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We investigate the partial-wave scattering of longitudinally polarized t/V and Z bosons for en-
ergies Miv (( ~s && MH using an Argand-diagram analysis. We find that, for large Higgs-boson
masses MH, partial-wave unitarity is badly violated at one loop at energies ~s &( M~, and the stan-
dard model of the electroweak interactions becomes effectively strongly interacting in this sector.
The implications of this and other similar results are summarized.

I. INTRODUCTION

The mass of the Higgs boson is at present an unknown
parameter in the standard model of the electroweak inter-
actions. If MH is large, the quartic Higgs-boson coupling
constant A = MH~/2v~ is also large, and the model will
be strongly interacting in the Higgs sector. It is possible
using unitarity arguments [1, 2] to delimit the range of
Higgs-boson masses for which the standard model [1—8],
and models with an extended Higgs sector [9, 10], remain
weakly interacting, and treatable in low-order perturba-
tion theory. In particular, a one-loop analysis [6] shows
that MH must be less than about 400 GeV if calculations
of scattering processes at this level are to be reliable at
energies of a few TeV. The mass limits are much stricter,
MH ( 155 GeV, and also sharper theoretically, for a large
class of models involving unification of the strong and
electroweak interactions at (typical) energies of 10
GeV [ll]. However, within the context of the standard
model, the only strict upper limit on the Higgs-boson
mass, MH ( 650 GeV, follows from the so-called trivial-
ity bound in theories with elementary scalar fields [12], as
implemented in nonperturbative lattice calculations [13].
One might nevertheless suppose —in the absence of other
upper bounds on MH —that the standard model is sim-
ply the low-energy limit of a deeper theory in which the
role of the Higgs boson is played by a composite object
with an eA'ective mass or energy scale M~ && 1 TeV. The
relevant question then shifts to that of determining the
energy gsc, at which the complete theory must depart
from the standard model [14], for example, by becom-
ing strongly interacting. We address that question here
using the onset of large violations of partial-wave uni-
tarity in the scattering of longitudinally polarized W+
and Z bosons as a signal for the breakdown of low-order
perturbation theory, hence the eA'ective onset of a non-
perturbative or strongly interacting regime. We make
use in this analysis of recent complete calculations of the
W&, ZL, scattering amplitudes to one loop [4, 7, 15—17],
and of an Argand-diagram analysis of the corresponding
partial-wave amplitudes for J = 0 and J = 1.

The "low-energy" (~s &( MIr) behavior of a model
with a high mass scale MH in the Higgs sector, and the
po sible observability of new eR'ects in the scattering of
W& and Zl. bosons, was investigated by Chanowitz and

Gaillard [14] in lowest-order perturbation theory in the
standard model. Other authors have considered models
with more complicated Higgs sectors [10]. The method
used to bound the perturbative region was that of Lee,
Quigg, and Thacker [2], which consists of calculating the
matrix of two-body J = 0 partial-wave W&, ZL, scatter-
ing amplitudes, and imposing the minimal unitarity con-
straint ~ao~ & 1 on the largest eigenamplitude. The result
of Chanowitz and Gailland, that ~ao~ & 1 for s ) 16zv,
where v = 246 GeV is the standard-model vacuum expec-
tation value, is fairly typical. Hence lowest-order pertur-
bation theory must fail and new, potentially observable
effects must appear, below a critical energy gsc, 1.7
TeV.

The lowest-order results are independent of M~, a
result that follows quite generally from the constraints
on electroweak symmetry breaking and the chiral na-
ture of the low-energy theory [18]. They do not, there-
fore, provide any dynamical information about the nature
of electroweak symmetry breaking. The leading MH-
dependent corrections to the lowest-order result are of
order (s/vz)zin(MJr/s). These were calculated in chi-
ral perturbation theory by Cheyette and Gaillard [19],
who found them to be large. Dobado and Herrero [20]
subsequently used the complete one-loop calculation of
ReT(W&+WI ~ W&+Wl ) by Dawson and Willenbrock
[4] to fix unknown constants in the one-loop chiral I a-
grangean, and investigated the new unitarity constraints,
using the complete matrix of WL+, Zl. , scattering ampli-
tudes to that order in a loop expansion. Unfortunately,
their analysis was confined to relatively low Higgs-boson
masses, and unitarity violations only appeared for val-
ues of ~s for which the approximations used fail in the
case of standard model. We correct those deficiencies
here. Dobado and Herrero [20] also considered a more
general low-energy parametrization of electroweak sym-
metry breaking.

II. PARTIAL-WAVE AMPLITUDES
FOR ~s && MJs

A. 2 ~2 amplitudes

To probe the low-energy behavior of the standard
model in the limit of very large Higgs-boson mass, we
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wiII use the constraints imposed by partial-wave uni-
tarity in the scattering of longitudinally polarized IV+
and Z bosons. (The scattering of transversely polar-
ized gauge bosons does not lead to any large, unitarity-
violating scattering amplitudes because of the smallness
of the gauge couplings; the scattering of longitudinally
polarized bosons may be enhanced by powers of M&~ /M~~

[21].) We work in the limit M~ (& ijs && M~ and use
the Goldstone-boson equivalence theorem [2, 14, 22—24].
This allows us to replace real, longitudinally polarized
O'I+ and Zl. bosons in the calculations of' scattering am-
plitudes at energies +s » Mpr by the massless scalar
fields u)+ and z = u)s to which they reduce for vanish-

ing gauge couplings g, g' ~ 0. That is, S'L and ZL,

are replaced by the would-be Goldstone bosons of the
complete broken-symmetry gauge theory. The scat tering
amplitu. des for n external bosons of the two types are
related by

T(W~, Zl. , H) = (iC)"T(w+, z, H) + O(Mii, js),
where | depends in general on the renormalization
scheme used in the calculation [23]. Using the scheme of
Sirlin and Zucchini [25] and Marciano and Willenbrock
[21], C = 1 up to second-order corrections in the gauge
couplings [23]. We will neglect these corrections and take

g = g' = 0. The eR'ective theory is then described by the
interaction Lagrangian

——(v —hz —wz)z
4

Av H——Av(2u)+u) + zz+ HH)H
h~H+e

—-A(2u)+u) + zz+ HH)

Here v is the Higgs-field vacuum expectation value, v

1/~2G~, and A is the Higgs-boson coupling. We note
that M~ ——2Av, so the limit of large A is the limit of
large Higgs-boson mass.

