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We present a full and self-contained discussion of the decoupling theorem applied to several gen-
eral models in four-dimensional field theory. We compute in each case the low-energy effective ac-
tion and show the explicit one-loop expressions for each of the effective parameters. We find that
for suitable conditions one can always build an effective low'-energy theory where the conditions of
the decoupling theorem are satisfied.

I. INTRODUCTION

The majority of the models now in use to study the
unification of the known forces involve particles with
very different masses. They are quantum field theories
with multiple mass scales, which we may call multiscale
field theories. In this context the simplest model will, at
least, have two mass scales: one of them corresponding
to the unification with gravity, i.e., Planck s mass (Mp, ),
and another associated with the electroweak unification.
Then, if one wants to relate the physics of the large-mass
scales to the physics of the W —and Z, it is clear that
one has to develop a field-theoretical mechanism for ex-
tracting the effective low-energy actions from theories
which were intended to describe physics at Mp&. What
one is after is a well-defined procedure for the extraction
of the so-called effective theory from a larger underlying
theory, whose range of validity extends to momenta
much larger than the scales at which one expects to use
the effective theory. There are, of course, many well-
known examples of very successful effective theories,
such as Maxwell's laws, Yukawa's meson theory, or the
Fermi theory of weak interactions. Finally, the standard
model of particle physics must be another low-energy
effective action of some, still unknown, theory of every-
thing.

The first tool proposed to study the effects of the
large-scale physics on the physics of the low-mass scales,
was the decoupling theorem of Appelquist and Caraz-
zone, ' which asserts that if there is decoupling, then the
effects of the heavy degrees of freedom (HDF) on the
physics of the low-mass scales are both calculable and in-
nocuous. Nevertheless the theorem does not supply with
any method for calculating the low-energy effective ac-
tion or its corresponding effective parameters. Whatever
that method, two features will characterize the resulting
effective-field theory: (i) A more complete underlying
theory does exist, which is valid up to energies much
higher than those for which the effective theory is meant,
and (ii) only the light degrees of freedom of the original
theory will survive, as such, in the low-energy limit.

A problem emerges in two-scale models when comput-
ing quantum effects which mix the heavy and light sec-
tors of the full theory: if the tree level action mix-es the
heavy and light degrees offreedom, then quantum correc

tions will, i'n principle, destroy the initial hierarchy or sepa-
ration between light and heauy. In trying to solve this
problem, one has to be especially careful because one can
find many new complications which can be even worse
than what one was trying to solve. For example, a typi-
cal collection of "solutions" to this problem is (i) one is
only able to impose unnatural conditions on the size of
the original parameters, (ii) one could introduce a fine
tuning of the parameters order by order in perturbation
theory, or (iii) given enough imagination, one can design
a new global symmetry which forbids the dangerous
tree-level interactions.

In this paper we will find that there exist solutions to
the mixing problem, which are different (in fact, opposite)
from the three quoted above. We will show that there is
an appropriate method, due to Weisberger, ' to deal with
this class of multiscale theories, which may be used as a
starting point for the construction of "well-behaUed"
effective theories. It is based on a straightforward inter-
pretation of the Appelquist-Carazzone theorem, which
allows, in principle, the computation of the effective ac-
tion to all orders in perturbation theory.

The situation we are interested in describing is that of
a theory with two widely different mass scales, i.e., with
heavy particles of mass M and light particles of mass m,
where (m IM) « I, in the case when the external ener-
gies (E) are much lower than the heavy scale, but of the
order of the light scale. In this case kinematics forbids
the presence of external heavy particles, so that the
relevant part of the action will only involve light degrees
of freedom. Under these conditions, can we dispose of
the heavy degrees of freedom altogether? A positive
answer to this question amounts to assuring the existence
of a theory of the light degrees of freedom alone, giving
the same predictions than the full theory. Obviously, this
is untenable in its strongest sense, but could we ensure it
as a suitable approximation? The constructive answer to
this question given by Weisberger starts by defining an
effective action I for the light particles as follows: Define
the full effective action from the generating functional for
connected Green's functions Z as usual:

I [P,vr]=Z[J', J]—f d x(j P+Jn),
where j and J are the external sources for p and ~. To
avoid the presence of external heavy particles, set J=O,
and to forbid ~ as an independent degree of freedom, take
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I [P]=1[4 ~(0)]~srzs~=z=o .

Here m(P) is the solution to 51 /5vr =0.
In general, this action is very complicated and nonlo-

cal. However, this exact effective theory has many ir-
relevant terms which will be eliminated by establishing a
systematic expansion in powers of E/M, with E being
any combination of the parameters having the size of the
low-energy scale. We will expand I in powers of E/M
and keep terms up to zeroth order in E/M. Obviously,
this truncation is a very excellent approximation at ordi-
nary energies. [Note that the coefficients in this series
will in general be functions of 1n(M/p)]. We will refer to
this procedure as the large hierarchy limit, and we will
call its result simply by I . The decoupling theorem
states that the vertices it contains can be identified with
those of an equivalent theory containing only light parti-
cles. The identification is completed by comparing the
parameters of this equivalent theory with those in I,
which can be done order by order in A.

The above situation is somewhat puzzling in that the
parameters of I", while being functions of the large scale
through the combination ln(M/p), should be identified
with those of an equivalent theory that by construction
are independent of M. We will show that the solution to
this paradox is that these parameters behave as the bare
parameters of the equivalent theory, in other words, that
the explicit dependence on ln(M/p) cancel against the
implicit dependence coming from their definition in terms
of the parameters of the original theory. As a bonus, we
will get that once the hierarchy is established at the tree
level at the high-mass scale, it remains stable under radia-
tive corrections at all scales.

We will present a study of the application of tech-
niques based on the above methods to the computation of
effective low-energy theories and will illustrate their use
for several examples of physical relevance. In particular,
and for each case, we will carry out the computation of
the effective parameters in the one-loop approximation,
explicitly showing how decoupling takes place.

The paper is organized as follows. We start with a
real, two-scale, scalar theory having the double reAection
invariance, m~ —~, P~ —P. In the following section,
we consider the former model with the symmetry of the
heavy scale ~—+ —~ being spontaneously broken. The
most general, renormalizable, four-dimensional two-
scalar model will be studied in the third section. It is im-
portant to consider these models because they do not
have any higher symmetry that accounts for cancellations
of the dangerous contributions.

