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Quantum stabilization of solitonic bubbles
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In a real scalar field model in 1+1 dimensions with quartic and sextic self-coupling there appears a
classically unstable nontopological soliton which is a bubble in the false vacuum. We show that this vac-
uum is rendered stable by one- and two-loop quantum corrections with appropriate renormalization con-
ditions. In a parameter range of the model, the bubble is stabilized when quantum corrections to its
mass are taken into account with a quadratic approximation of the higher-order terms.

I. INTRODUCTION

The real scalar field theory in 1+1 dimensions with
quartic and sextic self-interactions corresponding to a
deepest central well and two lateral ones has a static clas-
sical solution which takes values in one of these for all
the space except for a finite region where it approaches
the absolute minimum [1,4). In a lattice quantum version
of the model it has been shown [2] that the condensation
of these bubble-type states, together with the kinks,
determine the phase diagram which exhibits a tricritical
point that may be related to the He -He mixture [3].
Equivalent static classical bubbles appear in the nonlinear
Schrodinger equation [4] which are unstable but, due to
the nonrelativistic nature of the theory, may achieve sta-
bility when they move exceeding a critical velocity with
respect to the medium [5].

The purpose of this work is to indicate that in the rela-
tivistic theory the solitonic bubbles which will be brieAy
reviewed in Sec. II may be stabilized by quantum correc-
tions. This problem has two aspects. One is that the
classical bubble lives mostly in a false vacuum which may
tunnel into the true one. The other is that the bubble is
classically unstable against small perturbations which
produce its evolution into fluctuations around the false
vacuum since there is no topological reason to prevent
this decay. Regarding the former instability it wiH be
seen in Sec. III that quantum corrections at one and two
loops give rise to an e6'ective potential which may exhibit
dynamical symmetry breaking turning the false vacuum
into a stable one. This is due to the parameter freedom
associated to the finite parts of the two counterterms
which must be introduced. As for the latter instability,
we will indicate in Sec. IV by a semiclassical argument
that it may be cured when the mass of the bubble is
smaller than the mass of the meson which appears as a
quantum excitation around the lateral minimum. A more
comprehensive quantum treatment of the bubble shows
that all the energies of its excitations turn out to be real,
and therefore no decay is possible, for a parameter region
qualitatively consistent with the above argument if a
quadratic approximation is used for the higher-order

II. SQLITONIC BUBBLE

Given a Lagrangian in 1+1 dimensions for a real field

X(x, t) =
—,'(3„P) —V(P),

where

(2)

the change of variables P=(1j&p)P, x„=px„allows one
to write

(3)

with

K2
V(P) = (P' —1) (P' —& )

2

and A, =1/p .

(4)

terms around the classical contribution.
It must be stressed that these indications for the quan-

tum stability of the bubble are difFerent from those corre-
sponding to other nontopological solitons which are al-
ways related to a Noether charge. In the polymer models
the scalar real field is coupled to a Dirac field which tak-
en in the mean-field approximation gives way to a classi-
cal model of the type we are considering, and the subse-
quent iterative solution produces the stable polaron [6).
The so-called Q balls [7] are a sort of "negative" of our
bubbles, in the sense that they live mostly in the true vac-
uum of a self-interacting complex scalar field and owe
their stability to their time dependence producing a
charge which must be above a threshold value.

It might be interesting to see what are the implications
of the quantum stabilization discussed in the present pa-
per for (3+ 1)-dimensional models which necessarily
must contain two fields to avoid nonrenormalizability,
compared with the usual nontopological charged solitons
[8] which are largely applied to cosmology [9].
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The bubble of Eq. (6) is classically unstable since a
small perturbation g(x)e' ' satisfies

d2 + V"(P, (x)) f(x) =co f(x)
dx

and being the zero mode P', (x) a one-node function, the
ground state of Eq. (8) corresponds to imaginary co,

which is consistent with the fact that there is no topologi-
cal reason for the stability.