The behavior of the standard model —or of any mod-

ification which preserves its low-energy structure and
spectrum —is restricted for +s (( M~ by the low-energy
theorems of Chanowitz and Gaillard [14] and Chanowitz,
Golden, and Georgi [18]. In particular, the two-body
scattering amplitudes for the m+ and z bosons vanish for
s, t, u ~ 0, and are independent of M~ in leading order
[see Eqs. (5)]. This structure is easily seen by noting that
for A or M~ large, the Higgs field h is efFectively pinned
at the value h2 = v2 —w2, and the full Lagrangean re-
duces to that for the nonlinear cr model,

1 „1(w 0"w)(w cI„w)
w w+—2" 2 v' —w' (3)

a(s, t, u) = T(u)+u) ~ u)+u) ),

b(s, t, u) = T(zo+u) ~ zz),

c(s, t, u) = T(zz ~ zz),

where a, b, c are given in the limit s &( M~ by

a result valid to leading order in an expansion in deriva-
tives t9&, and to any order in 1/v2 at the tree level. The
interaction terms involve two powers of momentum, and
the two-body scattering amplitudes are therefore propor-
tional to s, t, or u up to additive terms proportional to
M~/s, which we neglect. Loop corrections to g,~ in-
troduce additional eR'ective interactions which depend,
however, on higher (even) derivatives of w.

The low-energy limits of the two-body scattering am-
plitudes involving the scalars m+ and z have been cal-
culated to one loop from the Lagrangian in Eq. (2) by
Dawson and Wiilenbrock [4, 15], and Passarino [7, 26].
Identical results were obtained in the limit of large M~ by
Veltman and Yndurain [16] and Bouamrane [17] starting
from the full gauge theory, and by Dobado and Herrero
[20] using the result of Ref. [4] for W&+W& ~ W&+W&

to determine otherwise-unknown parameters in a calcu-
lation based on chiral perturbation theory. We will define
the independent Feynmann amplitudes for scattering in
the neutral two-body channels m+u:, m m+, zz by

1
( ats, )u= ——u+

v~ (4n.v) s
5s + st M~~ 5tt + st Mns ut ttt'us t' Qs 'ttt't 4H + ln H + 1

H + ~

'~( 2 + t2)
6 —s 6 t 2 —u (2i/—3 9 p 9

2u2+ us M~~ t' 9z' 74)
ln ~+ s —-(t +u )

(2V~
=1 s2 M2 g~2 + s~ M2

t(s,)t, )=u— s + —ln ln ~+
vz (47rv)~ 2 —s 6 t—

W

=1 M~ ~ M~ ( 9x 26
c( ts)= u— D+ s , tn +t tn +u tn +~~ ——~(s +t +u) I, —s=e ' s.

v~ (4n.v)~ —s t —u —(2~3 3 )
(5)
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It will be convenient to eliminate the identical-particle
restriction on the zz phase space by replacing the state
!zz) by ~!zz). With this convention, the full neutral

Q2
scattering matrix in the m, z sector is given in terms of
a, b, t." by

!w+w )

T = zlzz)
!w w+)

QJ Q) Z Z tU tU

a s, t, u s, t, u a s, u, 4

~b(s, t, u) -'c(s, t, u) ~b(s, u, t)

(.( t) ~b( t) .(,t, ) )
(6)

It is evident from Eq. (2) that the interactions of
the Goldstone bosons are SO(3) symmetric, with w+,
z —w3, w the Is ——1,0, —1 components of an SQ(3)
"isospin" vector. The matrix T can therefore be di-
agonalized by a transformation to a basis of I3 ——0,
I = 0, 1, 2 states. The diagonalized scattering amplitudes
TI in that basis are

T = s'[ a(s, t, u) + a(s, u, t) + b(s, t, u)

+b(s, u, t) + —,'c(s, t, u)],

T' = —,'[a(s, t, u) —a(s, u, t)], (7)

T = s'[ ~~ a(s, t, u) + -' a(s, u, t) —b(s, t, u)

-b(s, u, t) + c(s, t, u)].

The partial-wave amplitudes alp(s), normalized so that
the exact amplitudes have the form

az, o(s) =—,1—,!
—ln H + ~~3—s s (10 MH 631

'(, :.)' (10c)

Note that a~ q is independent of the Higgs-boson mass,
while ao Q and ag, o are not.

The partial-wave amplitudes for J & 1 have no contri-
butions of O(s/v~), and are real to the order calculated.
In particular, for J = 2,

1 s ~ MH~ 89 27m. l

aors

s ln
18m 16+v~ 10~3) '

1 s ~ ( MH~ 3287 27m 5
aug s ln

45~ 167rv' q s 240

(ll)
The J = 2 amplitudes first become complex when calcu-
lated to three loops.

It is important to recall the constraint on s used in the
derivations of the results above, specifically M~ (& s &&

MJI. There is no range of s in which the results are valid
unless MH (or the scale of symmetry breaking) is much
larger than M~, a condition which requires that MH be
at least in the TeV range. The upper limit on s restricts
the analysis to energies well below the Higgs pole (or the
energy at which the Higgs model must change, e.g. , in
a composite theory). We can obtain more precise esti-
mates of this upper limit by starting wit, h the tree-level
amplitudes for 2 ~ 2 scattering given by the complete
Lagrangian in Eq. (2), expanding the Higgs propagators
which appear in these amplitudes in powers of s/MH,
and retaining the first corrections to the leading terms in
Eq. (4). For example, at the tree level,

al j(s) = . (glze ' "—1),
22P

are related to TI by the partial-wave projection

(8)

= —4A+4A v
I +1 1

I, MH~ —s MHz —t )
1 (4ppf l

are =
32m ( s )

d cos 0 T (s, cos 0)Pg (cos 8).

(9)

s~
"+M +M +v'& H H

(12)

s s 25 MH~ 33m

'(, )

16731
54 )
(»a)

s s t' 9n.
any s

96+v~ (4+v)~ q2~3

'(„:.)'