The last two sections consider two-scale globally super-
symmetric theories in four spacetime dimensions. The
simplest of them are the Wess-Zumino model (Sec. V)
and the softly broken Wess-Zumino model (Sec. VI). The
method is extended to them by developing some new
techniques; we solve superfield equations of motion and
give a compact formula (written in the superspace-
superfield formalism) for the perturbative evaluation of
the one-loop effective action. We study softly broken su-
persymmetric theories in this paper because they are the
principal candidates to give a supersymmetric version of

the standard model of particle physics. We finish the pa-
per by offering some conclusions.

II. SIMPLE TWO-SCALE MODEL

In this section we will show in detail how to carry out
the integration of the heavy degrees of freedom, using
Weisberger's method in the simplest two-scale model:
real, four-dimensional A,P, with two fields and refiection
symmetry. The action is then

S(~,y) = Id'x[-,'(a~)'+-,'(ay)' V—(~,y)],
with the potential given by

M' m' ~i 4 ~2 4V(vr, g) =A+ ~'+ P'+ m'+ P'+
2 2 24 24 4

(2.1)

dA
p dp

p = 3(k, +A3),
p 16~'

d(M ) f'
(A M2+A 2)

1

p = 3(A,2+ A3),
d p 16~'

d 2

dp 16m.

p = (A, ,A3+A2A3+4A3) .
d p 16~'

The fact that m gets contributions of order M through
these quantum corrections is a well-known form of the
hierarchy problem. We will explicitly show how the true
effectiue mass of the light degrees of freedom does not
suffer from this disease.

We study this model here because the results that we
find extend to more complex situations. It was already
treated by Weisberger in Ref. 3, and we get the same for-
mal results here as he did, but we go one step beyond and
provide a novel interpretation for them. In the
remainder of this section, we will explain, step by step,
the method and its implementation.

At the tree level, we have for m. the equation of motion

, (M'+m'),
327T2

(2.2)

We will choose the parameters such that P is light, and ~
is the heavy degree of freedom. There is no symmetry
breaking, and as is well known, to one 1oop there is no
wave-function renormalization either. The model has
quadratic and quartic divergences which tend to destabi-
lize the original size of the tree-level parameters. This
can be seen in the renormalization-group equations for
the parameters of the full action which we will need later
on in our calculation. (We use throughout this paper the
total derivative symbol pd /d p to denote the total deriva-
tive of a quantity keeping the bare parameters fixed. This
should not be confused with the partial derivative p 0/Bp
keeping the renormalized parameters fixed and which
occurs in the renormalization-group equations. ) These
are
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k3V+M+ m+ P m=J.
6 2

The source J will vanish for momenta where p «M .
The solution for the range of momenta we are consider-
ing is ~(P)=0. Hence the efFective action I [P] for the
light degrees of freedom is

2

rid]= fd' —(a4)' —~— 4' —4', 4'

so that the effective parameters are given by

$0 =p, Ao =A, mo =m, Ao =Az,

at the classical level. Trivially, this is a theory of light
degrees of freedom if the original dimensionful parame-
ters A and m are small.

To actually carry out the calculation of the full
effective action I [P) to order A', we must compute the
quantum corrections to the tree-level action and then
solve in the appropriate kinematic regime p,„,«M the
equation of motion of the heavy degree of freedom in
terms of the light degree of freedom: n =m (P). One then
takes the limit m /M~0 and finally eliminates the HDF
from the action. While doing this one also carries out the
renormalization of the theory by canceling out the
infinities in the usual fashion.

The one-loop contribution to the effective action is ob-
tained by using the well-known steepest-descent pro-
cedure (cf., e.g., Ref. 5):

r'"[m, p]= f d x f trln[k —Jg —U(~, p)],
(2m. )

where Jk/, is the mass matrix, and U is the matrix ob-
tained by taking the second derivatives of the scalar po-
tential with respect to the fields: i.e.,

in+A3$ ,
.

2A, , 3n p

2A.3m.p A,zp +A, 3m

m+n =4
r'"[~,y]=—,fd4x g a „~y".

32~2 m, n =0

In our model the values of the coeKcients are

(2.3)

m4 m'
a00 = ln + ln

p p

a =—A, Mln +—A, m ln
1 2 M 1 2 m

20 2 1

p 2 2 3
p 2

1 M 1 2 ma02 ~3M ln
2

+
p 2 p

a =—A, ln +—A, ln
1 2 M 1 2 m

40
p p

a =—A, ln +—A, ln
1 2 M 1

8 3 2 8p p
1 M 1 m

a22= —,3ln +—A,2A, 3ln
p p

m2 m2 M2 M2
ln + ln

m2 M2 p2 M2 m2 p2

The next step is to eliminate m from the action. To do it,
we solve for n(P) through its one-loop equation of motion
and take the limit (CI/M ) and (m /M )~0. The result
is m=O and

Performing the integration over momenta using dimen-
sional regularization, and after renormalizing using the
modified minimal-subtraction (MS) scheme, we get

r[~,p) =s(,y)+r"'[~,y]+o(rz),
where all the quantum corrections are in I'"[m, P], and
the parameters and fields in I [n, P] are renormalized.
Considering only the terms with mass dimension ~4 inI' "[m,P] gives the generic expansion

MI ($)=f d x.—(BP) — A+ z M ln +m In
64m. p2 p2

m2
A,z+ z

3 A,3ln z +A,&in
32& p p

y4

m +1 2 A 2 M 2 m
A.&M ln +A,zm ln

32m p p

(2.4)

In spite of the appearance of M in the above action, its
form is typical of the action for a light degree of freedom.
This can be shown in a variety of forms, the simplest of
which we show here. Write

r(y) =fd'x y O„y".

Now by scale invariance we have pdl /dp=0, implying
that p do„/d p =0; therefore, the careted parameters
behave as a sort of bare parameters of the effective action.
(Notice that there is a straightforward modification when

0=0~]I„+0I,
where

(2.5)

I

wave-function renormalization does not vanish. ) All
these parameters are of the form 0 =00 +OML +0 I,
where 0o is the tree-level value, L =ln(M /p, ), and
I =ln(m /p). Note also that the one-loop contribution is
such that 0 is M independent. Next, we introduce
which will be the effective parameters of the light degrees
of freedom 0

& &„pthrough the definition
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011 ——Oo +0~I. . (2.6)

al [y]—=jd'x y (O )„iy".
(2.7)

S*[P]can be considered as the classical renormalized ac-
tion of the light degree of freedom; then one can explicit-
ly check that hl"[P] contains the one-loop quantum
corrections produced by this action. Finally, the
renormalization-group equations (RGE's) the light degree
of freedom (pdoi „,/dp)„=(o )„areautomatically
satisfied by construction. This can be seen from Eqs. (2.5)
and (2.6), which imply

(2.8)

where

The important point here is that we can split the effective
action into two terms:

I [4]=S*I0]+~1 I 0],
where

S'[P]=f d x g (O»„i)„(('",

o2
1 loop

2m1 loop 1 loop &ap 16
(2.12)

1 loop A
3 1 loop ~

With these definitions, (2.10) and (2.11) coincide. As one
can see, the parameters Oo, 0 *, and 0*, l„getthe same
value at the high-mass scale. Below that scale, while 0 *

remains constant, 01 l„evolves with a slope 0, which
at most is of order of the low mass. In other words, once
established at the high-mass scale, the hierarchy remains
stable all the way down to the light scale. In spite of the
appearances, this is not a virtue of the simplicity of the
model chosen in this section, but a general feature which
we will see arising in other rather general models of phys-
ical relevance. This feature can be explicitly checked by
letting the renormalization-group operator pd/dp act
directly on both sides of the formulas (2.10):

d+1 loop
P d 32

0 *=—oo +(0M+0 )L, (2.9)
which explicitly display the stability of the hierarchy.

which are the physical parameters and are therefore
fixed under the renormalization group, as can be
checked by explicit computation On using the
renormalization group equa-tions (2.2). (We use a rather
cumbersome notation to help keep track at a glance of
the origin and meaning of the different parameters. ) The
RGE's for the light degree of freedom are obtained
directly from Eq. (2.8).

For the model we are analyzing in this section, the
above parameters are explicitly given by

III. SPONTANEGUS SYMMETRY BREAKING

We now study the previous class of models for the case
when the symmetry m —+ —w is spontaneously broken at
the high scale. The Lagrangian is the same as before, but
with M ~—M . In order to do perturbation theory
around the tree vacuum, we shift a by its vacuum expec-
tation value (VEV) u =(6M /A, , )' and obtain the tree-
level Lagrangian

fi 4 M
64m p

2

m
1 l„=m+ M A.3ln2 M

32m.2
p

loop k2 + AI31
M

32K p
They can be rewritten as

(2.10)

Z= —(ay) +—(a~) — A ——1 2 1 , M
2 2

—2 2m ~z M z

2 2

where we have introduced the defintions

~2 ~1 ~3 ~3
41 41 4

rrP vr3, —

A* =A*—
1 loop

82 ~ 42m1 loo
—m

4 M
m ln

64m p
fi M

m A2ln-
32772 p

M
32& p

(2.1 1)

3A3M:—2M m =m + M

To make the model a multiple scale model and to study
the low-energy effective action, we will assume that at the
tree level the hierarchy condition

m '«M'
where the careted parameters are defined as

A*=A+ (M +m )ln4 4 M
64m. p

m*=—m + (AM+A, m )ln
327T p

Mk *:—Az+ 3(k3+A,~)ln
3277 p

A, 3U
m.(P) =— A, U '+o

8M M

The tree-level effective low-energy action is then comput-
ed to give

is satisfied. In the limit ( /M ), (m /M )~0, one can
solve the equation of motion for m. in a power series; to
order P and U /M ", one gets
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I [P]=—1im S(rr(P), P)

4= fd'x —'(ay)' — ~——'
2 2

1
2

9k3

1

(3.1)

3 M
1

9A,

By identification with a monosca1e A,P theory, we see
that the corresponding tree-level e6'ective parameters are
given by

—v'"(y, ~)+o(r')] . (3.2)

The first-order quantum correction to the tree-level po-
tential is

m+n =4
v'"(~, y)= y„a„~-y",

m, n =0

and whose nonvanishing coefficients are

Computing the one-loop correction to the full theory as
we did in the previous model, one gets

r(y, ~)= f d'x [,'(ay)'+-,'(a~)' —v(y, ~)

a10 = iA
2

iAa 00 (2~)
d4kf ~ (X36+X,F)U,

(2m )

ao2 =

azo

iA
2

i'

d k

4

f [A36+A, tF —
U (A36 +A, ,F )],

ao4 =—
iA I- dk

(2')
iW t- d4k
2 (2~)

X43V4

2 3
(g262+i„2F2)+ 3

(g 62F+g GF2) 3 F262
2 2 3 2

2 4

3 1 2 3 1 4 3 I
——(i,'6'+X'F')+ ' (i363+X3F3)—' (i.'6'+i.'F')

l 2

(i, 6+i F )+— (A. G +A, F ) U,(2~)4

4

22=
2 (2 )4 4 2 3 I 3a:—— ——(Akg+Ai F +4AFG) —

U (AGF+AAFG+i AF 6 )3 I 1 3

2

(i g26 3+i g2F3+ 5i 362F +5i„2gF26 )

~A p d4k

2 " (2~)

3 ~3 A, 3U A, 1Vaio+2(M +a&0)sr+ +4a~o ~ + +2azz 0 n+ +air 0 + +3a30
2 2 2

Again, we can compute its solution in a power series as

rr =a+PP~+ y P4+ higher-order powers,

and where the first coef5cients are readily computed to be

——(iL~X36 +it, ,iL3F +4iL3FG)+U (X36 F+X3A, ,F 6) U .

Here we have introduced the notation F(k)—= —(k —M )
' and 6(k)= —(k —m ) ', and At =diag(M, m ) is the

mass matrix of the theory already shifted to its vacuum. The equation of motion for ~ computed from Eq. (3.2) is

+O(A' ),
M
X3V A 3Va 20+

2M M

X3Q 10

M
+O(A' ) .

M
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Note that the first term in P is the tree-level contribution for ~=~(P) that we have already computed. Plugging this
back into the one-loop corrected action and substituting the values of a, gives

r

I [P]= lim f'(n(P), P)= J d x —(BP) —(Ao+aoo) ——(m —2AQ)P ——(Ao 24A—P)P~
M~ oo

(3.3)

where P and Q are the integrals

i d'kP:——
(2vr)

1

8 2

d4k 1Q=——I —A2—
(2~)'

r

3A3
G —

A, 3F—(A, 3U) FG

3A, A, XUA, U

G — F + FG+
M 2

2 2 4
3A3 A3U

2 GF—A, v GF — GF
1

3 2

In the limit of the large hierarchy, these contributions reduce to

1
lim Q=-
/M —+0 32772

m

2 2

9/3 m 2 3/3 M2
ln + — m 1n

1 V V

M—A.3M 1 — ln

1 1
lim P = —

2
—A2-

m /M ~0

Following the same procedure as in our previous example, we may now define the one-loop effective parameters
through

—4 M
AI )„=—A0+ M ln

64m. v
2

~2m i ]op =mo +
2

m —2A3M 1—
3 2'

3A3 M
1n

V
(3.4)

~1 loop=~0 +
3277

12K,3
—72 +36 —216 1n

1 ] A, ) v

To check for stability and decoupling, we must examine
the scaling behavior of these parameters. Taking into ac-
count the renorrnalization-group equations for the origi-
nal parameters and the expression of the 00 parameters,
one readily shows that the set of 0

&
&„„parametersin Eq.

