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Fujikawa s method of evaluating the anomalies is extended to the on-shell supersymmetric (SUSY)
theories. The supercurrent and the superconformal current anomalies are evaluated for the Wess-
Zumino model using the background-field formulation and heat-kernel regularization. We find that the
regularized Jacobians for SUSY and superconformal transformations are finite. The results can be ex-
pressed in a form such that there is no supercurrent anomaly but a finite nonzero superconformal anom-
aly, in agreement with similar results obtained using other methods.

Supersymmetry [1] (SUSY) has many interesting prop-
erties. One of the most important properties of SUSY
theories is the cancellation of divergences between bosons
and fermions. If SUSY becomes anomalous this cancella-
tion may not occur. Hence it is important to know
whether SUSY is respected by the quantum fluctuations.

It is known that [2] massless SUSY theories also exhib-
it a much larger superconformal symmetry. Under
SUSY transforrnations, the divergence of the supercon-
formal current, along with the trace of the energy-
momentum tensor and the divergence of the chiral
current, are members of a supermultiplet [3,2]. For a
massless theory, these quantities vanish classically. How-
ever the trace of the energy-momentum tensor, and in
some cases the divergence of the chiral current, are
known to have anomalies. An important question is
whether the anomalies in these currents also form a su-
permultiplet. To understand this issue it is necessary to
evaluate the superconformal anomaly (along with the
other anomalies, using the same regularization scheme).

Fujikawa, in his seminal papers [4], has shown that the
chiral and the trace anomalies are related to the change
in the functional measure under the corresponding chiral
and dilation transformations respectively. Fujikawa's
method has also been used earlier to evaluate the super-
current and the superconformal current anomalies for
some SUSY theories, such as the Wess-Zumino model or
the %=1 SUSY Yang-Mills theory [5]. These calcula-
tions were performed off-shell, using the superfield for-
mulation, with the background fields corresponding to a
SUSY Yang-Mills theory and a supergravity theory re-
spectively.

In this paper we work on-shell and the background
fields used correspond to the same theory for which the
anomalies are being computed. Apart from having the
advantage of dealing directly with physical fields, such a
procedure is essential for a theory where a complete off-
shell formulation is not known. When one works with
only physical fields, i.e., on-shell, the SUSY transforma-
tion laws become nonlinear. The extension of the
background-field techniques and Fujikawa's method to
evaluate the on-shell SUSY and superconformal anomaly

has been an open problem. These problems are tackled in
this paper.

We begin with the evaluation of the supercurrent
anomaly for the Wess-Zumino model. All the fields are
separated into small fluctuations P around classical back-
ground values @. The fluctuations are integrated out in
the functional integral. The partition function 8'[4] is
then a functional of the background classical fields N:
W[C&]= JS[p]e ( +~) Us.ing Fujikawa's method we

get the Ward identity that the SUSY variation of 8'[4']
equals the Jacobian of the corresponding SUSY transfor-
mation of the fluctuation fields. This Jacobian is evalu-
ated in a regularized way. The regulators are obtained by
differentiating the quantum action twice. The quantum
action is that part of the action which is bilinear in the
fluctuations. The quantum action turns out to be nondi-
agonal in bosons and fermions. This would lead to
boson-fermion mixed regulators. To simplify the calcula-
tions the quantum action is diagonalized.

It turns out that in terms of the diagonalizing variables
the Jacobians depend only on the boson transformation
law. Since only the fermion transformation law is non-
linear, the problem of nonlinearity of the on-shell SUSY
transformation laws is thus avoided. However the regu-
lator for the new bosonic variables has a nonlocal contri-
bution. Hence the heat-kernel regularization procedure,
which has so far been used only for local operators, has
to be extended to include nonlocal operators too.

The regularization scheme used here treats'bosons and
fermions differently, i.e., non sup ersymmetrically. The
regularized Jacobian is finite even when the limit t ~0 is
taken (here t is the heat-kernel-regulator parameter). All
the divergent contributions from bosons cancel with
those from fermions. The result can be expressed as the
SUSY variation of a (harmless) local counterterm plus a
total divergence. These terms can respectively be ab-
sorbed in the action to yield a modified effective action
and in the supercurrent to yield a modified supercurrent,
which is conserved. Thus there is no one-loop super-
current anomaly for the on-shell Wess-Zumino model.
The presence of nonsupersymmetric local counterterms is
because of the manifestly nonsupersymmetric nature of
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our regularization scheme.
The calculation of the supercurrent anomaly is then

used to evaluate the superconformal anomaly as follows.
The superconformal transformation law for the boson is
obtained by replacing the SUSY transformation parame-
ter e by (i/c, ). This is not true for the fermion transfor-
mation law. However, as mentioned earlier, our Jacobi-
ans depend only on the boson transformation law. Thus
the superconformal anomaly is obtained by simply mak-
ing the above substitution in the calculation for the su-
percurrent anomaly. The result is again finite. However
it does have a contribution which cannot be expressed as
a total divergence or, as the superconformal variation of
a local counterterm. Hence the superconformal symme-
try is anomalous. The results obtained here are in agree-
ment with those obtained earlier using other methods [6].

