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A recently developed action-variational approach so far has been applied to various cases up to fourth
order. To obtain more reliable information about the underlying mechanisms and to check if the accura-
cy of high-statistics Monte Carlo simulations can be reached computations up to the next even order
turn out to be necessary. This was prevented up to now by the occurrence of huge combinatorial factors.
In the present work we develop means to circumvent this obstacle. In addition, the case of finite temper-
atures is also considered. Our results allow us to establish the general features of the approach in detail
and to predict the behavior of still higher orders. With respect to practical applications it turns out that
the sixth order gives worse results than the fourth order, or, more generally, that there is no longer an
improvement beyond the fourth order. This behavior appears to be related to the asymptotic nature of
the expansion and to the conversion into powers of 1/8 needed. Ultimately it reflects limitations in the
possibilities of compensating the action by the trial action.

I. INTRODUCTION

Action-variational approaches to lattice gauge theory
are an analytical alternative to Monte Carlo simulations.
They work particularly well in the weak-coupling region
and thus are of interest for circumventing the critical
slowing down of simulations. Since these approaches
started with mean-field methods [1,2] there have been a
number of developments. Recently the accumulation-
point approach has been introduced [3-5] which turns
out to allow accurate higher-order calculations. It has
been applied [3-5] to the gauge groups U(1), SU(2), and
SU(3) and the inclusion of fermions has been studied [6]
in the case of U(1).

Results with the accumulation-point approach so far
have been obtained up to the fourth order (on the weak-
coupling side). At this order one reaches the accuracy of
simulations of moderate statistics. Certain systematic
features allow some improvement of the accuracy. The
important question which arises at this point is if at still
higher order one can really compete with the accuracy of
high-statistics simulations. A further question is if the
systematic features can be established in a more general
and precise way. Because at present there are no analyti-
cal or rigorous tools to deal with this question one has to
rely on numerical investigations also for this purpose.

The computational effort when going to the next order
increases considerably for two reasons. One is the magni-
tude of the combinatorial factors related to the huge
number of terms which occur at higher order in the cu-
mulant expansion of the correlation function. The other
one is the large number of combinations then arising in
the evaluation of SU(N) traces. This means that to be
able to get beyond the fourth order new methods have to
be developed within these two respects.

In addition to the applications considered so far [3-6]
it is desirable to study the case of finite temperatures, too.
Since the accumulation-point method appears well suited
for weak coupling it offers an interesting alternative to

4

perturbative calculations of thermodynamic quantities
which suffer from infrared problems [7-9].

In the present paper the accumulation-point approach
is extended to the sixth order. For this purpose methods
are developed which can handle the huge numbers of
terms in the expansion and of combinations in the trace
evaluations. Calculations for SU(2) are carried out which
show the numerical limits of the method. The higher or-
ders obtained allow to work out the general features of
the individual orders and to discuss some important
theoretical aspects of the method. Furthermore, the re-
sults at finite temperature are used to discuss the situa-
tion also in this case.

In Sec. II the basis and the general details of the ap-
proach are pointed out. In Sec. III the methods of calcu-
lation and the improvements allowing to reach higher or-
ders are explained. In Sec. IV the numerical results, their
implications, and the theoretical aspects involved are dis-
cussed. Section V is devoted to the case of finite tempera-
tures. In Sec. VI some main conclusions are collected.

II. BASIC FEATURES OF APPROACH

Correlation functions ( - - - ) with respect to the action
S can be expressed by correlation functions ¢ - - - ), with
respect to a trial action S, by the identity

5—S
(e” "°X)
(Xy=—Fp""" 2.1)
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After expanding the exponentials, division in (2.1) leads
to the cumulant expansion of correlation functions

(X)=2%((S—SO)VX)8, (2.2)
v=0 "*
where ( - -+ )§ are connected functions which have the

general form
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(X, X, X,)'= 3 (=D Mk—1N(X, - X,) (X, - X,) (2.3)
partitions
k factors

