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Spectrum of the effective SU(3) Hamiltonian in a small volume
computed by path-integral Monte Carlo integration
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Using a simple Monte Carlo integration method for quantum-mechanical problems on a "time lattice"
the mass gaps of the low-lying states of Luscher s eff'ective Hamiltonian with and without massless fer-
mions for a small volume are computed. While there is good agreement between this method and previ-
ous Rayleigh-Ritz-type calculations in the case of SU(2), notable differences are found in the case of
SU(3) for most states. The statistical and systematic errors are competitive with those of the variational
method. Having no dependence on basis set size, the Monte Carlo method is a good alternative to the
Rayleigh-Ritz calculations also for SU(3) ~ An extension of the method to intermediate volumes includ-
ing fermions is definitely possible.

I. INTRODUCTION

While QCD perturbation theory allows the computa-
tion of many processes at high momentum transfer or
small distances because the running coupling constant is
small there, large-distance or low-momentum predictions
such as the mass spectrum and the question of quark and
gluon confinement are thwarted by the infrared diver-
gence of the renormalized coupling constant. Qne sys-
tematic approach pioneered by Luscher to control the in-
frared problem is to work in a small periodic volume,
which provides a discrete momentum spectrum of the
fields. As long as the box is small enough the spacing be-
tween momenta is large and the renormalized coupling
constant is small enough for perturbation theory to ap-
ply; i.e., one is allowed to treat higher momentum modes
as a perturbation to the lower modes. So integrating out
all spatially nonconstant modes of the gauge fields in
one-loop perturbation theory Liischer obtained the first
terms of an effective Hamiltonian for the spatially con-
stant fields in a small cubic box of length I. with periodic
boundary conditions [1]. The corresponding Lagrangian
has the form

L =g ~ (1+g F2)

X(—'c &c a+ 'f ~ ef «c~c C~c—d)+g ~ K c. c~
2 ~ & 4 I 1 i i

+g (Ics c c.c c +Ks c.c.c c )3 i i j j 4 i i i i

where g is the renormalized coupling constant, and the c
are the constant gauge fields in the temporal gauge scaled
with Lg . The dot means differentiation with respect
to r= t/L, f'"' are the structure constants of SU(N), s'"'
is the totally symmetric invariant tensor, and summation
over spatial index i and color index a = [1, . . . , N 1]is-
implied. The ~ factors result from the momentum sum-
mation of the one-loop quantum corrections to the classi-
cal Hamiltonian. Higher-order terms were computed by
Koller and van Baal [2], but are not used here, because
they give only very small corrections that this method of
obtaining the mass gap cannot show, and would only

prevent a comparison of the results obtained from this
method with the Rayleigh-Ritz calculations of Liischer
and Miinster [3], Ziemann [4], and Weisz and Ziemann
[5]. The effective Hamiltonian has N degenerate
"vacua" due to symmetry under the so-called "central
conjugations" [1]. For small g the N "potential wells"
can be considered as separate, while for g of order 1 tun-
neling between the "vacua" sets in and breaks the degen-
eracy [2]. In this paper only the small-g case is con-
sidered corresponding to volumes with a box length of
about one correlation length g of the scalar glueball,
i.e., z =mL =L /g= 1. The so-called intermediate
volume range extends to about five correlation lengths.
Comparison with lattice-gauge-theory Monte Carlo com-
putations shows that for bigger box lengths the effective
Hamiltonian approximation breaks down [6].

In a theory with nF massless fermion fields one can in-
tegrate out the fermion fields completely and obtain again
an effective Hamiltonian for the constant gauge fields
[7—10]. Choosing antiperiodic boundary conditions the
form of the effective Hamiltonian for the potential well
centered around c =0 is the same as in the pure gauge
theory, only the ~ coefficients are changed, whereas the
other potential wells are also lifted, thereby removing the
vacuum degeneracy.

For pure gauge fields the spectrum was determined by
variational methods for SU(2) and SU(3) in small [3—5]
and intermediate volumes [2,11,12]. In the case of SU(3)
in a small volume [4,5] the number of basis functions for
the variational method was rather small for some states.
As is well known, a too-small basis for the trial wave
functions causes a systematic overestimation of the ener-
gy levels by the Rayleigh-Ritz method. It also seems that
in intermediate volumes a determination of the spectrum
including fermions is possible only by using the Monte
Carlo (MC) method for quantum-mechanical problems,
as introduced by Kripfganz and Michael for SU(2) in
small [8] and intermediate (Kripfganz and Michael [9]
and Michael [10])volumes. Of course, the MC method is
plagued by finite-size effects, finite-time-step errors, sta-
tistical errors, and the like, but in order to cover the in-

1280 1991 The American Physical Society



SPECTRUM OF THE EFFECTIVE SU(3) HAMILTONIAN IN A. . .