In Sec. I we shall obtain the SUSY Ward identity using
the background-field method [7]. The relevant regulators
will be obtained in Sec. II and the Jacobians for SUSY
transformations evaluated in Sec. III. In Sec. IV we shall
derive the superconformal anomaly.

I. THE SUSY WARD IDENTITY

—mg S,S„S„—(g2/2)(s„s„)2],

where the scalar and the pseudoscalar fields are compact-
ly denoted by S„=(S,P). Other conventions used are

g„.=(+ ———» [y„y.I =Zg,.
y". =(1 +&y»

S=s—iy5P, S =S+iy5P .

r~=x»

We shall absorb the coupling constant g in the fields and
not write it explicitly. The SUSY transformation laws for
this model are

5,S„=qIy„E, 5,V= —[(i8+m+S)S]e . (2)

S„and 4' are split up into classical background fields
S„and A, and fiuctuation fields s„and g as

S„=S„+s„, '0 = A, +g .

The fluctuation fields are to be integrated out in the
functional integral. The SUSY transformation laws for
these fields are

The Wess-Zumino model [8,2] is the simplest interact-
ing supersymmetric model. It consists of a scalar S, a
pseudoscalar P and a Majorana fermion O'. The action
for this model is given by

s= f d x I ,'(a„s—„a"s„m2s—„s„)
+0 [-,'(it) —m) —gS']0

+4[—,'(tl —m) —gS ]4
—mSiS„S„——,'(S„S„)j, (7)

and

5,S„=,'(ky—„c.+Fy„A.),
5,A. = —[([tl+m+g)g]E;

5,s„=—,
'

( Py „E+Ey „P),
5,Q = —[(8+m +it+ Zg )j]e .

(8)

(9)

Here we have written the scalar transformation in this
symmetrized way for later convenience. It reduces to the
usual SUSY transformation law of the scalar field, Eq. (5),
in Minkowski space by the Majorana property of c, A, ,
and g. To obtain the SUSY Ward identity, we start with
the exponential of the Euclidean e6'ective action in the
presence of the background fields S„and A, :

W = s„expS S,V . 10

The change in W under the SUSY transformations of
the background fields S„and A, , given by Eqs. (8), is

5,W = f2)[ s]2)[g]2)[f]e px(S [S,ql])

x 5,S„+5,A, S . (11)
c, n E

On the right-hand side we make a change of integra-
tion variables given by s„~s„+5,s„, /~/+5, $, and
/~/+5, $, where the variations 5, are as defined in Eq.
(9), and retain terms only linear in the infinitesimal trans-
formation parameter c,. The variation of the fluctuating
fields combines with the already present variation of the
background fields to give a total supersymmetry variation
of the classical Euclidean action 5,S [S,V]. Further the
variation of the measure gives a Jacobian 1+J (s).
Thus,

background fields.
In Fujikawa s method, the regularization of the Jacobi-

an is carried out in Euclidean space. To go to Euclidean
space we use the continuation prescription

t i—t, A„B" —A B„, y„a" i—y„a„, (6)

with (y&) =+yz. We shall use 5„as the Euclidean
metric and drop the superscript E from the Hermitian
Euclidean y matrices. Further, in Euclidean space P and
g are to be treated as independent Dirac fermions [9,10].
The Euclidean action and the Euclidean SUSY transfor-
mation laws corresponding to Eqs. (1), (4), and (5) are

s = fd'x[ —
—,'(a„s„a„s„+m's„s„)

5,S„=Ay„c,, 5,A, = —[(i8+m+g)g]c, ,

5,s„=gy„E, 5,g= —[(i@+ +ms'+Zg)s'] . E

(4) 5,8' = f2)[ s]2)[g]2)[g]e x(pS [S,V])

x[5,s [S,q]+J (E)] . (12)
Whereas the SUSY transformations of the background

fields involve only the background fields, those of the
fluctuation fields involve the fluctuation as well as the

Since in Euclidean space g and P are not Majorana fer-
mions, the boson-fermion degrees of freedom do not
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rnatch. Therefore the action S is not invariant under
rigid SUSY transformations [10]. The variation of the
action is proportional to %(5,g)% which is nonzero in
Euclidean space. However, when continued back to
Minkowski-space, such a term vanishes by Fierz rear-
rangernent, and we get the required Minkowski-space
Ward identity:

5,W'= f2)[s„]2)[f]2)[g]exp(iS[S,V])

X i f d'x Q„a~s+J(e) (13)

Since the scalar fields are unchanged in (17), the Jacobian
of the above change of variables is trivially 1. The diago-
nalized action is

S~=f d x —,'s„( —m )s„+g'[—,'(8—m) —gg t]1(t'

—mSs„—2ms&S„s„—S„s —2S„s„S s

—f d y A,(x )j t(x)G(x,y )s' t(y )A, (y )

Here

8'= s„exp iS S,%' (14)

II. EVALUATION OF THE REGULATORS

As we shall see in the next section, the Jacobian J (c, )

in (12) consists of the functional traces of certain quanti-
ties. These are ill defined and hence should be regulated.
The heat-kernel regulators h(x, y;t)=(y~e' ~x ), with R
as some appropriate negative-definite operator, will be
used for this purpose. In Fujikawa's method, R is related
to the operator obtained by double functional
differentiation of those terms of the Euclidean action
which are quadratic in the fluctuation fields. For this
purpose we collect all the terms in S which are bilinear
in the fiuctuation fields, s„, P, and P, and denote them by
S~ the quantum action

S~= f d

xmas„(

—m )s„+g[—,'(8—m) —gg t]g
—Af 1(

—1ttg A, —mS, s„—2msiS„s„

is the Minkowski-space vacuum-to-vacuum amplitude
and the variation of the Minkowski action S is given by

5,Si = i f—d x iIly„[m 8+i 88+(8) ]d"e

=fd xQ„B"e.