III. DYNAMICAL SYMMETRY BREAKING

Considering the effective quantum potential

v„(y)= y, r'"'(0, . . . , o),nt

where I '"' is the sum of all irreducible graphs with n legs
at zero momentum, for small values of A, it is possible to
perform a loop expansion:

FIG. 1. Classical potential.
V,s.(p)=A, Vo((b)+ V, (p)+A, V2(p)+ ' (10)

If A & 0 there is spontaneous symmetry breaking and
topological solitons of kink type appear.

If instead 0( A &1 the central minimum is the abso-
lute one, the true vacuum corresponds to /=0 (see Fig.
1) and there is a static solution which starts for x = —~
from a lateral maximum of —V(P), reaches a point near
the central maximum and returns to the latera1 maximum
for x=+ oo (see Fig. 2). This classical solution which
satisfies

Vo corresponds to the tree graphs and simply gives the
classical equation (4).

The one-loop correction has been calculated in Ref.
[10] and, including the counterterms necessary to cancel
the divergences which appear for n =0, 2, 4, it gives

v"(y) ~

Vi(P) = 1+in „,+ai+b, g +c,P8m.

Separating the A —+ oo divergent contribution,

is

—,'(P')'= V($) (5)
V =—V($)+ 1 —ln

v"(p)
eff 8m.

V"(P)
p

2=
C

A

1 —(1—A )tanh [KV1—A (x —x )]

II A+ ~ 1, +,+b, y'+, y"

and corresponds to an energy

F-= 2(2+ A )&1—A
E

8S2"

—A(4 —A )ln
1+&1—A

1 —&1—A

we choose the infinite part of a&, b„and c& to cancel it.
The finite part of a& is irre1evant since it merely adds a
constant. The finite parts of b, and c&, together with
lnp, , determine the coefficients of the terms P and P of
the potential. Two of these parameters are therefore in-
dependent, which replaced by 1np, and 1npz allow one to
write

V,s =—V($)+ 1 —ln
1 V"(P)

eff
8m

2
15 4 P2

p2

v"(p)
Pi

(13)

0 x,

FIG. 2. Solitonic bubble.

The approximation to the effective potential equation (13)
is not defined when V" is negative but it is valid close to
its minima. Therefore we may obtain the shift c for the
position of the lateral minimum from V',s(P= 1+ a ) =0:

3(3—A ) 4(1—A ) 15E= ln 1n
8m. 1 —A u2

1 u i

(14)
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in terms of dimensionless parameters u; =p;/X . More-
over we may define a critical parameter A,, equating the
values of the two minima at P =0 and P = 1+e:

1+23 1+23
8-

4(1—A ) 4(1 —A )
1 —ln

8m u i

+ ln
15 u 1

u 2

(15)

Of the five parameters of V,z, i.e., u &, u 2, 3, A, , E, the
first two may be chosen for fixed 3 so that c.=0 and A,, is
sufficiently small to ensure the validity of the loop expan-
sion (see Fig. 3). Once this is done, the last two parame-
ters are determined, e.g. , by the renormalized mass and
quartic coupling at the symmetry-breaking vacuum:

—rwl UIR

Vefflii=�i

&ii Vefflii=l . (16)

The bubble will then live in a stable vacuum if these
values are such as to make A, & A,

If we go on to the two-loop correction one has to con-
sider the insertion of the previous counterterms into the
one-loop graphs, the two-loop diagrams, and the new or-
der of the counterterms [10]. The net result is

V~(P) = bi+ P (lnA —lnV")—1 ci 2 z „E(V"')
192~2V"

V'"
2 2 b2 2 C2 4+ (lnA —lnV") +a2+ P +

128~2 ' 2 4!

(17)

where b& and ej must be fixed by the renormalization
conditions for the one-loop effective potential and b2 and
c2 will be determined by the second-order conditions.