(3.4) satisfy the renormalization-group equations given in
Eq. (2.12). This demonstrates, explicitly, the advertised
hierarchy stability. We may rewrite Eq. (3.4) in terms of
a set of careted parameters, just as we did for the sym-
metric case of the first section. In fact, the parameters
(3.4) are of the general form (2.6), and since they are
decoupled, we can write them as in Eq. (2.8). As before,
the careted parameters are fixed under the renormaliza-
tion group and therefore independent of the scale p.
Now, once the hierarchy is fixed (at the tree level) at the
scale M, i.e., m =m0 ((M, where 0 *=0»„,it is
fixed at the one-loop level, but not only at this scale, but
at all scales below M, due to the hierarchically small at-
tained va1ue of m *,and the closure of the RGE's for the
efFective one-loop parameters.

IV. MOST GENERAL SCALAR THEORY

The roost general scalar potential, compatible with the
requirement of renormalizability in four dimensions and
involving two-scale scalar fields, is given by

M2 2

V(~, P)=A+h, rr+h2$+ m + P +a) ~P

3+ 2 ~3+ g3
2p

g4
p2

i 4

X5 X4 g3+ P'+ vr'P+ P'sr+ m'(h' . (4.1)
24 6 6 4

These interactions do not respect any of the symmetries
one could impose on m. or P. This makes this case the
most interesting to analyze because there are no a priori
arguments to simplify the structure of quantum correc-
tions. Hence decoupling, if possible, is a most outstand-
ing phenomenon and cannot be adscribed to quantum
corrections respecting any symmetry.

When substituting m by the solution of its equation of
motion, one gets, in the limit ( /M )—+0,

~=~(y)= g a„P".
n=0

Note that now there is an a, term. This term is a conse-
quence of the tadpole h

&
and amounts to a shift in n to

get the true ground state. The term linear in P induces a
contribution to the kinetic term of P, of the form

—,'(1+a', )(BP)',
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2
M +g1ap+ a p a1+ co +g3ap+ a p =0,2 1 2 5

2

which will be used later on. (At this point the details of
their solutions are uninteresting to us. ) Finally, at the
tree level, the effective action for the light degree of free-
dom is readily found to be

I [Pp ]= f d x [—'(Bgp )
—Ap —h p Pp

——'m
p

—
—,'go 0o' ——,'.~o4o" ~ (4.2)

where the effective tree-level parameters Op are defined
in terms of the shifted parameters 0 of the original La-
grangian 0 as follows:

g2+ 3g4a1+ 3g3a, +g1a,
Ap=—A, gp =—

(1+a, )
2 3/2

ofc
h2

(1+ 2 )1/2

X2+4k,4a1+ 613a 1+4A, 5a 1+A, 1a 1

(1+a, )

m +co a1
mp 21+a1

These formulas were written in terms of the shifted pa-
rameters, which we display here for the sake of complete-
ness:

M 2 g12
A—=A+h, ao+ ap+ ap+ ap, g, —=g, +A, ,ap,

2 6 24

g3 A5
h2 =—h2+m ap+ ao+

6 ap g2 =g2+~4ap
2

M =M +g1ap+ ap g3:g3+~5ap2= 2 1

2
(4.3)

—2=— 2 ' 2m =m +g4ap+ ap, g4=—g4+A3ap,
2

—2= 2 5co:co +g3ap + a p2

In the above treatment it was implicitly assumed that
there was a hierarchy and that it was stable. In other
words, if m «M, then the same, applied to m and
mp . From their definitions one has that m and m are
of the same order of magnitude only if

which implies a finite wave-function renormalization to
get a properly normalized propagator for the light degree
of freedom, i.e.,

P=(1+a, )
'

Qp .

From the equations of motion for the heavy field, we see
at once that these parameters ap and a1 are determined
by the equations

g1
h, +M ap+ ap+ ap=0,

gap m 2 Aa &m

2h1=m3/2M z1,
2

h2 —m3/2m v2, gi. —m3/2 Q;g1

is enough to satisfy the tree-level hierarchy conditions.
(Here, and in what follows, we will symbolically represent
by m3/2 a mass scale of the order of the light-mass scale
already present in the model; this terminology is clearly
borrowed from softly broken supersymmetric theories. )

This is achieved by writing ap, a1, and the shifted pa-
rameters (4.3) in terms of the new dimensionless r's and
3's, all of which are of order 1. For instance,
ao= —m3/2rI+O(m3/2/M ) .3 2

Finally, and at the tree level, we require in order that
we have a hierarchy the mass matrix of the model must
have a heavy and a light eigenvalue, so that also m is
bounded by co ~ mM, and therefore a, ~ m /M. A
stronger condition is, however, necessary. This is due to
the fact that to keep P light, one must have that its shift-
ed parameters be of the same order as the original ones;
for the tadpole this gives h2 —m3/2m, so that there are
two possibilities: namely,

(i) h )
—m 3/2m, ap —m 3/2/M, co —mM,

2 2(ii) h, —m 3/2M, ap m 3/2 Co m 3/2m

Probably the second case looks more natural because it
makes the symmetry-breaking parameter ~ proportional
to the "small" parameter m3/2 (the other possibility,
co m 3 /2M, is ruled out because co does not vanish with
m 3/2 if there is a geometrical scale; in addition, h 2 gets
too large).

So far, we have only considered the conditions that the
parameters of a theory of the type described by Eq. (4.1)
must satisfy at the tree level so that it be a bona fide two-
scale model, i.e., such that its ground state describes a
heavy and a light degree of freedom. We did the same in
the preceding section, where we assumed that the tree-
level mass m =m +(3A3/AI)M was small compared
with M . In what follows we will assume that the theory
is quantized at the large scale M, around the ground state
of the heavy field, where its tadpole vanishes, and that
the parameters 0 have sizes suited for the existence of
these two scales at the tree level.

When taking into account quantum corrections, one

which gives a strong condition for the VEV of the heavy
field

/ap/ m .

For such a small ap one gets ap ——h1/M and therefore
the tadpole should also be small, h1 ~ mM .