Since the symmetry of the Jth partial-wave state is given
by (—l)I+, and states containing identical bosons must
be symmetric under interchange, the lowest nonzero ei-
genamplitudes for the diR'erent isospins are aQQ a~~, and
ago. These are given to O(s /v ) by the partial-wave
projections of the expressions in Eqs. (4) and (6):

where we have used the relations MH —2Av and s+ t +
u = 4M', and have dropped terms of orders M~/MH
and M~~/s. The resulting corrections to the partial-wave
isospin amplitudes are given to leading order in s by

o o 11 s baro 2 s

o, o 6 M~~' a~, o 3M

bag g s
ag g MH

48vr~ v
—1

bao g 48vr v MH
5 M2

v M
—1

= 247r
I

ln —1.4528
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If we require that the correction be less than 4 of the
leading term, ~s/MH must be less than 0.37 (0.61) if
the I = 0 (2), J = 0 amplitudes are to be reliable, and
less than 0.5 if the I = J = 1 amplitude is to be re-
liable. For j = 2, the ratios above depend on i/8 and
M~ independently. As examples of the corresponding
restrictions, we note that, for MH —5 TeV (10 TeV), +8
must be less than 1.88 TeV (5.31 TeV) for I = 0, and less
than 0.77 TeV (3.63 TeV) for I = 2. We will use these
restrictions on the range of s in our later analysis.

manipulation program REDUCE to obtain the Anal am-
plitudes of order 8/v4. We also calculated the 2 —+ 4
amplitudes directly using the o.-model Lagrangian in Eq.
(3), expanded to order 1/v4:

Z,n. ~~ -Ow Ow+ Ow Dw + w Ow Bw +1

2 8g2 8v4

(14)

B. 2 ~4 amplitudes

We have also calculated the complete matrix of inelas-
tic 2 ~ 4 amplitudes in the neutral channels to order
1/v (tree level), and have estimated the sum of the
squares of the amplitudes in the I = 0, 2, J = 0 states in-
tegrated over the final phase space [27]. The results give,
as we shall see, an independent (but weak) upper bound
gs«on the energy above which low-order perturbation
theory ceases to be valid. Moreover, we find that we can
ignore inelastic processes when studying unitarity con-
straints on the perturbative elastic scattering amplitudes
for ~s &( gs„((&MH).

We have calculated the low-energy 2 ~ 4 ampli-
tudes two ways. We first calculated the relevant tree
graphs for the Lagrangian in Eq. (2) to efFective order
A (where AnH = A ~ M~H —+ O(A i'

) in the tri-
linear couplings using the new computer programs DI-
AGRAMMAR, CALCULATE, and DRAW [28]. These con-
struct, evaluate formally, and draw Feynman graphs for
general Lagrangians. Vr'e then expanded the Higgs-boson
denominators in powers of 8/MH2 using the algebraic-

The effective interaction in Eq. (14) gives the tree-level
graphs for 2 ~ 4 processes shown in Fig. 1. The 6-point
vertex in Fig. 1(a) arises from the large-MH limit of the
Feynman graphs in Fig. 2 calculated using the 3- and 4-
particle couplings in Eq. (2). The exchange and jetlike
graphs in Figs. 1(b) and l(c) involve the reduced 4-point
amplitudes discussed in the previous section [and given

by the first interaction term in Eq. (14)], connected by
tU+ or z propagators. The amplitudes in all cases are of
order 8/v"; 4-body phase space adds a factor 82 in cross
sections [or unitarity sums, see Eqs. (21) and (23)], so
the amplitudes are counted as order 8 /v as we will use
them.

We will use the following notation:

;, = (p;+ p, ), t;; = (p' - p, ),. 2 . . — . . 2

S,,y
—(P;+P, +PP), t;, 1. = (P; —P, —PP)

2 . . — . . 2

where the labels i = 1, 2 and i = 3, . . . , 6 refer to the
initial and final particles in the orders listed. The Feyn-
man amplitudes for the various 2 ~ 4 processes are then
given, up to an overall factor 1/v4, by

:4(S + t135 —834 —856) —'t134(t13 + 834)(t26 + 856)
135( 13 + 836)(t24 + 845) t135(t13 + tis)(t24 + t26)

t145(t15 + S45)(t26 + S36) —t156(t15 + 856)(t24 + 834)'
345(8 + t26)(834 + 845) 8346(8 + t15)(834 + 836)

—8356(8 + t24)(S36 + 856) —S456(8 + t13)(S45 +'856),

tU ~ tU tU ZZ s + t13 + t24 + s34 + 2856 —t134ss6(tis + 834) —(t135 + t136)tlst24

156856(t24 + 834) —(8345 + S346)SS34 —8356S56(8 + t24) —S456S56(8 + tls),

tU tU ~ ZZZZ —(t 134 + t 156) 34S56 —(t 136 + t145)836845 —(t135 + t146)835846 )

ZZ ~ tU tU tU tU
—1 —1 —1 y38 —$35 —s46 —(t 134 + 't 156)s34856 —('ti 36 + ti 45)836845

—34'5 ( 34 + 45) — 34'6 ( 34 + 36) — 35'6 ( 56 + 36) — 45'6 ( 56 + 45),

ZZ ~ tU+tU ZZ 8 + t134 + t156 834 856 (t135 + t145)tlst26 (t136 + t146)t16t25

( ss6 + 4s6) 856 ~

zz ~ zzzz 0. (16)



IMPLICATIONS OF UNITARITY FOR LOW-ENERGY 8'+, Z 131

(11 1b . /
Nf = diag

I
—, , I, N' = diag

I 1,(2' 2'2 6P' '
g

' 2)
Finally, the initial m+m, zz states can be combined into
states of definite isospin I = 0, 2 by multiplying on the
right by the matrix

with row labels m+to, zz and column labels I = 0,
I = 2. The result is a 4 x 2 matrix which gives the
transition amplitudes from J = 0 states with I = 0, 2 to
the final states m+m m+m, m+m zz, zzzz,

(b

FIG. 1. The tree-level diagrams that contribute to the
2 ~ 4 scattering processes for the chiral Lagrangian in Eqs.
(3) and (14): (a) the six-particle vertex of order v; (b) the
m or z exchange; and (c) the jetlike graphs of order v

The matrix of J = 0 partial-wave amplitudes can be
projected out of the Feynman amplitudes above by av-

eraging over the directions of the momentum of particle
1 in the center-of-mass system, p2 ———p~, with the Anal
momenta held fixed:

1/Z

a = (+s; ps, . . . , ps)= I

'
I

N&M = N;C.
&4 s)

) 2-+4. &I,J=o
2~4 2

2 I,J=0 Ii 2+4
J i dye 4 I, J=0

With the normalization above, a = S2 4/2i, where S
is the S matrix, and the cross sections for the 2 ~ 4
processes with J = 0 and I = 0 or 2 are just the squares
of the corresponding columns in a =, integrated over
the 4-body phase space and multiplied by 1/p; .