Here Q„ is the supercurrent. For rigid SUSY transfor-
mations, 5,S vanishes and J(s) gives the supercurrent
anomaly.

8 „(x,y)=8'„(x,y) —A(x)y G(x,y)y„A, (y)

—A(y)y„G(y, x )y A(x),

w~ere
8' „(x,y ) = [( —m —2mS —2S )5

(20)

—2m (5,„S +5, S„)—4S S„]5(x—y )

(21)

is the loca1 part of the bosonic regulator. Now we con-
sider the fermion regulator. Differentiating S~ with
respect to g

' and P' yields

N=[ —,'(8—m) —gS ] . (22)

Further

=[—,'( —8—m) —gS] . (23)

Since @ does not have definite Hermiticity property, e'@

cannot be used as the fermion regulator. However, in
Euclidean space f' and g' are independent fermions and
hence can be regulated difFerently. We choose the regula-
tors for g' and g' to be e' and e' respectively [10],
where

(19)

Differentiating S~ twice with respect to the bosonic
variables yields 8 „(x,y), the bosonic regulator opera-
tor:

—S„s„+2S„s„Ss (16)
4P B=0—(m +4—S +4mS, +2' ) (24)

This action is not diagonal in s„and f and hence would
lead to boson-fermion mixed regulators, which are not
convenient to handle. To simplify calculations, the quan-
tum action should be diagonalized. This is done by the
change of variables

sn sn ~

g(x)~g'(x)=g(x) —f G(x,y)f (y)A(y)d y, (17)

g(x)~g'(x)=g(x) f X(y)rf (y)G '(x,—y)d y,
where the Green's functions 6 and G ' are defined as

[—,'(8—m )+S t]„G(x,y ) =5 (x —y ),
G'(x,y)[ —,'( —8+m)+P ]„=5(x —y) .

and

F= —4gjP = —(m +4S +4mS, —28S) . (25)

As desired, all the regulator operators, Eqs. (20), (24), and
(25) are diagonal in bosons and fermions. The fermionic
regulators I" and I are completely local; however, the bo-
sonic regulator B „has a nonlocal part. Further, our
regularization procedure is not manifestly supersym-
metric. This will lead to nonsupersymmetric counter-
terms, but the expressions for the supercurrent and the
superconformal anomaly are expected to be independent
of the regularization procedure used.

The SVSY transformation laws of the new variables
are found using (9) and (17) to be
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5,g' = I 5,$—(5,G )j 1,—G)( 5,A,

—
—,'Gy"„A,(Ey„g'),

5,g ' =
[ 5,$ (—5,A))f t, G ' 4—f 5,G '

—
—,'(ey„g+ks' G 'y„e)A,y„G ']

—
—,'(g'y„e)k, y„G ',

5,s. = ,' [0'-y. e+Ey. f']
+ ,'(Ey„-GIftA. +AX G'y„E) .

The SUSY transformations of the new variables con-
tain, in addition to other fields, the transformed variables
themselves. This is unlike the SUSY transformations (9)
of the old variables. We have collected in the curly
brackets all the terms which do not contain the variable
being transformed. These terms do not contribute to the
Jacobian, as will be shown presently. The form of the
Jacobian, as is clear from the SUSY transformation laws
(26), is

A(E) 8(e)
1+J(e)=SDet 1+ C( ) D( )

where 3, B, C and D are some functions, linear in c and
SDet is the superdeterminant. The boson and the fer-
mion regulators R& and Rf can be combinedly written in
a diagonal form as

R~ 0

0 Rf
The regulated Jacobian is

P

A (e)Rb 8(e)Rf
1+J (E)=SDet 1+ C( )R D( )R

= 1+Tr( ARb ) Tr [DR—f ]+O(e ) .

Here the minus sign in front of the fermion term comes
from the fact that the fermionic Jacobian is an inverse

III. EVALUATION OF THE JACQBIANS

As mentioned earlier, the Jacobians are ill defined and
have to be regulated. To do so, we start by regulating the
transformations themselves. This will simultaneously re-
gulate the Jacobian and the divergence of the super-
current. Thus we directly get the regularized Ward iden-
tity. The fields s„, f', and P

' are regulated using the heat
kernels h „,h, and h, respectively, where

h „(x,y; t ) = (y ~exp(t8 „)~x ),
h '(x,y; t ) = (y ~exp(tF) ~x ),
h '(x,y; t )= (y ~exp(tF ) ~x ) .