These results can also be obtained by arguments of nat-
uralness applied to the parameters in the original poten-
tial. One observes that if the linear and cubic terms of
the potential vanish, then the theory increases its symme-
try to m —& vr, —P —+ —P. It is natural to expect that the
corresponding parameters of these linear and cubic terms
be some small quantity. In the N=1 supergravity mod-
els, one finds a similar feature, with the small dimension-
ful parameter being m 3/2 One sees that the rescaling
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must bear in mind the fact that some parameters which
were small at the tree level may acquire sizable quantum
corrections. For instance, a& was negligibly small above;-
however, it gets large quantum contributions through the
inhomogeneous terms in its RG equation. In other
words, what was negligible at the large scale, where re-
normalization is performed, becomes Anite and 1arge at
lower scales. In this work we handle this problem by
keeping track of all the parameters, or combinations of
these, susceptible of receiving destabilizing quantum

corrections, which could make them unnaturally large at
some scale.

In order to carry out the one-loop computation, it is
not necessary to keep all the terms in the action: it is
enough to construct the classical renormalized action
S*[P] of Eq. (2.7). Taking into account (2.6), one sees
that only the quantum corrections proportional to
L =ln(M Ip ) are necessary. To get these one only
needs to retain the terms proportional to I. in

4
r'"(rrP)= ' f d x f trln(k —Af )+ f trln[k —G(k)U(FQ)],

2 (2~) 2 (2m )

where we have introduced the matrices

Gi=
g4

G2=—
g4

,g4 g2

X3
A(=—

3 5

k5 X4 k3 k5
A2—= ~ ~, A3 ——

with G(k)=—(k —At ) '. The function U(E, P) is the 2X2 matrix of the second-order derivatives of the shifted poten-
tial energy:

U(p, P) =G)F +GqP+ ,'A)F +A—qPP+—,'ApP

Finally, the terms proportional to L, can be collected into

lim I'"[~,P,L]=
z f d x

mo /M~O

m+n =4
a „EP" ln

m, n =0 p

Here c& is the heavy eigenvalue of the square of the shifted mass matrix At, and the coefficients in the expansion a
are explicitly given by

2
aOO

=
w2

a, o
= —tr(G, JR )+ tr(G) A ),1+a

&

o2

ao, = —tr(GzAt)+ , z tr(G2 2 ),1+a )

1 —2
—

2 1 no 1 2a = ——tr(G ~+A,JN)+ —
, tr(A, A )+ tr(G, 2 )1+a (1+a )

42

ao2= ——tr(G &+A&Pi)+ —
,

z tr(A2A )+ 2 z tr(G2A ) )
2 2 1+a t (1+a[)

a„=—tr(G, G2+A3JR )+
tlat 0

, tr(A, A )+, , tr(G, AG, A )
1

1+a, (1+a, )

a = ——tr(G A )+— tr(G, AA, A ),1 — 1 1
30 2 1 1

ao3= ——tr(62A~)+ — tr(G2AA2A ),1 — 1 1

(1+a, )

a2& = ——tr(GzA&+2G&A&)+ — tr(Gz A A& 3 + 6& A A3A ),2 2 (1+a)
a,2= ——tr(G, A2+2G2A3)+ —

z 2 tr(G, AA2A+G2AA3A ),(1+a, )

a~0 = ——tr(A, ) +— tr(A, A )
1 2 1 1 2

g g (1+ 2)2
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ao4= ——tr(A2)+ — tr(A2A )
1 2 1 1 2

g (1+a')'

a = ——tr(A A )+— tr(A AA 3),1 1 1
31 2 1 3 2 (1+ 2)2 1 3

a = ——tr(A A )+— tr(A AA 2)1 1 1

(1+a2 )2

a23= ——tr(A1Az+2A3)+ — tr(A, AAzA+2A3AA3A ) .
4 (1+a, )

(Note that these expressions differ by a normalizing fac-
tor of A/32~ from the ones in the previous section. This
redefinition has been done for the sake of keeping the
typography as streamlined as possible. The factor has, of
course, been taken into account at all times. )

The matrix A is defined by
2

a& a,

Armed with the above results, it is now straightfor-
ward to compute the classical renormalized action S*[P]
of Eq. (2.8), given by

S*[P"]= lim IS[@(P),P]+I'"[F(P),((),L]+O(A' )] .
mo /M —+0

In performing this computation we have been careful and
included the radiative correction to the heavy tadpole ao
and proportional to alo. As we saw in the previous ex-
ample, this induces a shift in the VEV of m by

2

A *=—A*+ (c, +c3)ln 364m p
2

=A*+ (M +2' +m )ln
64m. p

In general, one finds that all the careted parameters are of
the form shown in Eq. (2.9), i.e.,

dOQ Cl0 *=00 +—p ln
2 dp p

To check that the 0 * are small, one only need check that
at the scale cl the tree-level parameters 00 are small, in
other words, that at the tree level there was a hierarchy.
Observe that the quantum corrections are functions of
the light scale, depending on M (the heavy scale) only
through the logarithm. Thus our calculation compels
one to conclude that if the careted parameters are small,
the one-loop parameters will remain small at all scales. In
other words, the hierarchy remains stable.

32m M

This must be taken into account when computing F (P).
The renormalized action for the light degree of free-

dom can, as in the previous cases, be written solely in
terms of the effective one-loop parameters, whose values
are given below in terms of careted parameters:

+4 Cl
All..p=A — 2mo ln

264m p

V. TWO-SCAjLE %'ESS-ZUMINO MODEL

In this section we will extend our generalization of
Weisberger's method to a supersymmetric theory. We
will not use a component formulation; instead, we use the
superspace-superfield formulation of globally X= 1 su-
persymmetric theories because it simplifies the algebra
and gives compact and transparent results. Our notation
and conventions are those of Refs. 8 and 9.

Let us consider the simplest, renormalizable, globally
supersymmetric and two-scale model in four spacetime
dimensions:

$(B,L)= J d x d 0(BB+LL)
~1 loop A

2 ~0 g01n
327K p

m*2 =m *3— (g* +m* A, *)ln
Cl

1 loop 0 0
p

+ f d x [d OW(B, L )+H. c.],
where the superpotential function is

(5.1)

c
g 1 loop g 2 g0 ~0

32m p

Cl
3A,0 ln

327T p

For brevity's sake we only give the value of the careted
cosmological constant:

kl
W(B L)= B + L +m BL+ B3+ L3

k3 k4+ BL+ LB.
2 2

Taking B and L to be chiral superfields, this is the Wess-
Zumino (WZ) action. We have not included a kinetic
term BL+H.c. in order to avoid irrelevant complica-
tions. This term is generated in perturbation theory, but
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we will eliminate it by an appropriate wave-function re-
normalization. We are also free to add the linear terms
pBB+pLI. to the superpotential. Nevertheless, we can
always perform a redefinition of fields, sources, and pa-
rameters such that these tadpoles disappear from the ac-
tion. Furthermore, this redefinition is stable because zero
tadpoles are fixed points of the renormalization group.