We will need the (formal) sum

(K~i pS pS) = d~l(pl)MFeynmnn ~
J=p

4x
1

4x

6

(2') b (P' —P)

To obtain partial-wave amplitudes normalized properly
for the considerations below, M = must be multiplied
by a kinematic factor (p;/4~s) /, p, = IpiI = Ip2I, and
by diagonal matrices of statistical factors Nf, N; where
the elements of Nf and N; are products of factors 1/~n!
for each set of n identical particles in the final or the
initial state. With the inital and final states listed in the
orders used above,

x Iar, j=o I (21)
in our analysis of unitarity constraints on low-energy m

z scattering. Here a~ ~ is the isospin-I column of a = . It
is clear from Eq. (16) that there are large cancellations
in the partial-wave amplitudes since the variables s;&,
s;z I, are positive while the variables t;& and t;z y can be
negative. The projected amplitudes are all of order s/v4.
We have found by explicit calculation of representative
contributions to a that the coeFicient functions are 1
when averaged over phase space, so a reasonable estimate
for the sum in Eq. (21) is simply (s/v4)z times the volume
of phase space. This estimate gives

2~4 2 1 / s
6+2 ~ 16m v2 (22)

(b)

FIG. 2. The Feynman graphs containing intermediate
Higgs-boson propagators which reduce to the 6-particle ver-
tex in Fig. 1(a) in the limit Mlr » s. The graphs involve the
Yukawa couplings in the Lagrangian in Eq. (2).

with I~ expected to be 1. In fact, for the sum of the am-
plitudes corresponding to the six-particle vertex in Fig.
l(a), I1 = 55/48 for I = 0 and I~ = 59/240 for I = 2.
We do not expect the inclusion of all the terms in Eq.
(17) to change these results drastically.

The sum in Eq. (22) is bounded above by unitarity [see
Eq. (23) below]. The limiting value of 4 is reached for
~s = 2.44 TeV for Ii = 1. For ~s ( 1.2 TeV, the region
we will mainly be concerned with, the (estimated) sum
is less than 3.4 x 10 s in magnitude, and decreases as
(+s) for smaller values of +s. Because the sum is so
small in the region of interest, we have not bothered to
make a complete numerical calculation of K.
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C. Unitarity restrictions on perturbative amplitudes

The unitarity of the partial-wave S matrix requires
that the exact partial-wave scattering amplitudes satisfy
the relation

~ 2
2-+2 & 2-+n+~a

n+2
(23)

rjrz =
I 1 —4 ) arz

n+2
(24)

This gives the familiar Argand diagram for the elastic
scattering amplitudes shown in Fig. 3. We have seen
above that the 2 —+ 4 (and presumably the remaining
2 ~ n) contributions to the sum in Eq. (24) are negli-
gible for the range of +s with which we are primarily
concerned. As a result, the exact 2 —+ 2 amplitudes must
lie on the "unitarity circle" with radius 2 to very good
approximation. This condition will be violated when the
perturbation series is truncated. In this section, we will
formulate various conditions which allow us to decide
when an apparent violation of unitarity is "too large"
for the truncated series, that is, when higher-order terms
must be included to obtain a reliable result. We will
be concerned primarily with the convergence of the per-
turbation series, not with the absolute magnitude of the
scattering amplitudes. The perturbation series may fail
to converge rapidly even when the amplitudes are small.

We will write a given partial-wave amplitude calcu-
lated to n loops, i.e. , to order v 2" 2, as Q,

"
o a;, with

the i-loop amplitudes a; = (Re a, , Ima, ) regarded as
vectors in the complex plane. We will work here with
the one-loop approximation, a ao + aq. A typical sit-
uation is sketched in Fig. 4: the approximate amplitude
remains near the unitarity circle for some range of +s,
then departs markedly from it. We will denote by La the
minimum-length vector which can be added to aQ + R]
to bring the resultant vector to the unitarity circle. The

This is just the condition that the two-body elastic scat-
tering amplitudes lie on a circle of radius err/2 centered
at (0, ~) in the complex plane, with

1/2

vector Aa necessarily lies along the radial direction as
indicated in the figure, and is less in magnitude than the
sum of all the higher-order terms. (Recall that, we are

2 2
assuming that 1 —gr~ 2P„&2 ar&" && 1.)

It will be important to the following discussion to note
that we are not trying to write relations which hold to a
given order in 1jv2: the perturbation series breaks down
precisely when higher-order terms are not smaller than
the low-order terms. We are instead interested in crite-
ria which quantify when the departures of aQ + a1 from
the unitarity circle—which are clearly evident in an Ar-
gand diagram, and involve ac+a~ and Aa (or a2, as, . . .)
linearly —are "too large" for the amplitudes as actually
calculated. In fact, when the unitarity relation, Eq. (23),
is rewritten as

2—+2 2~2 2, ~ 2~~ 2
m+1J —OIJ +

n+2
(25)

+ ). ).
2&m& "+& y =0

2~2' 2~2'
Q~ Q (26)

In particular, to two loops,

Imao ——0, Imaq —)ao~, Ima2 ——2ooR«x. (27)

We will use these relations below.
Two constraints on the scattering amplitude are im-

mediately evident from Fig. 4, specifically that ~a~ & 1

and required to hold order-by-order in perturbation the-
ory, it becomes simply an equation for Ima„ in terms of
lower-order amplitudes. In our case

A~ 1
2-+2 Q 2-+ 2 2-+ 2"

j=O
n+1 —2m

Unitarity
Circle

/
/

/

I
I

I
I

I
I

I

I
I
t

-0.5 0.5

Re a" =$~

'=He a Re a
1
2

FIG. 3. The Argand diagram for two-body elastic-
scattering amplitudes showing the unitarity circle within
which the amplitude vectors a must lie, and the upper bounds
(arJ ~

= 1 and )Rear7 (
= ~. For negligible inelastic pro-

cesses, a must terminate on the circle.