(27)

The operators 8 „,F, and F are as defined in Eqs. (20),
(24), and (25) respectively. Using these heat kernels we
get the regularized transformation laws corresponding to
Eqs. (26) to be

determinant as contrasted to the bosonic Jacobian. To
lowest order in c., only the diagonal elements of J (e)
contribute. They arise due to those terms in the transfor-
mations (26) which contain the transformed variables
themselves. Similarly for the diagonalizing variables (17),
the parts of SUSY transformations which do not contain
the variables being transformed will not contribute any-
thing to the Jacobian up to order c. All the terms in the
curly brackets in Eqs. (26) are of this form and hence will
be ignored.

One of the problems encountered in extending
Fujikawa's method to on-shell SUSY theories is the non-
linearity of the on-she11 SUSY transformation laws. Note
however that the parts of the SUSY transformations (26)
that do contribute to the Jacobian depend only on the bo-
son transformation law, and hence are linear in the vari-
able being transformed. Thus we have circumvented the
problem of nonlinearity of the SUSY transformation
laws. The discussion presented above is quite general and
applies to all the SUSY theories in Aat spacetime. The
fact that the Jacobians are independent of the fermion
transformation law will also be useful later. It will enable
us to carry over the calculation for the supereurrent
Jacobian to that of the superconformal Jacobian.

5,g'(x)= —
—,
' f d y G(x,y)y„A(y) e(y)y„ f d y'h'(y, y', t)f'(y')

5,f'(x)= —
—,
' fd y fd"y'g'(y')h '(y', y;t)y„e(y) X(y)y„G '(y, x),

p5„( )x= ,' fd y X(y—)fd y's&(y')h& (y', y;t)y G(y, x)y„E(x)

+ ,' f d y e(—x)y„G(x,y)y f d yh &(y,y';t)s&(y')k(y) .

Since, in the limit t ~0 the heat kernel tends to the 5 function, (28) reduce to (26) in this limit.
The regularized Jacobian for the SUSY transformation of the scalar fields is

(28)

5(s„(x) +5,s„(x) )

5s (x') =1+ ,' f d x f d—y[X(y)h „(x,y;t)yt G(y, x)y„e(x)

+K(x)y„G(x,y)y h „(y,x;t)A(y)]+O(E ) . (29)
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Similarly we have the f' and f' Jacobians as

5(g'(x)+5,g'(x) )

5g'{x')
=1—

—,
' f d x f d yE(y)y„h'(y, x;t)G(x,y)yak(y)+O(s ) (30)

5(1Tj'(x )+5,1( '(x ))
Det

5$ '(x')
=1—

—,
' f d x f d yk(y)ytG '(y, x)h '(x,y;t)y„E(y)+O(e ) . (31)

Being fermion Jacobians, these are inverse determinants, in contrast with the bosonic Jacobian (29) above. The product
of all these Jacobians leads to the following contribution J (c, ) in Eq. (12):

J (e)= —,
' f d x f d"y [[e(y)y„h „(x,y;t) —5 „E(x)y„h'(x,y;t)]G(y, x )yt A(x)

+k(x)y G'(x,y)[h„(y, x;t)y„E(y) —5 „h '(y, x;t)y„E(x)]] . (32)

Our task now is to evaluate these Jacobians. This is
done using the short-distance expansion [11]. Since even-
tually we will take the limit t~O, the heat kernels will
contribute only when their arguments x and y are close to
each other. In this coincident point limit the heat kernels
can be evaluated as follows. The regulator operators F,
F, and Bm„—the local part of the 8~„—have a generic
form:

—(x —y) /4t

h(y, x, t)= g aI, (y, x)t",
k=O

(40)

where ak are the expansion coefficients called the
Meenakshisundaram-DeWitt-Hadamard heat coe%cients.
These will now be evaluated. Substituting (40) in the heat
equation (38) yields the recursion relation

8 =U+2X 8+0 X+X + F . (33) [k+z„(B„+X„)]ak(y, x ) =Rak, (y, x ). (41)

Here X„and Y are matrix valued and they do not involve
any difFerential operators From. Eqs. (20), (24), and (25),
we see that X„=O for all the regulator operators, and

Here z„=(y„—x„). The boundary condition (39)
translates into

y = —[(m +ZmS, +2S )5 ao(y x) (42)

+2m(5, „S +5i S„)+4S S„],
y= —(m +4S +4mSi+28g ),
y = —(m +4S +4mS, —28g),

(34)

(35)

(36)

Using the form of R, Eq. (42), and successive
differentiation of Eq. (41), various coefficients ak and
their derivatives can be evaluated in the coincident point
(y ~x ) limit. This is done in Appendix A.

Let us define a heat kernel from the local part of the
bosonic regulator 8' „(2l) as

for B' „,F, and F, respectively. The generic heat kernel
corresponding to (33) is h'„(x,y;t)={ylexp(tB'„)Ix } . (43)

h(y, x, t)={xle' Iy)

which satisfies the heat equation

a
h =eh,

Bt

subject to the boundary condition

limb (y, x, t )=5 (x —y ) .
t~o

(37)

{38)

(39)

h
' „,h', and h ' can be expanded in the same manner as

(40). The corresponding heat coefficients are denoted by
(ak) „,ak, and ak respectively. As will be explained, at
most the third derivative of ao and the first derivative of
a, are needed for our purpose. The derivative with
respect to the first or the second argument of ak will be
denoted by B„or B„respectively. The relevant heat
coefficients, as given in Eq. (Al 1) of Appendix A are list-
ed below:

[ao(x y)]~~ ly= =5 aol =ao= 1

For small t the heat kernel has an asymptotic expansion
[11] all derivatives of (a 0) „,a 0, and a 0 are equal to zero, and
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(a', ) „~ =——[(m +2mSi+2S )5 „+2m(5,„S +5, S„)+4S S„],
(Q„a i ) „~ =(@~a i ) „~ = —[(mSi+S )5 „+m(5i„S +5i S„)+2S S„],
ai ~

= —(m +4S +4mSi+28g ), (B„ai)~ =(B„ai )~
= —B„(2S +2mS&+8S ),

ai ~

= —(m +4S +4mSi —28S), (B„ai)~ =(5~a i) = —i3„(2S +2mSi —8g) .