Since we are trying to obtain an effective potential with

10.00-
Ln {ti,' )

6.00—

2.00 —,

-2.00

—2.00—

2.00 6.00 10.00

(n{u2)

FIG. 3. Renormalization parameters for fixed A =0.5 at a
one-loop approximation. On the line m=0, the critical value A,,
to reach symmetry breaking is inversely proportional to the dis-
tance to the line A,, = ~.

FIG. 4. Effective potential at zero-, one-, and two-loop ap-
proximations fixing a tendency toward symmetry breaking. It is
not defined around the classical maxima and all almost coincide
for the lateral minima.

features different from those of the classical potential it is
not reasonable to fix the same conditions at all orders ex-
cept the one that the lateral minimum occurs always at
P = 1, i.e., E =0. We may establish, e.g. , that the
difference between the two minima reduces at each order
to a half of that of the previous one (see Fig. 4) as a ten-
dency toward symmetry breaking. Once the counter-
terms are determined in agreement with these conditions,
the renormalized mass and quartic coupling will be ob-
tained from Eq. (16). For an indication of the conver-
gence of the loop expansion it will be important that each
correction is smaller than the one for the previous order.
In Fig. 5 the corresponding values for mass and quartic
coupling are shown indicating that for small enough
values of A, , and 3 not too close to 1, the expansion seems
to converge.

It is interesting to compare, in the framework of the
loop expansion, the previous renormalization at /=1
with the renormalization done in Ref. [10] at the origin
/=0.

With this latter choice the five parameters of V,z are
more conveniently denoted by u „u2, ma, ao, go where
the last three are the coefficients of quadratic, quartic,
and sextic terms in the classical potential. Fixing the
conditions that the physical mass and quartic coupling
are equal to the initial ones

= V"
ff I ii =o™o & = V'"ff

I ii =o=~o (18)

the parameters rno and ao are therefore determined and
Eq. (18) together with the one defining the sextic coupling
g as the sixth derivative allow one to obtain the values of
the other three. The height of the lateral minimum is not
defined by the renormalization conditions and turns out
to increase compared with the central one both in our
case 0 (3 & 1 and when 2 (0 restoring the symmetry in
this latter case. It must be noted that when the central
minimum is assumed to be the absolute one, one may or-
der normally the Lagrangian eliminating the divergent
tadpoles, so that there is no need of counterterms. The
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FIG. 5. (a} Renormalized mass and (b} quartic coupling at lateral minimum with A, =0.0001 for zero-, one-, and two-loop approxi-
mations defined according to a tendency toward symmetry breaking.

physical mass and couplings will be difFerent from the ini-
tial ones so that fixing the former will allow to determine
the latter.

It appears therefore that due to the existence of two
coupling constants, the P theory allows one to obtain
through loop expansion either symmetry breaking or
symmetry restoring according to the chosen conditions.

It is noteworthy to give a glance in the above spirit to
the renormalizable P theory in 3+1 dimensions, where
the normal ordering does not eliminate all the divergent
diagrams. If the classical potential shows a single central
minimum, the loop expansion requires two counterterms
so that there are in all four parameters. The renormaliza-
tion conditions at the origin equating physical mass and
coupling to the initial ones as in Eq. (18) will supply two
equations for the remaining two parameters. For a classi-
cal potential with symmetry breaking, the normal order-
ing for P is not sensible since the vacuum does not corre-
spond to /=0, so that the conditions for the values of
(P ) and of mass and coupling calculated as derivatives of
V ff at the asymmetric minimum allow to fix the four pa-
rameters with the choice [11],e.g., p, =p2.

Looking back at Eq. (15) for the sextic theory in 1+1
dimensions, it may be observed that the gap between the
two minima may be compensated not only by the intui-
tive meson mass contributions around each classical
minimum which correspond to the terms independent on
p&, but also by those depending on the renormalization
parameters due to UV divergences which make the zero-
point energies less simple.

is larger than the bubble energy Eq. (7). The values of iL

for which both masses are equal are shown in Fig. 6 indi-
cating that the bubble stabilization may be obtained with
values of A, small enough to be consistent with the previ-
ous loop expansion. It is clear that this stabilization ar-
gument should be improved by a quantum treatment
which takes into account both zero-point energies above
the soliton and the vacuum and renormalization eFects.