The mass matrix is

set of proper functions, which have to be supersymmetric
and Lorentz invariant and, furthermore, have to conserve
the chiral character of B; i.e., they must satisfy the con-
straint that D.B =0. These conditions immediately limit

the form of the expansion to

2

B(L)=a,L+a L +a&L +a4 L

P1BL m

D 2

+a5 L +a6
4

2

LL +84(L) .

We compute its eigenvalues and find the tree-level condi-
tions for dealing with two widely different mass scales:
m «M and mBL Mm. In any physically relevant
theory, m may be typically m —10 GeV, while M may be
taken of the order of the grand unification scale, M -10'
GeV. This allows us to have mBL ~ 10' GeV. This size
of the masses leads to a hierarchy problem. This can be
seen by computing the RGE of the light mass:

fi
2 [2m(trA2)+2mBL(tlA1A2)]2

327T2

84(L ) contains proper functions of mass dimension ~ 4,
and indeed they are being suppressed by powers of (M )

with n + 3. The coefficients a; are obtained by substitut-
ing 8 (L ) in the equation of motion and matching factors
of the same proper function. This calculation is done by
using the well-known properties of the D algebra. A va-
pid calculation leads to the following set of coupled alge-
braic equations:

mBL 1 2

2M'ap =—,(A, )a, +213a, +A,„),
where ~3,~3 4

1 1a3= — (A&a&+A&)a2, a&= a&,

a, = a, , a, = — (X,a, +X,)a4 .
M

Therefore, the RGE's show that the tree-level hierarchy
is lost, since m(p) has contributions proportional to m&1 .
We can also compute the RGE of the mass mBL and note
that it has a contribution proportional to M.

We now proceed to apply our method to this problem.
As before, we obtain the solution to the equation of
motion of the heavy superfield

D'B+BR' 0
4 BB

The solution 8 =8(L ) is written in terms of an infinite

The low-energy efFective action is obtained by eliminating
the HDF from the full action (5.1). This is achieved by
computing S(8(L),L) in the large hierarchy limit. We
find again the same type of results that were found be-
fore. The effects of nonrenormalizable interactions on
S(8(L),L) are suppressed by powers of the small-mass
scale or external momenta over the large masses. In oth-
er words, when the heavy-particle masses are very large
compared to the small-mass scale or external momenta,
the effective theory is renormalizable. Explicitly, the final
result is

lim S[8(L),L]=Id4x d'e(i+a', )~L ~'+ Id'x [d'e[ ,'( +m-„m)aL'

+ —,'(A, ~+3k,~a, +3k,3a, +A, ,a, )L ]+H.c. ] . (5.2)

Hence the effective low-energy theory is a one-scale Wess-Zumino model with effective field and parameters given by

m+mBI a& X2+3A,4a&+3k,3a &+A, &a &

Lo =(1+a
&

)'~ L,mo =
1+a y Arp

( 1+ 2 )3/2

The effective mass is, in fact, small at p=M. Using the renormalization-group equations of the full theory, one com-
putes

dm0
2m 0dp 32

a, (trAf)+2a, (trA, A2)+(trAz) mo+a, (trA, Az)1+a
&

(&.3)

dAO g a, (trA&)+2a, (trA, Az)+(trAz) mo
P — 3' +a, ( trA, A2)

dp 32m' 1+a i

mp aiAi+2aik3+k2
3 (trA, A2) .

32m ~ M (1+a ~~
)'~~
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The reader will note that these renormalization-group
equations contain some very small terms (they are
suppressed by the factor mo /M). We will keep them in
our calculations and will find that decoupling takes place
order by order in poioers of mo /M. [These results have
also been obtained and checked, using the component-
field formalism. In this case one has to solve three equa-
tions of motion: one for a heavy complex scalar field,
another for its Weyl fermion superpartner, and, Anally,
one for the auxiliary component. We solve this set of
coupled differential equations in the kinematic region
p «M. We obtain 8, 8, and F~ as functions of L, L,
and Fl. These functions are power-series expansions of
Lorentz-invariant proper functions constructed from the
basic blocks L, L, and FL . They may also be obtained
directly from the superfield expansion by using the pro-
jection technique. The heavy component fields as func-
tions of the light ones have to be substituted into the full
component action. Then, after taking its low-energy lim-
it, one obtains the component version of the soperspace
action (5.2).]

The next step is the computation of the first quantum
correction to the full theory, I ' "(B,L ), and eliminate the
HDF from there. The result can be compactly given by

I' '(B,L)= ——Trln 5 (x —x')+ I X(k,x,x')(1) ~ 8, G k
2 (2n. )

ik (x —x')Xe

(5.4)
I

where X(k,x,x') is a 4X4 matrix which may be written
as

X, 1 X12
X(k,x,x')= X X &'(()—~')

21 22

Here we have introduced the following set of 2X2 ma-
trices:

2D 2 D 2X„—= V(x )JN G(k),X,i = —V(x )G(k)
16k 4

+21 =+12 & X22 = 11

G(k)=—( —1)(k +A, ) ', V(x)=A, B(x)+AzL(x) .

The overbar means a Hermitian conjugate. The free
momentum running along the loop is represented by k.
By Tr we indicate a functional trace; i.e., the trace is per-
formed on internal and Lorentz indices and on super-
space variables.

We now expand the logarithm in I'"(B,L). In this
process we will find a set of multidimensional 8 integrals
which are done by using the properties of the D algebra. '

At the end one checks explicitly that I'"(B,L ) does not
contain any superpotential proper functions (nonrenor-
malization theorem). The final result is

I'"(B,L)=—J d x d 8I tr[V(x)G(k)V(x)G(k)]+higher-dimensional proper functions .4, 24k
(2m. )

The same arguments of Sec. II also work for this case;
i.e., these higher-dimensional proper functions either van-
ish in the low-energy limit or are the one-particle irreduc-
ib1e 1PI n-point functions of the effective theory we will
give below. We write all of the mass parameters of the
action I "'(B,L) in terms of mo and a, and expand its
1PI proper functions in powers of the small parameter
e=mo /M. After all the dust settles, we find that only
the following D terms survive in this procedure:

hmI'"(B, L)= J d x d 8[(a,i+a„)~B~~
e~O

+ (a 22 +~22) IL I'

+(a,2+a,2)(BL+H.c. )] .