Clearly neither (2.1) nor (2.2) depends on S;. The series
(2.2) is a formal one which is to be given sense by a suit-
able choice of S,. The finite approximations of (2.2) (with
summation only up to some finite order) then do depend
on the particular choice of S, and it is crucial for the ap-
proach to choose an optimal S

It turns out that there are two useful choices depend-
ing on the coupling in S. At strong coupling this is S, =0
by which (2.2) becomes a particular form of strong-
coupling expansion for which it is easy to reach relatively
high orders [4]. At weak coupling this is a trial action
which is a sum of one-link terms and the parameter of
which is fixed in the region of the mean-field estimate as
is to be discussed in more detail later. In the crossover
region the expansion breaks down. At the weak-coupling
side this breakdown occurs at the coupling value of a pos-
sible phase transition [4]. In the present paper the inves-
tigation concentrates on the weak-coupling region.

The choice of the trial action to be a sum of one-link
terms leads to factorization of { * - - ), in one-link contri-
butions which can be evaluated. In the present paper we
illustrate the details for the gauge group SU(2) with ac-
tion

s=£ Sy, 2.4

and trial action

So=tr(JU, +JU}), (2.5)
1

where p runs over plaquettes and / over links. Complete-

ly analogous expressions and conditions as discussed here

arise for the other gauge groups [3,5].

The trial action actually depends only on one parame-
ter a because one can put J=J=(a/2)1 without re-
stricting generality [4] for SU(2) and gets analogous rela-
tions for other groups [S] by requiring the same basic
properties for S|, as for S. The a dependence of the one-
link contributions for SU(2) is expressed by the functions

V,(a)=11+r(2a)/11(2a) ) (2.6)

where the I, are modified Bessel functions.

For the evaluation of (2.2) a crucial property is that the
mathematical description by connected functions implies
that only terms of S and S, geometrically connected to X
(also via other terms from S) can contribute. This is the
basis of our computations which enumerate the possible
sets of configurations each of which can be characterized
by a set of integers.

In this context a simple picture of the mean-field esti-
mate arises which is illustrated in Fig. 1 and refers to an

b2(_0 ) -e(—)

FIG. 1. Illustration of mean-field estimate.

[

approximation of the contribution from S —S|, attached
to some link (from X or from another term of S). The
factor related to the attached link is the same for the pla-
quette from S and for the link from S,. For S there are
2(d —1) directions of plaquettes and a factor V3 (a) for
the three free links of an attached plaquette. Thus the
compensation of terms illustrated in Fig. 1 requires

B

2
which is the mean-field estimate for fixing the parameter
a [applying to all orders in (2.2) and all terms in (2.3)].
Clearly there must be deviations from this estimate be-
cause plaquettes can be attached with more than one link,
more than two objects can meet at a link and there are
forbidden directions for plaquettes to avoid double count-
ing.

From our investigations up to the fourth order, with
prescriptions essentially requiring fastest convergence of
the expansion, we find optimal a values in the vicinity of
the mean-field estimate, however, with a definite and sys-
tematic deviation from it. We describe this by a quantity
A, which for SU(2) is defined by

2d—1Via)=a, 2.7)

a 2
A Vi B 2(d—1).
Our observation is that A is largely independent of gauge
group, dimension d, and coupling 3. The value of A de-
pends on the geometry of X in (2.2), for example, being
about two in the case of a plaquette, smaller for larger
planar loops [3—5], and larger for twisted loops [6].

In view of the substantial deviations from the mean-
field estimate which occur in part of the contributions,
the universal character of A is remarkable. It appears to
result from some ‘“collective” phenomenon. There is,
however, presently no way to get hold of such features
analytically. Similarly, because of the nonpositive-
definite nature of the cumulant expansion the usual
rigorous methods fail. Therefore, sufficiently high orders
are needed in the computations to be able to extract sys-
tematic features from the numerical results.