(44)

To evaluate (32) we also need to know the Green's
functions G and G ' in the limit y ~x. This can be done
as follows. Define a Green's function G(x,y ) such that

G(x,y)F =5 (x —y),
where F is defined in Eq. (24). G can be expressed as

1

772

1 m +S(y)z4 z2 2

G '(x,y ) = —4G (x,y )Qy

a', (x,y)
4z

(45)

G(x,y)= f dt e' = lim f h'(x, y;t)dt .
0 gazoo 0

Here the expression (23), for g~, and (44) have been used.
The other Green's function G, defined in (16), can be
evaluated using a similar procedure to yield

Substituting the asymptotic expansion (40) of h gives
G(y, x) =

7T' z'
1 m +S(y) + a', (y, x)

Z2 2 4z

1G(x,y ) =
4~

ao(x, y ) 1 z~+—ln a ', (x,y ) + .
4

where the limit w~ ~ is not written explicitly. The
Green's function G, defined in (18), also satisfies [using

(22)] G(x,y)B~ =5(x —y). (B is obtained from Q by a

partial integration. ) Using F= 4B g give—s

(46)

Since the coefficients a
&

and a I are known in the coin-
cident point limit, so are G and G '.

The bosonic regulator (19) has a nonlocal contribution.
To begin with, the contribution of the nonlocal part has
to be separated from that of the local part. This is done
in Appendix B. Using the equation (Bl 1), the Jacobian
(32) can be written as

J (s)= —,
' f d x f d yI[ (Ey)y„h'„(y, xt) —5 „E(x)y„h'(x,y;t)]G(y, x)yt A(x)

+X(x)yt A(y)G'(x, y)[h„' (y, xt)y„(sy) —5 „h '(y, x;t)y„E(x)]]

——f d x f d y X(x)y G '(x,y)y„s(y) f d x'[X(y)y G(y, x')yll(x')+X(x')ytlG(x', y)yt A(y)]h&'„(n', x;t)

+E(x)y G(x,y)y„A(y) f d x'[X(y)y G(y, x')y&A(x')+X(x')yIG(x', y)yt A(y)]IiI„(x',x;t)

(47)

We are now in a position to evaluate the Jacobian (47).
The contributions from the fermionic Jacobian and the
local part of the bosonic Jacobian, i.e., the term in the
first set of curly brackets in Eq. (47), will be evaluated
first. To make a short-distance expansion, we expand all
functions of y around x as

y =x+z =x+2V'tz' .
The new integration variables are x and z'. The limit

t~0 will be taken only at the end. Hence only the con-
tributions proportional to t", n ~0, will survive. The

terms with negative powers of t or with ln(z /4') as a
coefficient will correspond to divergent contributions.
The Green's functions G and 6 ' have the most singular
contribution proportional to t coming from the first
terms in Eqs. (45) and (46). Hence we need to evaluate
only the first three derivatives of the heat coefficient ao
and the first derivative of a i, at coincident points (these
are proportional to t ", 0 ~ n ~ —', ).

We now substitute (44) —(46) in the first curly brackets
in Eq. (47), and collect all the possible terms with
coefFicients t", n ~0. The terms with odd powers of z will
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vanish because the rest of the integrand in (47) is an even
function of z. We also have

and

—Zf" -"d"=f', d'= '
QO Z' Further, y„=(1, —iy~), therefore yt y„=2

y „y„y„=0. Using all this information and going
through long but straightforward algebra gives

J (E)= f d x ——E8(g (S +m) —8S)+—B„E —8„+S—2B„S—y„{—g (S +m)+IS)

+—XP[(g+m+g)g]E+ —X —28 SB +(S +m —8)g r) —— +g E +(3A, contribution).
8

I
4 p p

(48)

It is worth noting that all the divergent contributions
have canceled off and expression (48) is finite. We now
turn to evaluation of the 3A, terms, i.e., the term in the
second set of curly brackets in (47), coming from the non-
local contribution of the bosonic regulator. These terms
contain products of Green's functions. The generic form
of such a term is

N(y, x)= fd u[G(y, u)][G(u, x)][f(u)], (49)

G(y, x ) =G„[y„]+( less singular terms),

G P=1'
P 2 4

Thus

N(y, x)=f d u[G(y, u)G„(u, x)][y„][f(u)]. (50)

