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Order-to-chaos transition in SU(2) Yang-Mills-Higgs theory
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The onset of dynamical chaos is numerically studied in spherically symmetric time-dependent SU(2)
Yang-Mills-Higgs theory. From the induction phenomena and the dependence of the maximal
Lyapunov exponents on perturbations to the 't Hooft —Polyakov magnetic-monopole solution we find

that there exists a critical value of the perturbation, below which the system is regular. Above this criti-
cal value, the phase transition from order to chaos takes place and thus the system exhibits a spatiotem-
poral chaos which generates a random inhomogeneity of the color fields. Various characteristics of a
regular phase and a chaotic one and the configurations of the fields are investigated by means of the real
time evolution of the system.

I. INTRODUCTION

Much attention has been paid in the last decade to the
question of the integrability of Yang-Mills (YM) fields
[1—4]. Most studies made so far have confined them-
selves to YM classical mechanics [1] where gauge fields
depend on time alone and have revealed that this is a
nonintegrable and chaotic system.

It has been recently shown that the SU(2) YM equation
in 3+ 1 dimensions is a nonintegrable system for the case
of the time-dependent spherically symmetric solution
[2—4]. Especially the phase space near the Wu-Yang
magnetic-monopole solution [5] is clarified to become er-
godic and chaotic under even infinitesimally small pertur-
bation [4]. This result supports the consequence that YM
classical mechanics is a Kolmogorov K system [6], which
possesses the properties of ergodicity and mixing. The
chaos in YM theory has been speculated to connect with
the problems of the QCD vacuum and color confinement
[7]. It is thus time for an analysis of a more realistic case
including Higgs fields from these viewpoints.

In this paper we study numerically the chaotic proper-
ties of the 't Hooft —Polyakov magnetic-monopole solu-
tions [8] in the SU(2) Yang-Mills-Higgs (YMH) theory.
We adopt the Fermi-Pasta-Ulam approach [9] in which
continuous equations are replaced by a set of discrete
ones. By solving a set of the field equations in real time
we first study the distribution of the mode energy among
harmonics. From the pattern of the energy sharing
among normal modes we show that the induction
phenomenon [10] occurs at a large perturbation region.
This phenomenon gives some information on the mecha-
nism of the onset of chaos; i.e., its existence indicates that
the system undergoes a thermalization and becomes er-
godic. Next we calculate the maximal Lyapunov ex-
ponents [11]to judge whether or not the system is chaot-
ic. The sign of their exponents provides a reliable cri-

II. FORMULATION

The Lagrangian density for the SU(2) YMH system we
consider is [8]

I. = —,'F„'g""+,'D„—P'D"P' V—(P), —

—eE'b'2„P', and the Higgs potential is V(P)=(A, /
4)(P.P —v ) . The equations of motion are

(D F" ).= «.b, gb(D"P), —,
(D"D P) = —A,P (P P v)— (2)

Using the time-dependent 't Hooft —Polyakov ansatz
[8,12] for the YM gauge field 3 „' and the Higgs field P,
as

g A,'(g, r)= —ve„.,g [1—G(g, r)],
g P, (g, r) = —vg', H(g, r),

the above equations of motion reduce to

terion to distinguish between a regular system and chaos.
Then we clarify the dependence of the Lyapunov ex-
ponents on the strength of the perturbation.

These analyses lead us to the remarkable consequence
that there exists a phase transition in this system in the
following sense: In the small perturbation to the
't Hooft —Polyakov monopole solution, the motion is reg-
ular and the system is close to the integrable one. As the
strength of the perturbation increases above a critical
value, the motion becomes chaotic. Since the pure SU(2)
YM system is always chaotic [4], this result clarifies an
interesting role of the Higgs field that tends to order the
system. The existence of these two phases affects the spa-
tiotemporal behavior of the YM field and the Higgs field.
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g (8,—Bg)6 = —H'G —6(G' —1),

(2(B,—B()H = 2G—H aH—(H g—), (7)

where j= cur and r =cut denote the variables of space

and time, respectively, and I~=A, /e the coupling con-
stant. We use the gauge 3 0 =0. The masses of the gauge
and Higgs bosons are M„=eu and MH=&2i, v, respec-
tively, and then ~=MH/2M&. The total energy of the
system is given by

G H
E = J dg (B„G) +(i) 6) + (G —1) + —,'(B~) + (gB H H) —+ + (H g)— (8)

For the numerical analysis of this SU(2) YMH system,
we approximate Eqs. (6) and (7) by a set of nonlinear cou-
pled oscillators, G(i, r) and H(i, r), by means of the
Fermi-Pasta-Ulam method [9]. Here a discretization of
space is introduced through (=i Xa with lattice spacing
a and i =1,2, . . . , X. In order to study the perturbations
near the static solutions G, (i ) and H, (i ) of the
't Hooft —Polyakov magnetic-monopole [8], we expand 6
and H by harmonics around the static solutions. The
YM field G and the Higgs field H are given by

G(i r) 6.(i) 2 x —i ps(j r)

eh(i r) ""
N

(9)

As the boundary conditions must be imposed in order
that the total energy be finite, we put

6(0,r)=1, H(0, r)=0, G(N, r)=0, H(N, r)=Na .