FIG. 4. Argand diagram indicating a typical behavior for
a one-loop-order perturbative approximation to a (diagonal)
elastic-scattering amplitude, a0+aq. b a is the shortest vector
which can be added to a0 + aq to reach the unitarity circle,
so

/ Q,. , a;/ & [Aa[.
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and that )Re a) & z. Both have been used to obtain lim-
its on the validity of low-order perturbation theory for
the approximations a ao and a ao + ay. Both are
minimal constraints when applied to perturbative ampli-
tudes. Some allowance must clearly be made for small
violations of the relations by a truncated perturbation
series, and neither condition covers the possibility that
)as + ai) and )ao + Reai) have acceptable magnitudes
while the vector (ao + ai) lies unacceptably far inside or
outside the unitarity circle. We will use Aa to quantify
such violations of unitarity.

The vector Aa is the vector of minimum length which
can be added to ao+ ai to bring the elastic scattering
amplitude to the unitarity circle. If the scattering ampli-
tude calculated to one loop is to be reliable numerically,
we must certainly require that

violation of the relation Ima & 0, Eq. (25), and the in-
equality should be strictly enforced. (We encountered
this situation in an earlier analysis of the high-energy
limits of W&, Zl. , H scattering in the standard model
[6] )

We cannot obtain limits such as those in Eq. (31) and
(32) using Rema and Im b,a because the direction of
the actual higher-order displacement vector ba = a-
ao —a~ is not known, and generally is not along La.
However, we can estimate Re a~ on the assumption that
)as) « 1, i.e. , that aq is the last significant term in the
perturbation series. Using the known value of Ima~ and
the condition that the vector ao+ ai + az lie on or very
near —the unitarity circle, we find that )Rea2) has the
(approximate) value

)Re +2)approx
)Aa) « )ao+ ai). (28)

If we are to have a satisfactorily convergent perturbation
series, we must require in addition that

l»l « I» I « l»l and I»I « —,'. (29)

(~0+ «ui)'+ (-,' —Im~i)'
)

-' + 2aDRe ai + )ai)~ ), (30)

where we have used Eq. (27) in writing the second form.
If we expand formally, we see that, )Aa) involves terms of
two-loop and higher orders, but reemphasize that we will
not be able to expand when the approximate amplitudes
are large.

The condition )ai) (& )ao) is frequently replaced in tests
of the convergence of perturbation series by the condition

l«u21«)Re uil « IR«ol = Idol'

that is, the series for the real part of a is required to
converge rapidly. Similarly, since Imao = 0, we should
require for the imaginary part that

)Ima2) (& Imai,

or, using Eq. (27), that

2)R«, I « I~, I.

(32)

(33)

This inequality is stronger than the inequality )Re ai) «
)ao) in Eq. (31), and may also be stronger than the condi-
tion )» ) « I&o) in Eq. (29). If ao and Re ai have opposite
signs, Im a vanishes to two loops when equality is reached
in Eq. (32), and becomes negative for 2)Reai) ) )ao) in

The inequality )ai) « )ao) gives a standard condition
for the validity of the one-loop truncation of the pertur-
bation series. The inequality )») « )ai) sharpens the
condition by requiring that the minimum higher-order
contribution be small compared to )ai). The final con-
straint compares )») with the radius of the unitarity
circle, and is included to cover cases in which the first
conditions are satisfied, but ao+ a~ is still unacceptably
far from the circle.

The magnitude of Aa is given by

2= I«+ Re~i) — —,
' —(-,' —1m~i —Imu~)

For this to be consistent with the assumption of rapid
convergence, that is, )as) &( )aq) « )ai), we should have

e az )approx « IRe ai I.

If the inequality is not strongly satisfied, there is no rea-
son to expect higher-order contributions to a to be small.

To summarize, we have the following sets of conditions
for satisfactory convergence of the perturbation series,
all of which must be satisfied: (A) )ba) « )ai) « )ao)
(evidence of convergence of the perturbation series); (B)
I~a) && Iao+ ai) (necessary if ao+ ai is to give a satis-
factory approximation for a); (C) )Aa) &

&
(magnitude

of Aa small compared to the radius of the unitarity cir-
cle); (D) )1m~~I « )1m~iI «)2«uil « Idol, with

(sign ao)(ao + 2Reai) 0 (convergence of the series for
Ima, positivity of Ima); (E) )Re O2) pp.o. « IR uil «
)ao) (evidence, with C, that a2 can be ignored).

Sets (A)—(C) involve the minimum-length vector Aa
and, hence, give quite general constraints, but ones which
may be weaker than the conditions in (D) and (E).Which
constraints are most useful will vary from problem to
problem. Just how much smaller "((" signifies will also
depend somewhat, on the context, and on how conserva-
tive one wishes to be. We have nevertheless found the
constraints to be quite useful in quantifying what is im-
mediately evident from an Argand plot of an approximate
scattering amplitude, namely the onset of an unaccept-
ably large violation of elastic unitarity [29]. We will apply
these conditions to the analysis of the low-energy scat-
tering amplitudes in Eq. (10c) in the next section.

III. CONSTRAINTS ON LOW-ENERGY W+, Z
SCATTERING

A. Argand-diagram analysis

The I = 0, 1, 2 "isospin" amplitudes al g for the elas-
tic scattering of low energy R"s and Z's given in Eqs.