Another argument corresponds to see in which way
Eq. (8) is modified when corrections higher than the
quadratic ones in an expansion of energy around the soli-
ton mass are included.

We consider the Geld operator in terms of excitations
around the classical bubble solution P, :

P( xt)=P, (x)+P(x, t)

with

(20)

P(x, t)= g [a„f„(x)e " +a„f„"(x)e " ],
n 2a'n

(21)

0.01 56

where [a„,a„]=5„„,and [g„(x)] is a complete set of

IV. BUBBLE STABILIZATION

The bubble is classically unstable in the sense that the
imaginary frequency co solution of Eq. (8) produces its
evolution into excitations around the lateral vacuum. A
semiclassical argument suggests how it may be stabilized,
corresponding to the situation when the mass of the
meson on this vacuum 0.00 ado A

8 V

Bp7 y
1/2

1/2 2' ~1
g 1 /3 (19) FIG. 6. Values of A, for which the masses of bubble and

meson are equal.
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functions so that the conjugate momentum is
' 1/2

The Hamiltonian keeping only the second-order terms in
P turns out to be

tO

2
K

H' '=E, + +co„(a„a„+—') (22)

if f„satisfy Eq. (8). In this quadratic approximation the
existence of an imaginary frequency formally produces
the instability of the quantum states, though the strict
treatment Eq. (21) requires co„ to be real. When the po-
tential has a structure richer than two wells, as happens
in our case with central and lateral minima, terms higher
than the quadratic ones are likely to be important. In-
spired by recent suggestions [12] we keep the cubic plus
quartic contribution and approximate it as a quadratic
expansion around its minimum P;„=—3 V"'/V'": i.e.,

.654 A

-1.3 6

FIG. 7. Lower bound of ground eigenvalue of Schrodinger
equation for excitations above soliton with (continuous curve)
and without (dashed curve) cubic quartic corrections.

—,V"'(P, )P'+ —,V'"(P, )P

45 (V'") + 9 (V"') + 3 (V"')
8 ( Viv)3 2 ( Viv)2 4 Vtv

(23)

4
H'"'=E, + f dx . +E(P),

8 ( Viv)3

where

E(P)=fdx[ ,'itp'+ 2iti'+—f(x)P—+ ,'g(x)P ]—
with

9 ( Vttl )3 3 (
Vilr )2f(x)=— . , g(x) = V"(P, )+—

( V/U)2 2 Viv

Separating from P a time-independent part

P(x, t ) =y(x, t )+g(x)

(24)

(25)

(26)

(27)

such that —q" +grt+ f=0, the operator term of Eq. (24)
becomes

which will be valid if P is small.
With this new correction, instead of Eq. (22) the Ham-

iltonian takes a form which can again be easily diagonal-
rzed:

(21) produces for the new t]'i„a Schrodinger equation
analogous to Eq. (8) but with V"(P, ) replaced by g(x).

To see whether this equation has a negative eigenvalue
we use the semiquantum method [13] which provides a
lower bound to the ground state. This method is particu-
larly simple for a Gaussian approximation to the ground
wave which may be used when 3 )0.5 because the po-
tential g(x) has a single well. As shown in Fig. 7, for
3 & 0.654 the eigenvalue lower bound is positive indicat-
ing a stabilization of the soliton. This result is somehow
in agreement with the previous argument regarding the
equality of masses of the soliton and meson since there
the corresponding value of I, decreases for increasing A.

From our analysis, to obtain dynamical breaking it was
preferable to have a small 3 since then the Anite effects of
the necessary counterterms in the loop expansion are
smaller. However, one must note that for A, suKciently
small both dynamical breaking and soliton stabilization
are compatible for a certain range of A.

Finally, it must be remarked that the eventual stability
of our solitonic bubbles does not depend on the existence
of a charge as occurs for the Q balls [7] and the original
nontopological solitons [8].
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