TABLE I. Expressions for operators for the various irreps measured. P denotes parity and C charge conjugation. The first
column uses the notation of [4], while the second gives explicit expressions. The summation convention is always used.

irrep

E++
2

T ++
2
+ +
1

Al +

A i+

T+
T+
T+ +

I

T—+

T+
T]
A2

Notation of [4]

(ij)
(ii)

Im[e;i„(ijk) ]
Im[(ij)(kll)(ijkmm) ]

Im[ekl (klm)(ij) ]
Im[(ik)( jkll) ]

Re[(jl)(lkmm)e;ik ]
Im[( jkk)(ijll) ]
Im [@;,„(jkll) ]

(ijj)
(ijk)

Explicit

clc1 c2c2 and cyclic;

cocci

+ceca 2c3c3 and

Ci Ci
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(Cfcf)[c; C d f gCk(d "'Cgc/"C~ )d eC Ce ]
(EkI f~ ~c~gC C~ )C;dC

(Cfcg)(C~C f~ ed e~ C~ C )

(cicf)(c;c d' 'd" c' c" )e;i„
(d~ CJcgC )(C~c f~ ede~ C~. C )
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c'c "c

J J
d abcC aC. C

c
i j k

cyclic

termediate volume range in the presence of ferrnions also
for SU(3), it seems mandatory to extend the MC method
to this group. Hopefully the accuracy achievable will be
high enough to allow a useful comparison with SU(3) lat-
tice calculations with dynamical fermions in the corre-
sponding volume range.

As a first step toward this goal the mass gaps for the
various glueball states for SU(3) in small volumes were
computed with the Monte Carlo method on a large time
lattice, in order to check the accuracy and feasibility of
such a computation. Despite the above-mentioned
difhculties of this method it was found that the mass gaps
are smaller than those computed by variational methods
and the statistical and estimated systematic errors are
competitive with the error of the variational method
caused by the finite basis set size.

II. MONTE CARLO INTEGRATION

As the rotational symmetry of the system is broken by
the torus topology, the effective Lagrangian contains a
term [the last in (1.1)] that breaks the O(3) symmetry.
The remaining symmetry is that of the cubic group and
so the states measured were chosen as irreducible repre-

sentations (irreps) of this group. Additional symmetries
are parity P and charge conjugation C [only for SU(3)].
Table I shows the Operators measured for each state. A
vectorized (odd-even) Metropolis Monte Carlo routine is
used to compute the spectrum ([8,9] and references
therein). After every 20th sweep [15th for SU(3)] through
the time lattice the correlation functions of the various
representations of the "glueball states" are measured.
Vector and tensor state operators were constructed for all
possible space directions. The correlation functions were
checked for invariance against permutation of the coordi-
nate axes and then averaged over all space directions.
For the determination of the mass gaps from the correla-
tion functions see [9,10].

In the case of SU(2) the data are binned [13] in 128 bins
of 250 measurements. The number of thermalization up-
dates correspond to 16 bins. The error bars are comput-
ed with the data partitioned into 128, 64, 32, and 16 bins,
respectively and the largest is given. Most data points
were obtained with a time step of 0.2 on a lattice of 400
sites. For the highest g values also time steps of 0.15 and
0.1 on a corresponding larger time lattice were probed to
check for finite-time-step errors. For SU(3) the data were
binned in 400 bins of 40 measurements. The number of

TABLE II. SU(3) pure gauge theory mass ratios z(irrep )/z ++ for g=0 obtained by Rayleigh-Ritz [4,5], MC results for four g
values, and variational results [11]for g=0.4.

g++
z(irrep )/z ++

T++
2

A++
1

A, +
A',.—

T
+

T+
E+
T++

1

T—+
T+-
T 'j

1.000
1.230
2.30
6.80
3.71
3.71
4.20
4.20)3.3
4.60
2.39
1.97
1.73

lg2 0I

1.013(13)
1.25(2)
2.35(5)
5.49(14)
3.42(5)
3.45(5)
4.05(7)
4.09(5)
3.99(6)
4.87(7)
2.72(5)
1.82(3)
1.55(2)

g =001

0.448(10)

1.006(27)
1.28(5)
2.45(5)
5.56(20)
3.63(10)
3.61(7)
4.22(7)
4.22(7)
4.15(10)
4.99(10)
2.84(7)
1.83(4)
1.57(4)

g =005

0.715(9)