(10)
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32

(Aai4$8l
30

570

(~2) xh

III'k:: II';&
30

j
32 5SI)If()'IM~ABN%hlSr~amwem~m™aa+%1%gglllNNkHeae'a~~m~iicawVemmaaaegli%%$%$lll41kk

in the YM fields and the Higgs fields with ~=1.0 and a
spatial volume X =64. From the pattern of shade corre-
sponding to the degree of magnitudes of energy E shared
to the mode j, we notice several regularities for 3 =0. 1

as shown in Figs. 1(al) and 1(a2): The energy transfer
occurs periodically at every 17—18 in the real-time unit
between the mode 32 and its adjacent modes in the YM
fields (al), and the same periodicity is also observed in the

The appropriate initial conditions are

6(i,O)=0, H(i, O)=0 .
time 12000

III. INDUCTION PHENOMENA DUE TO ENERGY
SHARING AMONG NORMAL MODES Ei

As one of the basic indicators of the stochastic charac-
ter of the system with many degrees of freedom, it is fre-
quently used to measure the energy sharing among nor-
mal modes [9,10,13]. In this paper, we calculate them by
exciting initially the mode j=N/2 alone of the YM field
in Eq. (9), i.e., fs(N/2, 0)= A and ph (j,O) =0 in addition
to Eq. (11). The strength of the initial perturbation is
thus determined by the amplitude A. In the numerical
simulation we use the eighth-order Runge-Kutta routine
with time-step size ht =0.03 and space-step size a =0.1.
This value of ht was chosen small enough to maintain the
total energy to a relative error of 10 after 10 iterations
[14], i.e., r=3X 10 . Similarly, the lattice spacing a was
chosen so as to assure that the monopole masses calculat-
ed here were coincident with those [8,15] obtained previ-
ously to within an accuracy of 1 —2%%uo.

Figure 1 gives examples of the time evolution of the en-
ergy sharing among 64 normal modes for 3 = 1.5 and 0.1

(b2)

time 12000

FIG. 1. Time evolution of the energy sharing of the initial
mode energy E» among 64 normal modes for ~=1.0 and
N=64. Evolution in the Yang-Mills field is (al) for A =0.1

and (b1) for A =1.5. Similarly, the evolution in the Higgs field

is (a2) for A =0. 1 and (b2) for A =1.5. The degree of shade
corresponds to the magnitude of EJ.. Vertical axis represents
the mode energy EJ for j = 1 —64.
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Higgs fields (a2). The coupled oscillation between both
fields exists with a period =140. Furthermore, we ob-
serve that the energy E3z becomes maximum at every
~=6.0X 10, i.e., the recurrence takes place at this inter-
val. Thus the motion is quasiperiodic and lies on the in-
variant Kolmogorov-Arnold-Moser (KAM) tori [11].
For A =1.5, on the other hand, the energy transfer
changes among all modes chaotically after the energy
sharing starts between the neighborhood of the mode 32
and other modes such as j = 11, 18, 47, and 53 as shown
in Figs. 1(bl) and 1(b2). Thus the remarkable recurrence
is not observed in this case any more although we notice
features similar to the case of A =0. 1 at an early stage of
time evolution.

These results suggest that in this system there exist two
types of behavior depending on the magnitude of A: i.e.,
the quasiperiodic motion for very small A and the sto-
chastic one for large A. In fact, we can observe the in-
duction phenomenon [10] for 2 =1.5 which implies the
system will become stochastic. This phenomenon is de-
scribed as follows: The initial energy given to one normal
mode remains almost unchanged during a certain amount
of time T; called an induction period, and then the ener-

gy sharing starts violently after T, . Such a behavior can
be observed for the energy E3z in Figs. 1(bl) and l(b2).
However, if we take into account the quasiperiodic ener-

2.0—

gy transfer between the mode 32 and its neighbor, we
could expect clearer behavior for the combined energies
E composed of three modes (j=31—33). Indeed we can
obtain a distinct induction phenomenon for such a corn-
bination of modes and measure the induction period
T, =2.0X10 for the YM field as shown in Fig. 2(a).
Here the value of T,. is defined by the time when the ener-

gy of the excited mode is reduced to half of the initial
value.