[We assume that the divergent part of I "'(B,L ) was can-
celed by an appropriate counterterm Lagrangian. ] As in
the pure scalar case, the terms containing the logarithm
of the light mass reproduce the n-point functions of the
low-energy effective theory. We have divided the
coefficients of the D terms into two parts. The reasons
for this splitting will become clear later. These
coe%cients are given by

ci
ai, = — tr(A, )ln

3277 p
1 Cia„=

2 2 tr(A, A A, A )ln
32m. (1+a, ) p

2
a22 = —

2 tr(A2)ln 2327T2 p
C1

a@2=
~ 2 2tr(A2AA2A)ln

32~ (1+a, ) p

C1
a i2

= —
2 tr(A, A2)ln

327T2 p
1 C1

u, 2=
2 tr(A, A A~A )ln

32m. (1+a i ) p2

where 3 is the 2X2 matrix:
2a 1 a1

Recall that a, = —m~L /M, and c, represents the heavy
scale.
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As always, we compute the full theory to one-loop or-
der, I (B,L ), by adding the tree-level action and its cor-
responding quantum correction computed in full, and
then taking the limit to the low-energy regime. In this
model we find an additional complication due to wave-
function renormalization effects. We find that they can
be taken into account in several ways. For example, (a)
we might construct the effective low-energy action direct-
ly from I (B,L ) without any change in the field basis, and
(b) by a finite wave-function redefinition, we can eliminate
from I (B,L ) the a; or the a; or both or an arbitrary
combination of them. We will proceed according to (b).
Our motivation to do this resides in the fact that this al-
lows one to e~p/icitly check how decoupling takes place,
without first disregarding the terms of O(mo /M) in Eq.
(5.3). One can then go ahead reabsorb the a; by a finite
redefinition of the superfields into

B=B+
2 [B(trAt)+L(trA, A2)]ln

64~ p

L =L+ [L(trA2)+B(trAiA2)]ln
64~ p

(5.5)

The action I (B,L ) is then written as a functional of the
field basis (5.5). Note that this field redefinition induces a
change of the coefficients in the superpotential. From
now on everything proceeds as before. We solve the
equation of motion for the heavy field and plug it into the
full action in order to eliminate the HDF. We omit those
proper functions which enter suppressed by powers of
1/M or mo /M. Finally, we perform a finite redefinition
of the wave function which allows us to recover the stan-
dard normalization of the kinetic term. We get an
effective theory which is a one-scale Wess-Zumino model:

~*«i &..p)= fd'x ~'~lLi ...p~'+ J d"x[d'e W*(L»..„)+H.c.],
with the superpotential function being

g3
1 loop ) = 2

m I loopL 1 loop+ 6 ~1 loopL 1 loop

The effective one-loop parameters are very complicated functions of the original ones:

a, (trA, )+2a, (trA, Az)+ (trAz)
m', ...,—=mo 1+

3277 &+a 2

3 a, (trA, )+2a, (trAiA2)+(trAz)
g)fc ] +1 loop 0 32 1+a

Cl
i Ao + ia, (trA, A2)+O(A' ) ln

(5.6)
3 ~2 4 3 mp cl

2
—

&o +
2

—a) (trA, A2)+O(A' ) ln

f1 3 m 0 a 1 ~1+2a1~3+ ~2
(trA, Ai)ln +O(A ) .

32ir 2 M (1+a, )'~2 p2

The tree-level effective parameters are those of (5.2).
These formulas give us the one-loop effective parameters
as functions of the original ones. With them we can now
explicitly display their size and, simultaneously, prove
that the decoupling theorem is satisfied even for mp /M-
order contributions. Indeed, from the definitions (5.6) it
follows that

lar case:

C
m 1 l„p=—m 0

—
2

m 0 kp ln
327T p

1l..p —=xp —
2

—
Ao ln

232JT P

(5.7)

dm
1 loop

I ~ 22 lloop 11oop &ap 3271

~1 loop A 3p ~ 2 3~1 loop '
&P 327T

Therefore, the effective parameters are, in fact, decou-
pled. When these renormalization-group equations are
integrated together with the boundary conditions

mf„,(@=M)=mo(p=M),

X»...(i =M)=so(p=M),
the initial hierarchy problem disappears since
mo (@=M) is really small. This result allows us to reor-
ganize the expressions (5.6) just as we did in the pure sca-

These careted parameters are such that the last two ex-
pressions for the effective parameters, (5.6) and (5.7) coin-
cide. Their dependence in A'in(ci/p ) is such that they
are renormalization-group invariant.

VI. GENERAL SOFTLY BROKEN WZ MODEL

The supersymmetric version of the standard model of
particle physics may be a softly broken supersymmetric
theory, since the "soft" breaking terms only generate log-
arithmic ultraviolet divergences, and hence the gauge
hierarchy problem of ordinary grand unified theories
(GUT's) is not present (absence of quadratic divergences).
However, it is known that the soft breaking of supersym-
metry may destabilize the gauge hierarchy. In principle,
this may happen in the case where the light and heavy
sectors are gauge singlets, without any gauge symmetry
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to protect the low-energy scales from the quantum
corrections produced by the heavy masses. 11,12

In this section we will apply our procedure to a softly
broken Wess-Zumino model. The description of this
theory through the superfield-superspace formalism re-
quires the introduction of explicit, 0-dependent terms
(spurions) in the Lagrangian. " The fundamental ideas of
the procedure remain the same as in the previous cases,
but it will be necessary to introduce some new mathemat-
ical tools for dealing with the calculations. In particular,

we develop a technique for solving superfield equations of
motion, and computing one-loop effective actions, which
involves spurions (explicit 0 factors) and supersymmetric
covariant derivatives. The final result of this procedure is
a compact formula which contains all the quantum infor-
mation of the theory.

We write down the most general, two-scale, renormal-
izable, and softly broken Wess-Zumino model in four di-
mensions. This is described by the action

S(B,L)= fd'«'~( IB I'+ IL I' —~'~'I p,'IB '+ p, ', IL. I'+ p, '„(BL+H.c. )](

+ f d x (d 0[,W(B,L ) —8 f(B,L )]+H.c. ] (6.1)

In this expression W(B,L ) and f(B,L ) are the superpotential functions, which for the most general case are given by

W(B,L)=p~B+pLL+ 8 + L+m—~LBL+ 8 + L + 8 L+ L 8,

f(B,L)=b+h~B+hLL+ 8 + L +f~iBL+ 8 + L + 8 L+ L 8 .2'

f(B,L ) parametrizes the soft breaking terms. This mod-
el contains every feature needed for building N= 1 super-
gravity extensions of the Weinberg-Salam model and
grand unified models. In order to be consistent with the
phenomenological requirements of these %=1 scenarios,
we have to impose "the tree-level mass hierarchy

M
((1, mBL +Mm .