(2.8)

III. METHODS OF CALCULATION

For the evaluation it is observed that (2.2) with (2.3)
gets the form

(3.1)

v=pp 2

I .
(X)-—E Emﬁ(ﬁ/Z) B —a ) F

v=0u=0

where the F,, are weighted sums of monomials of the
V,(a) in (2.6), which means that one has

Fpu=chuj prw'l ce V’fpﬂjm (3.2)
J

where j numbers different configurations.
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This form allows us to divide the calculations into two
major parts. The first one of these is computationally
very expensive. It concerns finding the weights and the
exponents of the monomials which are integer constants
determined by the possible geometric configurations of
plaquettes (from S) and links (from S;). The second part
needs only modest computational effort. It consists of
evaluating (3.1) up to some finite order using the integer
constants from the first part and thus introduces the B
and a dependences.

To get beyond the fourth order we have subdivided the
mentioned computationally expensive part in several
steps and have developed more effective methods within
these steps. In this way the evaluation in terms of mono-
mial exponents of about 10'° configurations occurring in
the sixth order (which is not possible directly) has been
reduced to that of less than 2 X 10* configurations. In ad-
dition the speed of the individual evaluations has been
considerably increased.

The first step consists of attaching plaquettes (from S*)
to X and finding the weights of the equivalence classes
which occur. The crucial point here is that one can make
use of the fact that each plaquette position is specified by
an unique number in the algorithm. Therefore individual
classes can be characterized by the plaquette numbers of
one of its members. In this way one can avoid immediate
evaluation in terms of monomial exponents which would
be prohibitive at higher order.

The second step consists in attaching links (from S§) to
the plaquette configurations (using one member of each
equivalence class only) and finding the weights of the
equivalence classes in this case, again using characteriza-
tion by the corresponding numbers in the algorithm.

In the third step, collecting appropriate contributions
from the first and second steps as needed according to
(2.2) with (2.3) for a particular F,, in (3.1), one finds the
weights and exponents of the monomials in (3.2) from the
numbers specifying the configurations in the algorithm
and the weights of the particular equivalence classes
(needing only one member of each class which makes the
procedure work at higher order).

The third step in the non-Abelian case also includes
the trace evaluations. For this purpose, instead of relying
on the usual generating of functions from the one-link in-
tegral, we here exploit the fact that the one-link correla-
tion functions are related to direct tensor products and
thus get the form [10]

(U U Yo =3(Y,)i kv, (3.3)
r

where the Y, are the operators corresponding to the pos-
sible Young patterns and the V, coefficients of the char-
acter expansion of exp[(a/2)tr(U+ U 1)] which for SU(2)
are given by (2.6).

If factors U' appear in the one-link correlation func-
tions for SU(N) the relation

ut= 1 SRR S AN

(N —=1) €iiy iy -1 Ziviy iN—1iN-1 G4

can be inserted, which for SU(2) is simply U ;E =€ Up.
On the basis of (3.3) systematic and effective trace eval-

uations become possible also at high orders. In practice
this is achieved by replacing the matrix multiplications
by fast integer algorithms which involve the numbering
of links in the occurring loops and which incorporate the
general rules which hold for the Y,. In particular, the
properties of the Y, of being projectors and orthogonal to
each other lead to a major speedup. Furthermore, a
number of rules derived from representation properties of
the permutation group have been implemented to handle
the joining of one-link correlation functions with different
numbers of U matrices (and thus related to permutation
groups of different order).

IV. RESULTS AND THEIR IMPLICATIONS

To investigate systematic features of the approach
computations up to the sixth order have been done for
the case of SU(2), d=4, and with X representing a pla-
quette. Figure 2 shows the typical behavior of the nth-
order approximations W, to (2.2) as functions of a com-
pared with the Monte Carlo result [11]. This behavior is
found throughout the weak-coupling region (with the os-
cillations at small a increasing in magnitude with B) as
has been checked up to B=14. The arrows in Fig. 2 indi-
cate the a value corresponding to the mean-field estimate
where A=0 and the a value corresponding to the charac-
teristic deviation A=2 found in our former investigations
[4,5], respectively. It is obvious that in the vicinity of
A =2 optimal convergence occurs while the choices of a
values in other regions do not make sense.

The typical accumulation in the vicinity of A=2 is
shown in more detail in Fig. 3, now considering the W,
as functions of A as defined by (2.8). Because of its
universal character A is a more appropriate variable for
studying finer details.