In order to check whether or not these results such as
recurrence times and induction phenomena strongly de-
pend on the relatively coarse discretization and nearby
boundaries, we have studied different sizes of the system.
The effect of the coarse discretization and boundaries on
the calculation is measured by tuning both N and a ap-
propriately. For several sizes of the physical volume Na
the values of the induction period T; have been obtained
under the same strength of the perturbation as one
determined by A = 1.5 and N =64 as follows:
(Na, N, a, T; ) = (3.2, 64, 0.05, 2500); (6.4,32,0.2, 1500),
( 6.4,64,0.1,2000 [Fig. 2(a)] ), (6.4, 128,0.05,2050);
(12.8,32,0.4,2000), (12.8,64,0.2,2400), ( 12.8, 128,0.1,2050
[Fig. 2(b)] ); (25.6,32,0.8,2500), (25.6,64,0.4, 1950 [Fig.
2(c)]), (25.6, 128,0.2, 1900); (51.2,64,0.8,2250), and
(51.2, 128,0.4, 1600). Values of the induction period
changed somewhat according to the conditions under
which we carried out our numerical calculations but they
seem to be reasonable convergence as the lattice spacing
approaches zero for fixed physical volume. Since the
monopole core has radius /Me--I as will be shown in Sec.
V, the maximum value of the physical volume Na we con-
sidered is almost 50 times larger than the size of the
monopole. Thus the above data seem to indicate that the
induction phenomena can occur after the elapse of
T;=2060 for A =1.5 even at a larger volume without
essentially reQecting boundary conditions. Above results,
therefore, strongly suggest that the induction phenomena
are not due to the discretization effects nor nearby boun-
daries in the SU(2) YMH equations restricted to a small
volume but they are characteristic of the real dynamics of
the original infinite volume equations.

0.0(c)

}
& '(i

1.0

0.0

JIJ

I

12000

IV. TWO PHASES CHARACTERIZED BY MAXIMAL
LYAPUNOV EXPONENTS

Chaos comes from the property of the mixing [11].
Since the induction period is characteristic for the ap-
proach to thermal equilibrium, the SU(2) YMH system
becomes ergodic after a finite time. However the ergodi-
city does not always imply the mixing. In order to deter-
mine whether or not our system is chaotic, we need to
measure the maximal Lyapunov exponent o. This ex-
ponent is defined as [11]

FIG. 2. Induction phenomena observed near the
't Hooft —Polyakov magnetic-monopole solution for the com-
bined mode energies EJ with j =N/2, N/2+1 of the Yang-Mills
Seld with ~=1.0. (a) A =1.5, a =0.1, and 1V =64; (b)
A =&2X1.5, a =0.1, and N =128; and (c) A =1.5, a =0.4,
and N =64. Other modes excited after the induction period are
not depicted.

1 d(~)o. = lim —ln
d (0)

N —1

d(r)= g (uk —uk)
k=1

' 1/2

(12)

(13)

where d(r) is a distance between the two neighboring
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fields whose initial position is separated by e and

uk (i, ~) = ( G, G, H, H ). The exponent cr is a measure of
the average exponential rate of divergence of nearby tra-
jectories in the phase space. A constant positive o. means
that the system is chaotic. On the other hand, the regu-
lar motion is characterized by o. =0. Figure 3 shows
several plots of the maximal Lyapunov exponents 0. as
function of the amplitudes A for four di8'erent values of
the coupling constant ~. Here we took a=1.0X10
a =0.1, and N =64. From Fig. 3 we find that there exist
the critical values A, =0.6—1.0 for ~=0.0, 1.0, 10.0, and
50.0 at which o. becomes zero and then the system be-
comes regular for A & A, and chaotic for A ) A, .

We also have checked the dependence of o. on the
coarse discretization and the physical volume. For in-
stance, we obtained values of o. for A =1.5 and v=1.0
as follows: (Xa,N, a, o ( X 10 ))=(6.4, 32,0.2, 3.09
+0.44), (6.4, 64, 0. 1,4.92+0.80 [Fig. 3(b)] },
(6.4, 128,0.05,6.93 +0.82), and (12.8, 128,0.1,3.19+1.31),

which seems to be reasonable convergence. The magni-
tude of o. gives us a quantitative measure of just how
chaotic it is and thus the chaotic state of our system is
characterized by o. =4. 53 X 10 for A = 1.5 and ~= 1.0.
By similar analyses we obtained qualitatively the same
dependence of o. on A as Fig. 3 calculated with N =64
and a =0.1.