The general form of the most singular, i.e., t ' or
equivalently z, term in % is

where f(u) is some nonsingular function involving A, , s,
and S. The spinor indices have been suppressed for con-
venience. The entire 3A, contribution is multiplied by t
and hence only the terms proportional to t", with n ~ 1,
will contribute to the Jacobian. Since G is of dimension
3, the product of two G is of dimension 2; hence the most
singular term in X is proportional to t ', and only this
term will contribute to the Jacobian. Such a term comes
from the most singular term in G. For this purpose G,
given by (46), can be written as

N(y, x ) = 1 asap Z Z

,"+b ', [y„][f{y)],Z' Z' (51)

where a and b are arbitrary coefficients to be fixed as fol-
lows. Since @G(y,x)=5 (x,y), operating on Eq. (50)
with B yields

BN(y, x ) =G (y, x )f(y )

2 z f(y )+(less singular terms) .7T'Z' (52)

1

7T2

r ~Z
", +,' [y„]f(y»2z' z4

f [G(y, u )][G(x,u )]f(u)d u = N(y, x ), —

f [G(u,y)][G(u, x)]f(u)d u = —N(y, x),
f [G(u,y)][G(x,u)]f(u)d u =+N(y, x) .

(53)

Note that the most singular terms in G and G ', i.e., the
first terms in (45) and (46), are identical. Hence the re-
sults listed above are unchanged if G is replaced by G '.

Substituting these expansions in (42) gives the total 3A,

contribution:

Operating on (51) by @ and comparing the result with
(52) gives a= —

—,
' and b=1. Using similar arguments,

the other combinations of products of Green's functions
appearing in (47) can be evaluated. Thus

f [G(y, u)G{u,x)][f(u)]d u

=N(y, x )

+ ey„yt A, X[yt gyt —ytZyt ]A, .+[e~ejZ' (54)
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Since y„=(1, —i ys), it is easy to see that both terms in

curly brackets vanish. Thus there is no 3A, contribution
to the Jacobian. The calculation of the Jacobian (47), in
Euclidean space is now complete.

To obtain the Minkowski-space Ward identity, (48) is
analytically continued using the prescription t ~it,
A„B„~—A„B",y„d„~i8 T.he Majorana property of
the fermions can now be used to see that the X and A, con-
tributions are identical and hence they add up. The
resultant Jacobian can be cast in a convenient form:

J(E)= f d x ——A8(g+m +i8)g+ C„Bi' E, (55)

where

C =
—,'A[ —2r}„(g+m/2)+i(S +m+3i8)y„g+4B„S] .

(56)

Evidently, the first term in (55) can be written as the
SUSY variation of a local term, and the second term has
only derivatives of c. Thus

Thus the entire contribution from the Jacobian of the
SUSY transformations can be absorbed into an improve-
ment of the effective action and the supercurrent. There-
fore there is no one-loop supercurrent anomaly for the
on-shell Wess-Zumino model. This is in agreement with
the results obtained using other methods [6]. The struc-
ture of the counterterm in (57) is not supersymmetric.
This is not surprising because the regulators are not man-
ifestly supersymmetric.

IV. THE SUPERCONFORMAL ANOMALY

Let us now evaluate the superconformal anomaly for
the Wess-Zumino model. It can be calculated using the
supercurrent anomaly as follows. The superconformal
transformation laws for the Wess-Zumino model are [2]

5;A= —[[(i8+m+g)SI( ig—)+2g ]E,

5;S„=—,
' [Ay„( —iXE)+(Ei/ )y„A] .

(61)

(62)

The superconformal Ward identity, similar to the
SUSY Ward identity (13), is

J(E)= ', f d'x — '
5,(XriA)+C„a&E (57)

5;W[S,A]= f2)[s„]2)[f]2)[g]exp (iS[S,'P])

X [i5;S+k(s)], (63)

Substituting for J(E) in (13) gives the supercurrent Ward
identity. In terms of the modified effective action, defined

as

where 6,S is the superconformal variation of the action
and k(E) is the corresponding Jacobian:

5;S =i—f d"x [ey„[(ia+m+S)S( ig)+25—t]B"8

W'[S, A, ]= W[S,A] exp f d x i X&A
16~

(58) —2im'Pg E]

1
~P ~P 2

7T

the Ward identity (13) can be written as

5,W'[S, A, ]=fXl[ s]2)[g]2)[g]exp(iS[S, 'P])

x i f g„'8"E

(59)

(60)

and the modified supercurrent defined as [Q„ is given by
(15)]

= f d'x(S„B"E—2m @StE) . (64)

When m =0, 5;S equals E times the divergence of the su-
perconformal current S„. As remarked earlier, the Jaco-
bian k(E) does not depend on the fermion transformation
law. The superconformal transformation law for the bo-
son is similar to the SUSY transformation with the pa-
rameter of transformations c. replaced by —iPc.. Hence
the Jacobian of the superconformal transformations is
obtained from (55) by replacing E by —ifE. Thus

k(s) = ', fd'x ——'X8(g+ m+ i8)g+ C„a~ (
—ig 8)

16f d x — 5', (AN. )+ C ( ig) —i —(5S+m )y —8"s+—X( iB+m+S—)S te
P 4 P (65)

where we have used the superconformal transformation law for the fermion and C„ is as defined in (56). In terms of the
improved effective action (58) and the improved superconformal current S„' given by