0.994(19)
1.25(11)
2.63(4)
5.61(16)
3.77(5)
3.76(6)
4.39(6)
4.38(7)
4.42(9)
5.19(9)
2.93(6)
1.86(4)
1.57(3)

g =0.16

0.956(8)

0.990(13)
1.23(4)
2.78(4)
5.87(20)
3.98(8)
3.95(6)
4.72(6)
4.68(7)
4.60(10)
5.33(16)
3.22(5)
1.86(4)
1.57(2)

g'=0. 16 [11]

0.993

1.078
1.309
3.22
6.45
4.18

4.94

3.28
5.39
3.48
1.90
1.67
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initialization sweeps corresponds to 24 bins. The errors
of the z values and the mass ratios were eornputed using
the jackknife method ([14] and references therein) for
400, 200, . . . , 25 bins, and if there is no plateau value the
largest error is given. The results quoted in Table II for
SU(3) pure gauge theory are all obtained with a time step
of 0.15 and 320 time slices in the periodic time lattice. A
variation of the time step to 0.2 shows no deviation
beyond the statistical error, which is larger than for
SU(2) because of limitations in computer time. (The pro-
duction of one bin needs 150 sec on an IBM 3090.) For g
much smaller than 0.1 the MC method becomes unpracti-
cal, because the mass gaps go to zero with vanishing g.
As for g —+0 the lowest-order terms (the classical La-
grangian) dominate, the mass gaps are proportional tog, and so the mass ratios are independent of g; one ean
simulate the mass ratios for g =0 by discarding all
higher-order terms in the efFective Lagrangian and per-
forming the simulation at a conveniently chosen g. Since
the mass-ratio curves are almost fiat near z=0, the z
values in the gap that cannot be measured could be ob-
tained by interpolation.

III. RESULTS AND DISCUSSION
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FIG. 2. Same plot as for Fig. 1 showing only
m(A &+ )/m(E+) and m(T2+ )/m(E+). Crosses with diamonds
denote the data points obtained with nF =3.

(a) SU(2): For this group the Monte Carlo (MC)
method was first used by Kripfganz and Michael [8,9]
and the reproduction of their results serves only to illus-
trate the accuracy of the method. Figures 1 and 2 show
rather good agreement between the Monte Carlo and the
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FIG. 1. SU(2) mass ratios m (irrep ) /m (E+ )
=z(irrep ) /z (E+ ), plotted against Luscher's scaling variable
z +. (P denotes parity. ) In ascending order the states shown

are T&, A &, A, , T2 . The solid line shows the results of
Liischer and Miinster [3],while the dotted line is obtained using
van Baal's results [7] for n+= 3. All mass ratios are determined
with a time step of 0.2, except the last two with the highest z +,E
for which a time step of 0.1 is used. This holds for pure gauge
as well as for the case with fermions.

variational methods, as also reported in [9]. The solid
line marks the results of Liischer and Miinster [3], and
the dotted line is obtained with three massless fermions
using van Baal's results [7]. For SU(2) a notable time-
step error is observed for large z + as the mass ratios for

and T2 diminish somewhat going from time step 0.2
over 0.15 down to 0.1. (An appropriately longer time lat-
tice is always used to keep the physical time extent con-
stant. ) This reduction of the mass ratios is caused mainly
by an increase of z + by about one percent for each de-
crease of the time step, while the increments of the z
values for T2+ and A, are slightly smaller, and z

T2
shows no dependence on time step at all. The z + value

AI
changes by three to five percent on going from time step
0.2 to 0.1, but the statistical error is rather large anyway.
So there seems to be no plateau value reached by decreas-
ing the time step, and although it is possible that the
remaining deviations of the MC points in Fig. 1 would
disappear if one could go to smaller time steps, as the au-
tocorrelation grows with decreasing time step, this is un-
fortunately unpractical. With the given statistics the
difFerence between the curves with and without three fer-
mion flavors could not be resolved using this method for
z smaller than 0.5 for the 3

&
and T2 states and for

z + smaller than 0.75 for the 2 &+ state. Since the Hamil-
tonian scales with g in lowest order, mass ratios are in-
dependent of g and therefore of z + to this order. The
term in the efFective Lagrangian which causes the main
deviation of the mass ratios from a constant value for all
z + is ~&, because the ~3 and ~4 factors are 1 and 2 orders
of magnitude smaller. As a.