Therefore the existence of A, seems to be characteris-
tic of the real dynamics of SU(2) YMH equations in
infinite volume and we could expect that the phase transi-
tion from order to chaos occurs above this critical value.
This result is consistent with the patterns observed in the
energy sharing in Sec. III. This striking feature charac-
terizes the SU(2) YMH system, so that this is quite
different from the SU(2) YM system which is always
chaotic near the Wu-Yang monopole solution for lack of
3, [4]. Our result shows that the Higgs fields are neces-
sary to have an ordered phase in the theory.

(a) 0.01

0

(b) 0.0l

hXX%g%t't't'ttttttt%%%'t%'t'tttttt&tts ~ i~hhit. itit t~tttttttt, ('tt
t ~ (i t t ti I[

- ~ ~ ~~mitt tt t t'I'I'"""'I""&t
~ ~ i a l l i t t t t 't 1' I' I' ~' " I' "" " $ t

(b1)

(a2)
L

& I

II l1

1

4 1

i I

I LQ i

u

t t

a a
a l

4

(b2)

. ,',", il' f t i'i'i'i'f ffff'rrr'rrdd/
,'i'ttt]'iaaf'fffrrrrrrrrr~

", ttfi)'fi'ffrrrrrrzrr~~r'ftPi'i'i'i'f'rr'rrrr'rr'r~~~~itpiiirrrrrrrrr~~~~~~''fpttf'fff'rrrrr~aaa~~~~ffftj'iffrrrprrzZa~www~~tfpiitrr'r'r&saezwwr~w~~pprraaaagr~~~~

(c) 0 05

0 I

2

=—4 4 «««% %% % 4, h & h, h, h h h h h h h««% «&%a%aw++4, + h, hh, h h h h h $ h««as, s.&&1 h, &h. h %hh h h t h h- = - = =. ««V. iwhhV, h. hh hhh h h W

g~xhggENt't'thtt$g. a$ttttt~~tt
t$t ~ t~ttt~ttt'
a1'l'at"'t t'"t t"
a (' I' l t " 1' t t " " t t "

f'lg

I)
'i
i

", '", i t PP

'''itfii
, i jiiip'ttptt'

tt
t t
4 4

4 4

Pi'i'iJ'f'f'f'fffffrr)
t'i'tff')'itf'ffi'i'i'i'if ffff'frr'rr'r
fi'i'i')'ffffffrr)rrpt'I'i'fiffffrrrrrrrw]'ii)'iffff'rrr&rrrr)'Piif'ffrtrrrrrrrriiffffrrrrrrrar~ii'tf'r'fr'r')prpr8pppi)'frrrrrrrrw~~~~~i'iffrrrrrgzaaz~~&iifrrrrrwwwwww~~~PPfrrrwrrar~~~~~~

0

((j) 0.25

~~ C) Cl

1

I

2

(c1)
~ ~ ~ i ~ s a ~ a 4 4 ~

t ~ 1 ~ i \ $ ~

~ ~ ~ ~ o ~ t ~ s i ~ ~ i 1 ~~, + o ~ ~ o o s ~ i o 4
~ o ~ e ~ ~ ~ ~ ~ i t ~ ~ ~