LOYAL DURAND, JAMES M. JOHNSON, AND PETER N. MAHER

0.3

0.2

Ws (GeV)
+ 200
x 400

I

/

Unitarity Circle

/
/

0. 1

0.0

I I I I I I I I I I I I I I I I I I I I I I

0, 1 0.2 0.3 0.4 0.5

0.3

0. 1 ircle

0.0

I I I I I I I I I & I I I & i » I i i i I I

0.2 0.3 0.4 0.5

Re a„
0.6

0. 15

0.10
CO

C

0.05

0.00

I I I I I I I I I I I I I I I I I I I I I I I I

0.05 0. 1 0.15 0.2 0,25

Re a 20
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loop elastic-scattering amplitudes al, J of Eqs. (1Q) as func-
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(10) are plotted on Argand diagrams as function of ~s
for M~ = 3, 5, and 10 TeV in Figs. 5(a)—5(c). The re-
sults of our analysis of the leading inelastic-scattering
processes —the 2 ~ 4 processes —show that the 2 —+ 2

elastic-scattering amplitudes must lie on the unitarity
circle to very good approximation for the range of ~s
shown in Fig. 5. This constraint is clearly violated by
unacceptable amounts (and in diR'erent ways) by the one-
loop approximations for app and a2p. In contrast, a~~ re-
mains close to the unitarity circle for +s 4 TeV. Since
any is independent of M~ except through the restriction
~s « MH required for the validity of our approxima-
tions, we obtain no useful low-energy constraints from
this amplitude.

It is evident from Fig. 5(a) that the one-loop correc-
tions to Re ap p are positive and increase with increasing
Higgs-boson mass. We would therefore expect to be able
to obtain a stricter limit on the energy gs„at which
the perturbative expansion breaks down than is given

by the minimal tree-level constraint IReao zI & 1 [14],
gs„= 1.74 TeV (I = 0). While the corrections to
Re ag p are negative, the departure of a2 p from the uni-
tarity circle shown in Fig. 5(c) is quite dramatic for large
Higgs-boson masses, and we would again expect the one-
loop constraints on gsc, to be stronger than the tree-level
constraint, gs „=2.47 TeV (I = 2).

The extent to which the one-loop amplitudes ap p and
Gs 0 in Eq. (10c) satisfy the various criteria in Eq. (A)—
(E) is shown in Figs. 6(a)—6(f). In Figs. 6(a) and 6(b)
we show the ratios Iai/aoI and I&a/aiI. For a satis-
factorily convergent perturbation series, we should have
IaaI « Ia, I « Ia, I, with IaaI « —,'. If "«" is inter-
preted as a ratio of 2, the inequalities in the first set are
violated by the I = 0 amplitudes for Higgs-boson masses
MH & 3 TeV and ~s & gs«, with gs„& 1.1 TeV. The
constraints from the I = 2 amplitudes are less stringent.
There are no constraints for either isospin for MH & 3
TeV. In particular, the curves for MH —3 TeV terminate
in the range of ~s shown when ~s/MH reaches the max-
imum values allowed by Eqs. (13); the curves for smaller
M~ end at lower values of ~s.

Even for a minimal restriction with "(&" interpreted
as equality, e.g. , for no evidence of convergence of the
perturbation series, the inequalities above are still vi-
olated for I = 0 at energies above a critical energy
gs,„&1.5 TeV provided MH & 5 TeV. However, there
are now no constraints (within our approximations [30])
for MH + 4 TeV. The corresponding constraints from the
I = 2 amplitudes are again much weaker, with no con-
straint from the ratio Ib,a/aiI. However, the condition
I&a/(an + aq)I « 1 necessary for the complete one-loop
amplitude to give a reasonable approximation to the full
scattering amplitude is violated for I = 2, as is shown
in Fig. 6(c), with gs«& 1.7 TeV for M~ & 5 TeV, and
no restriction for M~ + 4 TeV. Finally, the condition
I&aI « 2 is violated by the I = 0 amplitude for M~ & 5
TeV, with gs,„& 1.4 TeV, as shown in Fig. 6(d).

The foregoing analysis illustrates rather well the con-
tent of conditions (A)—(C) above: the perturbation series
must converge (A), the full one-loop amplitude must be
much larger than its minimum higher-order correction if
the one-loop approximation is to be valid (B), and Id aI
must be smaller than about 2, the radius of the unitar-
ity circle. (D) and (E) deal with the imaginary and the
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2,00estimated real part of the two-loop amplitude.
In Fig. 6(e), we show the ratios ~lma2/Imai~ of the

(exact) two-loop contributions to Ima to the one-loop
contributions for I = 0 and 2. The limits on gsc,
are somewhat more restrictive than those above. For
a ratio of one-half, gsc„& 0.9 TeV for MH & 3 TeV,
or gs,„& 0.7 TeV for MH & 5 TeV. For ratio of
unity (no evidence of convergence of the perturbation
series), gs«& 1.'2 TeV for M~ & 5 TeV. The estimates
of (Reaz/Re ai), based on the assumption that (as) is
negligible, are shown in Fig. 6(f). The limits on gs,„are
again more restrictive than those from Figs. 6(a)—6(d).

These results are summarized in Figs. 7(a)—7(c), where
we show the critical energies obtained from the condi-

Iai I « lao I, l~al « I» I, and llm az! && Ilm ai I,
as functions of MH. The results all indicate that pertur-
bation theory will fail to converge satisfactorily, and the
low energy standard model will in effect become strongly
interacting at energies not much above 1 TeV for Higgs-
boson masses greater than 5 TeV. There are essentially
no unitarity constraints within the range of validity of
our approximations for MII & 3 TeV. The strongest con-
straints are those in Fig. 7(c) from Ima2.
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B. Comments and conclusions
1.2

The results above are more restrictive, and more com-
prehensive in their tests of unitarity violation, than those
of previous analyses of low-energy Wl+, ZL, scattering [7,
14, 19, 20]. The qualitative results are the same: the
standard model must become strongly interacting at rel-
atively low energies if the Higgs-boson mass is large,
certainly, in our view, for Qs & 1.2 TeV for MH & 5

TeV, and more optimistically, for +s 0.7 TeV. Since
our strongest limit comes from the known two-loop con-
tribution to Ima for I = 0, and a similar limit from the
estimated value of Re a~, we regard it as unlikely that the
limit can be extended much by going to higher orders in
perturbation theory.