From Figs. 2 and 3 it is apparent that the conventional
mean-field method, which amounts to using the first-
order approximation W, at A=0, suffers from three
drawbacks: (1) the first order is not sufficient to come
reasonably close to the actual value; (2) odd orders are
worse in general; (3) A=0 is not optimal.

From Fig. 3 it is seen that the series of even orders of
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FIG. 2. Typical behavior of W, to W as functions of a and
Monte Carlo value (shown at f=4).
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the W, shows faster convergence in the region of interest.
This phenomenon has been found [3,4] already up to the
fourth order to appear independently of gauge group and
dimension for all Wilson loops above some 3, which for
the plaquette is close to the crossover region. Thus, in
the present investigation it appears over the whole range
considered.

The origin of the indicated behavior of even orders can
be inferred from Fig. 4 which shows the dependences on
A of the contributions

uv=:}17<(S—SO)"X>8 @.1)

to (2.2) for v>0 (in which case they do depend on
S —S,). It is seen that in the region of interest only the
u, with odd v change sign and thus are essentially re-
sponsible for the accumulation structure. In addition, it
becomes obvious that u; and u,, u; and u,, us and ug
below the zeros largely compensate each other, respec-
tively. Thus it is advantageous to consider the combina-
tions u,+u,, us+tu,, ustug which are much smaller
there and which also change sign. This shows how the
even-order phenomenon arises.
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FIG. 3. Typical behavior of W, to W as functions of A and
Monte Carlo value in the vicinity of the mean-field estimate,
shown at (a) B=4 and (b) B=6.
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FIG. 4. Dependences of the contributions #,, on A (shown for

B=6).

The mean-field estimate (2.7) resulted from a simple
picture of the compensation of S by S, relying on the
vanishing of an idealized correlation function containing
the difference S —S,. Figures 2—4 illustrate the more so-
phisticated rules which are found in reality. As already
pointed out, the vanishing does not occur at A=0 but
near A=2. A further difficulty from the mean-field view
is that the zeros of the contributions depending on S —S,
change their position slightly from order to order (which
stems from the complicated entering of S —S, as well as
from the overall S, dependence of any correlation func-
tion  --- ). Thus, one is lead to consider the more
general criterion of the fastest convergence of subsequent
orders (or even orders).

We now turn to the question of how exploiting finer de-
tails of the accumulation structure to obtain optimal ac-
curacy when fixing a. Up to the fourth order a set of
rules has been established [3-5] which applied to all of
the considered gauge groups, dimensions, and Wilson
loop sizes and by which the accuracy of Monte Carlo
simulations of moderate statistics was reached. After
rules based on the vanishing of the S —S,; dependent con-
tributions (related to intersections of W, with W) refined
rules emphasizing the fastest convergence of subsequent
orders and accounting for the even-order phenomenon
have been developed (related to intersections or closest
approaches between W,, and W,,_, or W, and W, _,,
respectively). For the plaquette average to be considered
here, particularly high accuracy has been reached [4] by
taking W, at the a value where W, —W,=W,— W,.

To get further insight it was necessary to obtain results
up to the next even order, i.e., up to the sixth order,
which has been achieved in the present work. The gen-
eral features of the accumulation structure become trans-
parent from these results. However, from the compar-
ison with the Monte Carlo value in Fig. 3 the disappoint-
ing fact is apparent that the sixth order no longer leads to
an improvement. Figures 3(a) and 3(b) show that at
lower as well as at higher 8 the fourth order is better than
the sixth order (with generally better results at larger ).

Inspection of Figs. 3 and 4 with respect to this (at first
sight surprising) observation reveals the underlying
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(monotonic) trend of consecutive orders according to
which one has to expect still worse results for the eighth
and higher orders. This holds independently of the par-
ticular prescription for fixing a (i.e., equally well for us-
ing intersections of W,, with W,,_,, intersections of W,
with W, or anything similar that can be reasonably
justified). Also involving odd orders somehow offers no
way out because seventh and higher orders are to be ex-
pected well below the fifth order. Thus, from the practi-
cal point of view one arrives at the conclusion that the
method fails to compete with high-statistics Monte Carlo
simulations.