S' =S + C ( ig) —i——(5S+m)y1 — . . A,

P P 2 P 4 p
(66)

the superconformal Ward identity (63) can be written as

5;W'[S, A]= f2)[ ]s2)[g]2)[ t]iejxp(iS'[S, iII])f d x —2im@g tE+iS„'Bi's X( isl+m+S ——")StE (67)
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Thus, unlike the case of SUSY, Ward identity (61) the
last term in (67) cannot be expressed as the superconfor-
mal variation of a local counterterm or as a total diver-
gence. Hence the superconformal symmetry is anoma-
lous, with the corresponding anomaly given by the last
term in (67). Unlike the Jacobian of the dilatation trans-
formations [4], the Jacobian of the superconformal trans-
formation is finite. The anomaly obtained here agrees
with the result obtained elsewhere using a different
method [6].

Fujikawa's method has been used earlier to derive the
superanomalies, see for, e.g. , Ref. [12]. However our
method differs from these calculations in a number of
ways. The model discussed in Ref. [12] is the Wess-
Zumino multiplet in two dimensions interacting with a
background supergravity multiplet, unlike our calculation
where the background fields also belong to the Wess-
Zumino multiplet. The regulators in Ref. [12] were pro-
vided by the background theory and hence they did not
face the problem of (diagonalizing the action and hence)
nonlocality of the bosonic regulator. Further, in our cal-
culation, due to diagonalization, the bosonic and fer-
mionic Jacobians could be evaluated separately and the
Jacobians were independent of the nonlinear fermionic
transformations. Whereas in Ref. [12] the Wess-Zumino
multiplet was off shell and the regulators were not diago-
nal in bosons and fermions, the resultant Jacobian was a
super determinant.

CONCLUSIONS

We have extended Fujikawa's method of evaluating
anomalies to an on-shell SUSY theory, namely, the
Wess-Zumino model. The main difficulty in using
Fujikawa s method for on-shell theories is the nonlineari-
ty of the on-shell SUSY transformation laws. However in
our calculation we found that, due to the diagonalization
of the fluctuation action, the regularized Jacobians of
SUSY transformations depended only on the transforma-
tion law of the bosons which is linear. Thus the problem
of nonlinearity of the transformation laws was circum-
vented. However the bosonic regulator for the diagonal-
izing variables turned out to be nonlocal. The heat ker-
nel regularization was then extended to include nonlocal
operators.

The resultant Jacobian of the SUSY transformation
was finite, and could be expressed as a total divergence
plus the SUSY variation of a local counterterm. Thus, al-
though our regularization scheme was not manifestly su-
persymmetric, there was no one-loop supercurrent anom-
aly for the on-shell Wess-Zumino model. The nonsuper-
symmetric nature of the regularization scheme manifest-
ed itself as the nonsupersymmetric local counterterms.
The calculation for the SUSY anomaly was then used to
evaluate the superconformal anomaly. The Jacobian for
the superconformal transformations also turned out to be
finite however, there was a nonzero superconformal
anomaly. These results are in agreement with similar re-
sults obtained using other methods [6].
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APPENDIX A

In this appendix the heat coefficients and their deriva-
tives are evaluated at coincident points.

Consider the recursion relations (41) and the boundary
condition (42) for the heat coefficients:

n +z„+X„(x) a„(x,y )=R„a„,(x,y ), (A 1)
a

Bxp

where z„=(y —x )„with n ~ 0, and

ao(x, x)=1 . (A2)

There are two types of derivatives of a„, i.e., with
respect to x or y, denoted by B„and B„respectively. To
evaluate the derivative of ao with respect to x, we
differentiate the recursion relation for ao with respect to
x and take the coincident point limit, to yield

B„ao(x,y)~ „=—X (x) . (A3)

Similarly, to evaluate B„B ao(x,y), we differentiate (Al)
twice with respect to x and then take the coincident point
limit, yielding

a„a.a (x,y)) „=-,( —a„X.—a~„+IX„,X.} ) .

The recursion relation for a &, obtained from (Al), is

(n +z (8+X))a,(x,y) =R„ao(x,y) .

(A4)

(A5)

Using (33), (Al), (A3), and (A4) in this equation and tak-
ing the coincident point limit gives

a, (x,y)~~ „=Y . (A6)

The first derivative of a& with respect to x involves

B„~a~, i.e., the third derivative of ao. Evaluation of this
is a tedious task. However, it is observed that all such
contributions cancel off between different Jacobians and
hence we need not calculate such a term explicitly.
Denoting [8„( +2X B)ao]~ = Yo, the first derivative of
a

&
with respect to x can be written as

a„a,(x,y)( =-,'(a„Y—
[ Y,X„}+a„Y,) . (A7)

Having obtained the coincident point expressions for
the relevant heat coefficients and their derivatives with
respect to x, the derivatives of the heat coefficients with
respect to y can now be evaluated as follows. We use
ao(x,y)=ao(x, x+z), with z=y —x, and make a Taylor
series expansion around z =0. Thus

ao(x, x+z)=1+z (Bao)~, 0

+-,'z„z,(F„a~,) ), ,+=
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Here the overbar on 8 implies differentiation with respect
to the second argument of a„. Differentiating this equa-
tion with respect to x, and taking the coincident point
limit, gives