Our estimate of the contributions of 2 ~ 4 processes
to the unitarity sum gives an independent determina-
tion of the energy by which the standard model be-
comes strongly interacting, gs„2.4 TeV. This is not
as strong as the limits from elastic scattering, but is in-
dependent of M~ for MH &) ga«. The 2 ~ 4 processes
contribute to Ima at the three-loop level; to reduce them
to an acceptable size while treating Rea to the same or-
der would require at least a four-loop calculation. Be-
cause of the 84 variation of the 2 —+ 4 contributions to
the unitarity sum, it is unlikely in any case that the limit
could be extended much.

Earlier work [1—8] on high energy W&, ZL„H-scatter-
ing, with Miv « MH « ~s, has shown that the stan-
dard model with an elementary Higgs field (or a high
scale of compositeness) violates unitarity badly in low-
order perturbation theory for rather low Higgs-boson
masses, e.g. , for MH & 350—400 GeV if the theory is
to remain valid up to energies of a few TeV [6], or for
MH + 155 GeV in a large class of unified theories with
unification scales of order 10i4 GeV. Nonperturbative lat-
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FIG. 7. Behavior of the critical energy gs„as a function
of MJr obtained using the conditions (a) )ai/ao) = z, I; (b)
] Aa/ai [

= -', I; (c) [Im ag/Im ai (
= —,', l.

LOYAL DURAND, JAMES M. JOHNSON, AND PETER N. MAHER



IMPLICATIONS OF UNITARITY FOR LOW-ENERGY SI. ~ Z 137

tice calculations [13] give upper bounds of around 650
GeV on MH from the triviality limit. These bounds, and
the restrictions obtained here, are summarized schemat-
ically in Fig. 8.

Unitarity analyses of R'I+, Zl. scattering which use the
Goldstone boson equivalence theorem hold for ~s
Mgr. The region of the Higgs pole is excluded in ei-
ther high-energy (~s && MH) or low-energy (~s && MH)
analyses done to fixed order in the Higgs-boson self-
coupling, such as that here. Values of MH below the
experimental lower limit are not of interest. The remain-
ing regions in Fig. 8 are as follows.

(1) MH & 400 GeV. The standard model has no signifi-
cant unitarity violations in low-order perturbation theory
for +s of a few TeV [6]. If the standard model is embed-
ded in a unified theory with a (typical) unification scale
around 10 GeV, the upper bound on MH for a weakly
interacting model decreases as shown to MH & 155 GeV.

(2) 400 GeV & MH & 1 TeV: Large unitarity violations
appear at the one-loop level for ~s && MH [6], and the
Higgs sector of the standard model is eAectively strongly
interacting even though ~a~ need not be large.

(3) MH & 1 TeV: The triviality bound for an elemen-
tary Higgs boson is violated. The Higgs boson may be
composite, or electroweak symmetry breaking may be dy-
namical. In either case, a model with an eR'ective Higgs
boson is strongly interacting whether +s » MH & 1

TeV, or (as here) +s & 0.7 —1.2 TeV with M~ & 3 —5
TeV.

(4) +s & gs„« MH, with gs„dependent on MH..

There are no significant low-energy violations of unitarity
at one loop. The theory is still strongly interacting at
high energies.

The possibilities for observing strong interactions in

WL, Zl, scattering, and of distinguishing the standard
model from other models with the same low-energy limit,
have been considered by a number of authors (see, e.g. ,
Refs. 2, 3, 7, 14, and 31). We will conclude by noting
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FIG. 8. Schematic summary of various constraints on per-
turbation theory and the standard-model Higgs-boson mass.
The significance of the different regions is discussed in the
text.

simply that we have sharpened the ranges in ~s and
MH in which unitarity-based analyses are relevant.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Depart-
ment of Energy under Contract No. AC02 —76ER00881,
and in part by the University of Wisconsin Graduate
School with funds donated by the Wisconsin Alumni Re-
search Foundation. One of the authors (L.D.) would like
to thank the Aspen Center for Physics for its hospitality
while parts of this work were done.

' Present address: Department of Physics and Astronomy,
Wayne State University, Detroit, MI 48202.

[1] D.A. Dicus and V.S. Mathur, Phys. Rev. D 7, 3111
(1973).

[2] B.W. Lee, C. Quigg, and H.B. Thacker, Phys. Rev. Lett.
38, 883 (1977); Phys. Rev. D 16, 1519 (1977).

[3] G. Passarino, Phys. Lett. 156B, 231 (1985). This paper
defines the coupling G Gy /~2 = 1/2v in terms of the
decay rate for H ~ zz rather than the vacuum expecta-
tion value e or the muon decay constant G~, absorbing
what would normally be regarded as radiative corrections
to I'(H ~ zz) in the definition of G. This leads to some
differences in detail from the results of Refs. [4], [6], and
[21].

[4] S. Dawson and S. Willenbrock, Phys. Rev. Lett. 62, 1232
(1989).

[5] W. Marciano, G. Valencia, and S. Willenbrock, Phys.
Rev. D 40, 1725 (1989).

[6] L. Durand, J.M. Johnson, and J.L. Lopez, Phys. Rev.

Lett. 64, 1215 (1990).
[7] G. Passarino, Nucl. Phys. B343, 31 (1990).
[8] E. Lendvai, G. Pocsik, and T. Torma, ITP-Budapest Re-

port No. 475, 1990 (unpublished).
[9] H. Hiiffel and C. Pocsik, Z. Phys. C 8, 13 (1981); R.

Robinett, Phys. Rev. D 34, 182 (1986).
[10] R. Casalbuoni, D. Dominici, Ft,. Gatto, and C. Giunti,

Phys. Lett. B 178, 235 (1986); R. Casalbuoni, D. Do-
minici, F. Feruglio, and R. Gatto, ibid. 191, 409 (1987);
Nucl. Phys. B299, 117 (1988).

[ll] L. Durand and J.L. Lopez, Phys. Lett. B 217, 463 (1989);
Phys. Rev. D 40, 207 (1989); J.L. Lopez, Ph. D. thesis,
University of Wisconsin —Madison, 1989.

[12] R. Dashen and H. Neuberger, Phys. Rev. Lett. 50, 1897
(1983). For a review, see D.J.E. Callaway, Phys. Rep.
167, 241 (1988).