&
is reduced by including fer-

mions, it is obvious that the mass-ratio curves have to be-
come more fiat and meet the pure gauge curves in the
limit g~0, i.e., z +~0. The 2

&
state seems to lie a lit-
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tie below the variational result and to increase more
strongly with increasing z +, but the difference is small

and this observation may be an overinterpretation of the
data. The splitting caused by the last term in the effective
Lagrangian of the E+ and T&+ states, which should com-
bine in the infinite-volume limit to the 2+ glueballs, is of
course not resolved by the MC method in the small-
volume range, because the ~4 factor is too small. For
pure gauge fields tunneling sets in around z + =0.9E
whereas with three fermion fields tunneling occurs short-
ly before z +=1.2. This shows up in the MC computa-E
tion by a sudden increase of z + relative to z +. Howev-

2

er, since the MC routine used for this work is not stable
for this g value, no z ratios are given here.

(b) SU(3): Table II displays the MC results for pure
gauge fields, the results of Vohwinkel for the lowest value
of g given in [11],and also the mass ratios Ziemann [4]
and Weisz and Ziemann [5] obtained at g=O. Although
in [5] mass ratios for all relevant z ++ values are given,

only those for g=O are quoted here, because a compar-
ison at other g values would show qualitatively the same
results. Rather good agreement is found for the E++,
T2 + 3 i and 3, + states. The difference between
the MC and variational result of [11]for E + is a 4o. de-
viation and may be caused by the inclusion of sixth-order
terms in the effective Hamiltonian by Vohwinkel or finite
basis set size effects (although estimated to be smaller
than two percent) or the finite-time-step error of the MC
method. As for the scalar 3 &++ the connected correla-
tion function has to be computed to determine the mass
gap; the statistical error is rather large. So no improve-
ment in accuracy is gained compared with the variational
method. However, for the 3,+, T2 +, T2+, E+

, and T, states the results show the mass gaps
notably reduced in comparison with the variational cal-
culations. This is certainly the effect of a too-small basis
set in the Rayleigh-Ritz-type calculations, since a varia-
tion of the time step to 0.2 shows no deviation within the
error. Unfortunately, the correlation functions for A

&E, and T2 provided no mass estimate worth quot-
ing. Regarding the results of Table II one has to note the
following when comparing with the variational results.

The T, is an irreducible representation of the cubic
group that is contained not only in the spin-1 representa-
tion but also in the spin-3 (and higher spin) representa-
tion of the rotation group. That means T2 and A2 com-
bine with T, to a spin-3 state if the rotational invariance
is unbroken. So the T, should be degenerate with
A2 or smaller in mass. However, because the term in
the Lagrangian breaking the rotational symmetry is so
small and the T, operator constructed is a spin-1
operator when rotational invariance is unbroken, it pro-
jects almost completely on the T, belonging to the
1 state. So only the A z correlation function gives

the mass gap of the 3 spin state.
Similarly, the T&++ operator projects not on the T&++

belonging to the spin 4++, which Vohwinkel found to be
the spin state containing T&++ with the smallest mass,
but on 1++. Unfortunately, the value obtained by MC
does not agree with the mass value given in [11] for the
next highest T&++ not belonging to 4++. That the rota-
tional symmetry is unbroken in small volumes is shown in
addition by the degeneracy of T2+ and E+, which be-
long to the 2+ state, as well as T2 + and E + belong-
ing to 2

The slight deviation of the T, + at g=O in comparison
with the variational computation could be explained by
the fact that an excited state is nearby (at 4.86, if one
scales the result of Vohwinkel linearly down to g=O).
This could lead to the measurement of an effective mass
value which is bigger than the real mass gap.

The effect of fermions with antiperiodic boundary con-
ditions on the mass ratios is smaller for SU(3) than for
SU(2) because the bosonic part of the i~. , coefficient, which
determines the slope of the mass-ratio curves for the vari-
ous states, is proportional to N in case of SU(N), whereas
the fermionic part is independent of X. Because for
SU(3) most mass-ratio curves are rather fiat even for
nF=3 only a minor effect is to be expected for small
volumes. With the statistics accumulated to date no
meaningful prediction or comparison with van Baal s re-
scaling formula [7] is possible, so the publication of these
results is postponed until the accuracy is high enough.

IV. CONCLUSIONS

It was shown that one can obtain reliable results for
the low-lying mass states of the effective SU(3) Lagrang-
ian with a path-integral Monte Carlo method, which is
not affected by basis set size effects like the Rayleigh-Ritz
method. This is shown by comparing the lower mass gap
estimates obtained by MC with the variational results [5]
for states where only a small basis was constructed. With
improvements regarding computational eKciency and
finite-time-step error [15,16], the Monte Carlo method
should also give results that are competitive with the
variational method in intermediate volumes. As nobody
has been able so far to include fermions in the Rayleigh-
Ritz method, the use of this Monte Carlo method is
presently the only way which offers the hope of providing
predictions for SU(3) lattice-gauge-theory computations
with dynamical fermions in intermediate volumes.
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