From the theoretical point of view the question arises
why the expansion fails above a certain order. One im-
mediately notes that such a behavior is typically found
for asymptotic expansions [12] when increasing the order
for fixed expansion parameter. In fact, providing a
weak-coupling approximation the expansion considered
here is expected to be asymptotic. Because of its con-
struction it is, however, hard to get hold of its remainder
and to investigate details of this rigorously. As compared
with usual expansions there is an additional severe
difficulty in the present case. The orders are primarily
not specified in terms of powers of a parameter but in
terms of powers of a difference of functions S—S.
Therefore, in the evaluation somehow a conversion from
orders of S — S|, into orders of 1/f3 has to take place such
that one arrives at a weak-coupling approximation. For
this purpose it is obviously important to choose a ap-
propriately depending on /3.

From the discussions in Secs. II and IV it follows that
our a(f3) derived from requirements of optimal conver-
gence is an approximate solution of

a
Via)

g[(Zd-—l)+A]= 4.2)

Using the asymptotic expansion of modified Bessel func-
tions it is seen that for large a the right-hand side of (4.2)
can be replaced by a+2+99/(32a). Cancellations of
powers of B in (3.1) become thus possible, though only in
an approximate way and with increasing difficulty at
higher order. There are, however, further cancellations
in (3.1) due to the asymptotic form V,(a)
=1—r(r+2)/(4a)+0(1/a*) and because of the proper-
ties of (2.3). These are such that the constant parts of
the monomials of V,(a) in (3.2) drop out and one remains
with powers of 1/a which by (4.2) turn into powers of
1/B. This saves the situation as far as the 8 dependence
is concerned and is the reason why one gets a weak-
coupling approximation.

The analytical details of the conversion into powers of
1/3 are obviously complicated and may emphasize the
effect that the approximation no longer improves above
some order. From a more general point of view the limi-
tations for compensating plaquette actions by link actions
appear to show up.

V. THE CASE OF FINITE TEMPERATURES

In the case of finite temperatures calculations have
again been done for SU(2) in the weak-coupling region

0.90+
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4 5 g 6
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FIG. 5. Typical result for Py, as a function of B compared
with Monte Carlo values (dots) and with perturbative O(1/8)
(dash-dotted line) and O(1/3?) (dashed line) results.

and for d=4, now with periodicity and extension N_ in
the time direction and still infinite extensions in the three
spatial directions.

To investigate the general situation space-space and
space-time plaquette averages have been calculated up to
the sixth order for N =4. The behavior of the individual
orders turns out to be the same as that discussed in Sec.
IV for the plaquette on the symmetric lattice. Compar-
ison with Monte Carlo data [13] again shows that the
sixth order no longer leads to an improvement as com-
pared to the fourth order.

In perturbative calculations of thermodynamic quanti-
ties at higher order summations of an infinite set of dia-
grams are used to cure infrared divergences which, how-
ever, ultimately does not lead to satisfactory results [7].
On the lattice one is confronted with zero modes already
at low order [14]. Therefore, the present weak-coupling
approach is of interest as an alternative to these perturba-
tive calculations.

To check the respective possibilities the internal energy
of the gluon gas has been considered which, with ap-
propriate coefficients [15] ¢, and c,, can be obtained [16]
from

€=3B(P,—P,)+c,(Pyn—P,)+c(Pyn—P,), (5.1)

sym

where P, and P_ are the average plaquettes in space-
space and space-time directions and Py, the one on the
symmetric lattice. According to the rules about accura-
cies found our computations (up to the sixth order) have
been evaluated in the fourth order (using the
W,—W,=W,— W, prescription discussed in Ref. [4])
for P, and P_at N_=3,4,5 and for )

Figure 5 shows typical results for Pg,,, compared with
Monte Carlo values [11] and with O(1/8) and O(1/3?)
results from lattice perturbation theory [14]. The corre-
sponding figures for P, and P, have the same appearance
(because the small differences are not visible at the scale
of the figures). It is seen that our results for the average
plaquettes are better than those from perturbation
theory. However, inserting the perturbative results for
the plaquettes into (5.1) leads to reasonable results for e,
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which apparently is due to cancellations of common devi-
ations within the differences in (5.1). For our plaquette
results cancellations of this type do not occur and thus
the insertion into (5.1) does not lead to useful results for €
at the given accuracy.