[13] A. Hasenfratz, K. Jansen, C.B. Lang, T. Neuhaus, and
H. Honeyama, Phys. Lett. B 199, 531 (1987); J. Kuti,
L. Lin, and Y. Shen, Phys. Rev. Lett. 61, 678 (1988); M.



138 LOYAL DURAND, JAMES M. JOHNSON, AND PETER N. MAHER

Liischer and P. Weisz, Phys. Lett. B 212, 472 (1989); A.
Hasenfratz, K. Jansen, J. Jersak, C.B. Lang, T. Neuhaus,
and H. Honeyama, Nucl. Phys. B317, 81 (1989).

[14] M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B261,
379 (1985).

[15] S. Dawson and S. Willenbrock, Phys. Rev. D 40, 2880
(1989).The fraction 26/9 in the last line of Eq. (3.5) of
this paper should be 26/3, as in the last line of our Eq.
(5).

[16] M. Veltman and F. Yndurain, Nucl. Phys. B235, 1

(1989) .
[17] R. Bouamrane, University of Michigan Report UM-TH-

89-14, 1989 (unpublished).
[18] M. Chanowitz, M. Golden, and H. Georgi, Phys. Rev. D

36, 1490 (1987).
[19] O. Cheyette and M.K. Gaillard, Phys. Lett. B 197, 205

(1987).
[20] A. Dobado and M.J. Herrero, Phys. Lett. B 228, 495

(1989 ).
[21] See, e.g. , W. Marciano and S. Willenbrock, Phys. Rev. D

37, 2509 (1988).
[22] J. Cornwall, D. Levin, and G. Tiktopoulos, Phys. Rev.

D 10, 1145 (1974); C. Vayonakis, Lett. Nuovo Cimento
17, 383 (1976); G. Gounaris, R. Kogeler, and H. Neufeld,
Phys. Rev. D 34, 3257 (1986); Y. Yao and C. Yuan, Phys.
Rev. D 38, 2237 (1988).

[23] J. Bagger and C. Schmidt, Phys. Rev. D 41, 264 (1990);
K. Aoki, Kyoto University Report No. RIFP-705, 1987
(unpublished); in Physics at Te V Scale, Proceedings of
the Meeting, Tsukuba, Japan, 1988, edited by K. Hidaka
and K. Hikasa (KEK, Tsukuba, 1988).

[24) H. Veltman, Phys. Rev. D 41, 2294 (1990).
[25] A. Sirlin and R. Zucchini, Nucl. Phys. B266, 389 (1986).
[26] With the correction noted in Ref. 15, the low-energy re-

sults in Refs. 7 and 15—17 for the J = 0 amplitudes for
m+m —+ tv+tv, m+to —+ zz, and zz ~ zz agree, pro-
vided the coupling constant 0 in Ref. 7 is identified with
G = g /8&iv ——1/2v = G~/i/2, and not with G~
as in that reference. However, the final results for the
I = 0, 2, I = 0 amplitudes in Eq. {5.27) of Ref. 7 are
incorrect. This is evident most obviously from the fact

that Im a& o g a& o for the expressions given there.(1) (o)
i

[27] J.M. Johnson, Ph. D. thesis, University of Wisconsin—
Madison, 1990.

[28] See Ref. 27, Appendix D, for a description of the pro-
grams and. examples of their application. The programs
are available on request from Dr. J.M. Johnson, Depart-
ment of Physics, Wayne State University, Detroit, MI

48202.
[29] Passarino, [7], discussses three criteria for the breakdown

of perturbative unitarity. His condition (i) is equivalent
to lao + Re ail & 1 for IReail & laol the only case of
interest. This condition is equivalent to constraint (C)
above, ~Aa~ & —,for the most favorable value (-) for
Ima1, and is otherwise somewhat weaker. His discus-
sion of condition (ii)—which he does not us in his sub-
sequent analysis —involves an unfortunate misinterpreta-
tion of the constraint introduced in Ref. [6], that the vec-
tor ao + a1 lies acceptably close to the unitarity circle.
This is the condition that Aa be small enough to be elim-
inated by (small) two-loop corrections to the perturba-
tion series as in Eq. (29) above. Passarino interprets the
constraint instead as the condition that ~ao+&i —

2 ~

i.e. , that the vector ao+a1 lies on or inside the unitarity
circle [ao+ai can perfectly well lie outside the circle; see,
e.g. , Fig. 5{a)],and derives his Eq. (3.7) from that condi-
tion. The important point is to quantify how far op the
circle ao + a1 can lie before this approximation to a be-
comes suspect; Eq. (3.7) does not provide a criterion for
making this judgment. The final condition (iii) in Ref. [7]
is obtained by converting an identity valid through two
loops, Ima17 ——~ar IJ~, to an inequality. The con-
tent of the identity is given in Eqs. (26) and (27) above.
The inequality actually used in Ref. [7] is equivalent to
Ima2 = 2asReai & [ao(+ )ai) which gives a restriction
on the amplitudes only for aoReai ) 0. Condition (D)
above is much stronger, and follows directly from Eqs.
(27) and the convergence condition in Eq. (32).

[30] It is at this point that the analysis of the standard model
in Ref. 20 goes awry. The result in Eq. (13) shows that
the low-energy expansion for the standard model holds
without significant correction only for 8 (( —MH from11
Eq. (13), and the Higgs pole is of course encountered for
8 = M~. These points are ignored in Ref. 20. In fact, as

2

implied by the analysis above, and as is evident in Figs.
5(a) and 5(c), there is no significant unitarity violation
in the standard model for the allowed range of ~s and
the values of M~ C 1.3 TeV considered in Ref. 20. The
low-energy expansion can of course be applied to other
models as in Ref. 20, but the foregoing remarks should
suggest some caution in the interpretation of the results.
We remark also that one criterion used for unitarity vi-
olation in Ref. 20 is incorrect as stated: the phase shift
bo, o can decrease with energy after reaching a maximum;
causality restricts only the rate of decrease.

[31] J.F. Donoghue and C. Ramirez, Phys. Lett. B 234, 361
(1990), and the references therein.


