the
coupling are determined by an equation such as (3.1) and
depend nontrivially on the values of the masses. In par-
ticular we argued that strict masslessness for either the
gluons or the quarks would result in the breakdown of
the vertex equation. Moreover, the actual value of a, (0)
is completely determined by the values of the masses
present and some group-theoretical factors. So the ques-
tion arises naturally whether these two dynamic pictures
are compatible with each other.

Insofar as a study of the fermion gap equation alone is
concerned, Haeri and Haeri [10] have recently and in-
dependently carried out an investigation quite similar to
ours, using a massive gluon propagator and the original
running coupling of Ref. [13]:

In two previous sections we presented a detailed
analysis of the running coupling that emerges from the
study of a nonlinear vertex equation, valid in both the IR
and the UV and involving all fundamental masses of the
theory. Throughout this analysis these masses were more
or less treated as free-adjustable parameters and nothing
was said about the dynamical mechanisms generating
them. In particular, the conventional wisdom for chiral-
symmetry breaking through the study of gap equations
for the quark self-energy is that mass generation becomes
possible only if the strong coupling a, (0) becomes larger
than a critical value. For values of a, (0) below this criti-
cal value, chiral symmetry is restored and the gap equa-
tion has only trivial solutions. This critical value for the
coupling varies depending on the different approxima-
tions employed when writing the gap equation, but the
common assumption is that, no matter what the critical
value may be, the infrared dynamics of QCD will
somehow manage to provide it. However, in the absence

I

q +4m
g (q)= b ln

A
(5.1)

and letting the gluon mass vary. This differs from our
running coupling in (4.10) by having no fermion terms,
and by having g of that equation equal to 4 instead of 4.8.
Since these authors did not study the vertex equation,
they could use the gluon mass as a free parameter, and
what they found, with which we agree, is that it takes
very small values of m, not much bigger than A/2, in or-
der to generate a nonzero fermion mass M.

We will now analyze two different versions of the fer-
mion gap equation: the one of Haeri and Haeri [10], and
that of Atkinson and Johnson [6]. In both references the
important issue of gauge covariance has been successfully
addressed and gauge-technique-improved quark-quark-
gluon vertices have been employed. The relevant equa-
tion from Ref. [6] is

M(x) = 3Cf a)(x) „yM(y) a&(y)M(y)
GP 2

+4' x o y +M (y) x y +M (y)
(5.2)

and, from Ref. [10],

M(x)= 3Cf yM (y)a, (x) dy4~ 0 y+M y y+x+m + y+x+m —4xy '

yaz(y)M(y)+ dy
y +M2 y y +& +~2 y +x +~2 2

4&@ 1/2 (5.3)

One major difference between the two equations is that in
(5.3) the gluon propagators are massive. Moreover, in
deriving (5.2), the usual 8-function approximation has
been used to simplify the kernel whereas in (5.3) it has
only been used for the running coupling, e.g. ,

a~(p+k)=0(p —k )a~(p)+8(k —p )a~(k) . (5.4)

So by using these two different versions of the gap equa-
tion we reduce the risk that our conclusions will depend
heavily on the validity of the 0 approximation.

Furthermore, a&(x) in (5.2) is given by

1277a, (x)=
(32—2n)in[(r+x)/A ]

(5.5)

12m'
az(x) =

(33—2n)ln[(x+4m )/A ]
(5.6)

m being the gluon mass. We have used our improved

where ~ is an adjustable parameter, not explicitly associ-
ated with anything physical, whereas in (5.3) we have, for
0!2,
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FIG. 7. Plot of the dynamical fermion masses M vs n, (0) for
various values of the gluon mass m. The solid curve comes
from the fermion gap equation, and the other curves come from
the vertex equation. The solid curve is calculated for m =0; any
other value of m yields smaller values of M for a given cz, (0).

with /=4. 8, instead of the functions a, 2 in the gap equa-
tions, and solved them numerically. The results are
shown in Fig. 7, where they are compared to analogous
results from the vertex equation. Both this and the gap
equation yield a relation between the fermion mass M and
a, (0), and the major result of our work is that these rela-
tions are incompatible for gluon masses m )m, =1.1A.
The gap equation is calculated with a massless gluon
propagator, which gives the most optimistic case; if a
massive gluon propagator is used, a, (0) must be larger to
achieve a given M. But (as shown in the figure) if m is in-
creased in the vertex equation, a, (0) decreases.

VI. CONCLUSIONS

As we have said before, the gap equation and the ver-
tex equation are inconsistent because the vertex equation
requires a reasonably large gluon mass in order to have a
nonsingular solution, and this prevents the running cou-
pling from getting large enough to drive chiral-symmetry
breaking (CSB). While the vertex equation is a fairly
crude model of the exact coupled nonlinear Schwinger-
Dyson equations of QCD, the constraints which follow
from it are quantitatively consistent with what we know
about QCD via other considerations. For example, it has
been argued [13] and confirmed [18] on the lattice that
the gluon mass is about 500—600 MeV, comfortably above
the critical value 1.1A, and a 500-MeV gluon mass gives
a, (0)=0.5, as required by, e.g. , quarkonium potentials
[19]. Furthermore, the vertex equation yields the right
UV asymptotics. We are confident that our vertex equa-

running coupling of (4.10),

a, (x)= 12&

33 in[(x+gm )/A ]
—4ln[(x +/M )/A ]

(5.7)

M =a'"+MAC (M) (6.1)

may show unusual sensitivities and behavior, depending
on the derivative of E near the point Mo, where
IC(MO)=1. For example, a very small slope makes the
solution to (6.1) hypersensitive to the confinement term.
The study [11]of non-Abelian gauge theories with small
b&-b2 is interesting for many reasons, and CSB in such
theories requires a separate investigation along the lines
suggested in this paper, with the addition of confinement
effects, if appropriate.

There is one important circumstance in QCD where
confinement is missing and the results of this paper are
(broadly speaking, but not in detail) applicable. That is at
temperatures above the deconfinement transition, where
by definition confining forces are absent. Our results sug-
gest that this must also be the CSB phase-transition tem-
perature, since we have seen that without confinement
there is no CSB. To verify this in detail, of course, re-
quires a study of the vertex and the gap equations at finite
temperature. Such a study will be pursued in the near fu-
ture.
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tion is as accurate in its domain as the various fermion
gap equations [e.g., (5.2), (5.3)] are in theirs, and the
reason for their mutual inconsistency is not because of
inaccuracies of the models, but because confinement has
not been taken into account.

This is not to say that it is always necessary that CSB
be driven by confinement in non-Abelian gauge theories.
What makes it necessary in QCD is that quark contribu-
tion to the P function, as measured by b2, is rather small
compared to the gluon contribution b&. Clearly, as the
number of flavors increases, or (as might happen in some
other domain, such as grand-unified theories) for some
other reason b2 gets closer to the size of b &, the running
charge gets larger because the fermions tend to cancel the
gluons in the denominator of the running charge [see,
e.g., (4.10)]. If QCD had seven or eight flavors it would
not be surprising that there would be CSB without
confinement.

A theory with b, - b2 small may have a pitfall, howev-
er. In general, non-Abelian gauge theories will have
confinement, as that both confinement mechanisms such
as discussed in the introduction and single-gluon-
exchange mechanisms such as discussed here will be
operative. The latter leads to a gap equation schematical-
ly of the form M=MR(M), where K(M) depends on M
through nonlinearities in the gap equation. Confinement,
as discussed in the introduction, essentially yields
M=cr', where o. is the string tension. The naive com-
bination of mechanism. s as in
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