VI. CONCLUSIONS

To get more insight in the underlying mechanisms of
the accumulation-point approach and to decide if the ap-
proach is able to compete with high-statistics Monte Car-
lo simulations it was necessary to reach the sixth order by
overcoming huge combinatorial factors. This has been
achieved by two means. First, instead of treating all
configurations contributing to the set of connected func-
tions these configurations have been reduced to
equivalence classes in several steps (getting from numbers
of about 10'° to ones lower than 2 X 10%. Second, instead
of using the one-link integral as a generating function the
tools of representation theory have been used evaluating
tensor products (gaining up to a factor 3X10° for some
contributions).

The results have allowed us to establish the general
features of the individual orders. Details as the even-
order phenomenon have been clarified. It has become
possible to identify the general trend which then allows
us to predict the behavior of still higher orders. This is
important because it cannot be done by analytical and
rigorous tools so far.

With respect to practical applications it has turned out

that the sixth order gives worse results than the fourth
order, or, more generally, that there is no longer an im-
provement beyond the fourth order. This behavior ap-
pears to be related to the asymptotic nature of the expan-
sion and to the conversion into powers of 1/8 needed.
Ultimately it reflects limitations in the possibilities of
compensating the action by the trial action.

The origin of the weak-coupling nature of the expan-
sion is revealed. It has been found to follow from the
properties of connected functions combined with the
asymptotic behavior of the modified Bessel functions in-
volved.

The extension of the approach to the case of finite tem-
peratures has shown that there the same features occur as
on the symmetric lattice. Comparing the calculations of
thermodynamic quantities by the present approach and
by perturbation theory it is seen that though higher accu-
racies are reached for average plaquettes the accuracy is
not sufficient for energy densities.

ACKNOWLEDGMENTS

One of us (W.K.) is indebted to J. Engels for discus-
sions and for Monte Carlo data. He also wishes to thank
the High Energy Theory Group of Brookhaven National
Laboratory for hospitality during a summer visit. This
work has been supported in part by the Deutsche
Forschungsgemeinschaft. The computations were car-
ried out on the CONVEX C230 and on the IBM 4381 in
the Hochschulrechenzentrum at Marburg.

[1] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

[2] R. Balian, J. M. Drouffe, and C. Itzykson, Phys. Rev. D
11, 2104 (1975); 19, 2514 (1979).

[3] W. Kerler, Phys. Rev. Lett. 60, 1906 (1988).

[4] W. Kerler, Phys. Rev. D 40, 2085 (1989).

[5] W. Kerler and T. Metz, Phys. Lett. B 229, 264 (1989).

[6] W. Kerler and G. Mdller, Phys. Rev. D 41, 2581 (1990).

[7] For recent discussions and further references see Refs. [8]
and [9].

[8] C.-G. Killman, Phys. Lett. 134B, 363 (1984).

[9] F. Karsch, in Quark-Gluon Plasma, edited by R. C. Hwa
(World Scientific, Singapore, 1990).

[10] M. Hamermesh, Group Theory (Addison-Wesley, Reading,

MA, 1964).

[11] M. Campostrini, G. Curci, A. Di Giacomo, and G. Paffuti,
Z. Phys. C 32, 377 (1986).

[12] A. H. Nayfeh, Perturbation Methods (Wiley, New York,
1973).

[13] J. Engels (private communication); J. Engels, J. Fingberg,
K. Redlich, H. Satz, and M. Weber, Z. Phys. C 42, 341
(1989).

[14] U. Heller and F. Karsch, Nucl. Phys. B251 [FS13], 254
(1985).

[15] F. Karsch, Nucl. Phys. B205 [FS5], 285 (1982).

[16] J. Engels, F. Karsch, I. Montvay, and H. Satz, Nucl. Phys.
B205 [FS5], 545 (1982).