~ ~ ~ ~ '~ 0 i 0 ~

~ t ~ 4 ~ ~ ~ ~ f ~ Q ~

~ ~ ~ + 0 ~

~ i ~ ~ ~ ~ 1 ~

'I Q ~ ~

~ ~

~ 0 ~

'~ 0 5 ~ ~ t ~ ~ ~ ~ ~ ~ ~

'~ 1 ~

~ t ~

~ ~

~ ~

4

~ ~ ~ ~

~ 4 ~ ~ ~

~ ~ ~ ~ t ~ ~

~ ~ I ~

~ ~ ~

~ ~ I 4 4 J ~

4 ~ ~ ~ ~ ~

~ & ~ ~ y Q Q ~ ~ ~ y ~ ~ ~ ~ ~ ~ t t ~ 4 q ~

~ ~ t % Q f + ~ ~ t ~ t ~ ~

(c2)
)fff'f'frrrrrftff'fff'r»r

tt 1 p p p prrg+Q
tt tt 4 p p pr+QQ+

f 0 p p prppgp

tttftfft&t'ttttttft0jp
ill ~ ill
4 J i 1 i ~

~ ~ f 1 p p p rpgg
~ 0 f PPPHHH

~ ~ ~ ~ ~ ~ e s rrrgp
~ ~ o ~ ~ ~
~ ~ ~ ~

~ ~ ~ ~ ~

~ ~ I ~

~ ~ ~ ~ 0 ~

4 4 ~ J ~ t ~

~ ~ + ~ 1 ~

0 ~ + ~ i ~

~ ~ 4 ~ ~

4 ~ 4 ~

g r Arrl
+Arrl

+44++
~ 4 44++

++MAW

~ ~ ~ ~ ~ ~ ~ i 4 ~

~ 0 0 ~ ~ ~ ~ 1 ~ ~ ~
~ ~ ~ ~ ~ ~ f P ~ ~ ~ ~ ~

~ i ~ ~ P ~ i ~ ~ ~ i ~ ~

~ P t ~ I 1 ~ 0 ~ ~ ~ ~

g~Qos
1

I

2

FIG. 3. Maximal Lyapunov exponents o. vs amplitudes A

around the static solution of the 't Hooft —Polyakov magnetic
monopole for N =64: (a) ~=0.0, (b) ~= 1.0, (c) sc= 10.0, and (d)
~=50.0.

FIG. 4. Time evolution of color fields for A =1.5, ~=1.0,
and %=64. (a1) and (a2) represent the configurations of the
Yang-Mills field

~
A

~

= [1—6 (g, r) ] /g and the Higgs field
'P

l

=II ( g~ r ) /g for the static solution, respectively.
Snapshots of the Yang-Mills field and the Higgs field are (b1)
and (b2) for the regular stage at ~=120, and (c1) and (c2) for the
chaotic stage at ~=11392, respectively. The quarter cycle
stands for the boundary of the monopole core at g= l.
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V. DISCUSSION AND SUMMARY

We have studied in this paper the dynamical properties
of the SU(2) YMH system in the case that the field
configuration depends on both space and time. From thy
results on the induction phenomena and the maximal
Lyapunov exponents, we have found that the order-to-
chaos transition occurs in the phase space near the
't Hooft —Polyakov monopole solution. Namely, this sys-
tern becomes a nonintegrable one with the properties
characterized by the K system at large perturbations
( 2 ) 3, ) while it is close to a near-integrable one de-
scribed by the KAM theory [11] at small perturbations
( A & 2, ). The appearance of the ordered phase is attri-
buted to the Higgs field although our present analyses are
not enough to clarify the dependence of A, on the cou-
pling ~. It is worth while noting that the order-to-chaos
transition observed here is similar to the one found in the
YMH classical mechanics [16] and the massive gauge
theory with the Chem-Simons topological term in the
limit of spatially homogeneous fields [17]. The nonin-
tegrability of this system has also been shown by means
of mathematical method such as the Painleve analysis [2].
Our numerical analyses, however, clarify the dynamical
structure of stochastic behavior of the SU(2) YMH sys-
tem which is hard to study by such analytic methods.

It is of interest to consider the field configurations in
the real time evolution under the existence of the two
phases. From the asymptotic condition that H-g and
G-0 as g~cc, Eqs. (6) and (7) dropping the time-
derivative parts reduce to G"=G and h "=2~h, where
h =g H. For larg—e g we have G —exp( —g) and
II-g —exp( —/2ttg). Thus we could expect that there

are diff'erent behavior between the inside (g& 1) and the
outside (g&1) of the monopole core defined by the
penetration length civic=M„r =1. Figure 4 shows the
time development of the YM field

~

A
~

= ( 1 —G) /g and
the Higgs field ~U 'P~ =H/g for the amplitude A =1.5
and the coupling constant v=1.0. In a regular stage of
Figs. 4(bl) and 4(b2), we notice sizable disturbance of
fields inside the core. This comes from the coupling be-
tween the mode 32 and its adjacent modes, 31 and 33.
On the other hand, after entering into a chaotic stage of
Figs. 4(cl) and 4(c2), the configurations of the fields ex-
hibit randomness in a whole region due to the excitation
of all modes.

Finally, we mention that the appearance of the regular
phase is also supported by the result of the analysis of the
linear stability that the curvature 5 E derived from Eq.
(8) for the small perturbations 5G and 5H has positive ei-
genvalues irrespective of the value of ~ for almost all
modes j. The present system is spatially inhomogeneous
because of the presence of a monopole in contrast with
the homogeneous system which has been used for the
study of the spatiotemporal chaos. Thus it may serve for
an interesting model of the Hamiltonian system [18] in
the nonlinear physics.
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