B„ao(x,y)l» „=—8 aol =+X„(x) . (A8)

Similarly we find, for the second derivative of ap with
respect to the second argument, i.e., y, to be

[S„a~,(x,y)]l, =„=-,'(a„X,+a~„+IX„,X,]) . (A9)

The derivative of a
&

with respect to the second argument
can be found using identical procedure to be

[& a, (x,y)]l =„=—,'(8 Y+I Y,X„]—B„Y~) . (A10)

In some calculations the heat coefficients of the form

a„(y,x) are needed. The corresponding heat equation
and recursion relations are found by interchanging x with
y in equations (37) to (42). Repeating the above pro-
cedure, it is easy to verify that the derivatives with
respect to the first or the second argument of a„(y,x ) are
equal to those of a„(x,y). Hence we will tabulate the
coincident point values of only a„(x,y ) and its deriva-
tives.

Substituting for X„and Y from Eqs. (34)—(36) in the
results obtained above, the following coincident point
values are found for the heat coefficients for the Wess-
Zumino model:

[ao(x,y)] „l» =5 „, aol=ao=l,
and all derivatives of (a 0 ) „,a 0, and a 0 are equal to zero,

(a', ) „l

= —[(m +2mS, +2S )5 „+2m(5i„S +5, S„)+4S S„],
(~„ai) .1=(~„ai) „l=—[(ms, +S')5 „+m(5,„S +5, S„)+2S S„],
a', l= —(m +4S +4mS, +28g ), (B„a', )l=(5~a', )l= —B„(2S +2mS, +8g ),
ail= —(m +4S +4mS& —2j8g), (B„ai)l=(Ã~aI)l= —B„(2S +2mSi —tlg) .

(A 1 1)

APPENDIX B

R '= +2X 8+8-X+X + Y=R + Y . (81)

In this appendix we show how to separate the contri-
bution of the nonlocal part of a regulator, from the rest.

To begin with, consider a completely local regulator
operator R ' of the generic form (33):

and

ao(x, y ) =ao(x,y ) (87)

totic expansion for h and h on the left- and the right-
hand sides of Eq. (85), respectively, and comparing the
coefficients of equal powers of t yields the following rela-
tion between a„' and a„:

Here X„and Y are matrix-valued local functions and
they do not involve any derivatives. The corresponding
generic heat kernel

a ', (x,y ) =a, (x,y )+—,
' [ Y(x)a 0(x,y )+a 0(x,y ) Y(y ) ] .

(88)

h'(x, y;t)=(xle' ly)

has the usual asymptotic expansion

( )2/4

h'(x, y;t)= g a„'(x,y)t" .
16' t —p

Let us define another heat kernel:

h'(x, y;t)= &x le' ly ) .

(82)

(83)

(84) R (x,y ) =R'5(x —y )+N(x, y ), (89)

The coincident point values for a„' and a„can be found
using the general formulas in Appendix A. The correct-
ness of Eqs. (86)—(88) can be easily verified by substitut-
ing for a„ in (87) and (88) and comparing the expressions
for a„so obtained with those obtained in Appendix A.

The expressions (85)—(88) can now be generalized to
include nonlocal operators. Consider a regulator opera-
tor

The heat kernel h' can be expressed in terms of h as

h'(x, y;t)=(xle' [1+tY+O(t )]ly) (85)

=h (x,y;t)+[Y(x)h (x,y;t)

+h (x,y;t)Y(y)]+O(t ) (86)

where the right-hand side has been symmetrized with
respect to x and y. The heat kernel h has an asymptotic
expansion similar to (83), with the corresponding heat
coefficients denoted by a„(x,y). Substituting the asymp-

where N is the nonlocal contribution and R' is as in (Bl).
The heat kernel corresponding R is denoted by h. Re-
placing h' by h, h by h', and Yby N in (85) yields

h(x, y;t )=h'(x, y;t)

+—Jd x'[N(x, x')h(x', y;t)

+h'(x, x';t)N(x', x)]+O(t ) .

(810)
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Thus the contribution from the nonlocal part, given by
the term in square brackets in the above equation, is
separated from the local part's contribution. We will
presently see that the terms of O(t ) and higher will not

contribute anything to the Jacobians and, hence, are ir-
relevant.

Substituting in (810) for h, h', and N from Eqs. (27),
(43), and (20), respectively, yields

h „(x,y;t)=h'„(x, y;t) —— d'x'[[X(x)y G(x, x')y, A(x')+l(x')y, G(x', x)y A(x)]h,„(x',y;t)mn » mn

+h' &(x, x';t)[A(x')y&G(x', y)y„A(y) +k(y)y„G(y, x')y&A(x')]] +O(t ) (811)

The order-t term in the above equation (which contains two G), when substituted in the first term in (32), gives the
resultant nonlocal contribution proportional to

tz fd"x fd y f d u[G(x, y)][G(y, u)][6(u,x)]F,(x)E2(y)F, (u) . (812)

Here F are some nonsingular functions. Since 6 has mass dimension 3,

f d y f d u[G(x,y)][6(y, u)][G(u, x)]
is of mass dimension +1, i.e., proportional to t ' . Hence the entire contribution (812) is of order t, which van-
ishes in the limit t ~0.
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