Concomitantly, the soft breaking terms must be con-
strained by the naturalness of the spontaneous symmetry
breaking of local supersymmetry:

2= 2 2= 2 2 = 2
PB m 3/2~B& PL m 3/2~L& PBL m 3/2BL

b =m3/2A,
2 2

AB =Ul3/2M 7B, AL =PPZ3/2Pl 7 L

pB=pL=0. However, this choice is impossible for the
non-supersymmetric tadpoles hB and hL since they re-
ceive quantum corrections, and hence the redefinition
must be redone order by order in perturbation theory.

After these considerations we can now go ahead with
our strategy. We start by eliminating the HDF from the
tree-level action. We solve the tree-level heavy superfield
equation of motion in the appropriate kinematic region:

2

4
(8 —m 3/p t7+8 0 8 m 3/go ~L 6 8 L )

+ BW gpBf
BB M (6.3)

In order to eliminate the inhomogeneous term
m 3 /2 M TB0 from the equation, we necessa ri ly have to

perform the shift
(6.2)

f~ =m3/&MB&, fL =m3/~mBL, f&L =
3/2m&L B&L B =B'+ap+bp0 (6.4)

g1 m3/2~1~1~ g2 m3/2~2~2& g3 m3/2~3~3

g 4
=m 3/2 A,4 34, m 3/2 m

All o's, ~'s, B's, A' s, and A, 's are of order 1. This choice
of parameters summarizes the essential features of models
having phenomenological applications. By the same to-
ken, we can consider (6.2) as the hypothesis fixing the size
of the tree-level parameters at p=M.

Finally, we make some considerations relative to the
linear terms in B and L. We know that the tadpole terms
can be eliminated from the action by an appropriate
redefinition of the fields, sources, and parameters. This is
a good strategy for the supersymmetric tadpoles pB and
pL, since it is stable under perturbation theory.
(p~ =pL =0 are fixed points of the renormalization
group; cf., e.g. , Ref 9). It is therefore safe to set

After substituting (6.4) and (6.3) and demanding the van-
ishing of the field-independent terms, one obtains a cou-
ple of algebraic equations' these determine a p and b p as
functions of the original parameters:

bp+Map+ a p =0,
2

(M +A ]ao )bo m 3/p(M 7'~ +MB~ ao

+ m 3/2 o ~ a 0+ —,
' I, , /I, a o ) =0 .

Both of these equations are exact. The remaining equa-
tion for B' is also exact. Obviously, the equation for B'
can be obtained from the action
S(B,L)=S(B'+ao+bDO, L). In this action we search
for dangerous terms which could spoil the tree-level mass
hierarchy. One such term is
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—,' —fd4x d 88 (m3/2mBt +m 3/2~~AHo k4bo)L

(6.5)

b, (L )= AqL+ A3 L- ,
R—

Expanding ao and bo in a power series in m3/2/M, we
find the dominant terms to be

D 2

b2(L)= A5L + A7 L—+ As L—L+ A„L

dxd 8 msrao+ ao L4 2 3 2

2

Its dominant term —m3/2PlBL TB also destroys the hierar-
chy, showing that ~B is clearly the responsible parameter.

It is easy to convince oneself that the light character of
the L sector is preserved if, and only if, in the origina1 ac-
tion the condition

at @=M, (6.6)

is respected. In other words, if hB=m3/2M 7B with
~B —1 at p=M, then the shifted masses do not have a
tree-level mass hierarchy. It should be clear that the
choice of value for v.B is done at the tree level. Later, we
wiH have to check that higher-order radiative corrections
do not spoil this hierarchy.

%'e now consider the remaining equation for 8'. Its
solution may be given as a power-series expansion in the
supersymmetric and Lorentz invariants of the theory.
They form a minima1 and complete set of proper func-
tions which solve the equation of motion. It is useful to
introduce the operator R:—D 0 = —4+48D+0 D .
Some of its properties can be found in Ref. 14. Some use-
ful additional properties are given in the Appendix. As
in the exactly supersymmetric (SUSY} case, the expan-
sion has to be consistent with the chirality constraint of
8. These requirements reduce the form of the expansion
to

8'=8'(L)=Bi+82+Bs+8 (bi+bq+b3),
where, explicitly,

R — RR8, (L ) =a,L+a2 L+a3—
4

82(L)=a4L +a5 L+a6 LL+a—7 L—54 64

RR D+as LL+a9L L+a ip L
16

R D2 RR D 2—
11 4 4 12

aP ~ 3/2+B s &P Pl 3/2M' B

which substituted into (6.5}give

23/2~~L ~ 3/2~4~4+8 ~3/2~~4 B ~3/2~~4+B

Therefore, the nonsupersymmetric heavy tadpole
spoils the tree-level hierarchy of the theory. The cou-
pling constant A,4 is not the culprit: In fact, the shifted
action S(8',L ) also has the superpotential term

R D

The functions 83(L) and b3(L ) contain proper functions
that go like M "with n ~2 and n &1, respectively. The
coeFicients a;, a;~, A, , and A;~ are computed in the usual
fashion: One substitutes 8'=8'(L) into the heavy
superfield equation of motion and sets the coeScient of
each one of the proper functions equal to zero. The re-
sult of this procedure is an infinite set of coupled algebra-
ic equations which determine, by iterative procedure, the
a's and 3's. For instance, the equation determining a1 is
(M+A, ,ao)a, +miiz +A3ao=0

After having obtained 8 =8(L ), we may eliminate the
HDF from the tree-level action by computing
S(8(L),L). We did this calculation without imposing
any condition on the parameters of the softly broken sec-
tor (6.2). This straightforward, albeit long, calculation
shows several interesting properties.

(i) The proper functions contained in 83(L ) and b3(l)
do not contribute to the low-energy limit of S(B(L),L )
because their coeScients are suppressed by powers of the
heavy mass. It turns out that the dangerous terms disap-
pear on shell.

(ii) The parameters of the supersymmetric sector get
contributions from the softly broken sector and vice ver-
sa. The simplest example of this situation comes out
when we substitute 8 by a p+bp8 into the full action. A
direct consequence of this property is that the final super-
syrnmetric effective parameters have contributions which
are proportional to the soft-breaking terms.

(iii) The low-energy effective action coming from
S(8(L),L) can, in principle, not be a softly broken
SUSY theory. The action S(B(L),L ) has a set of hard-
breaking terms, such as, for example,

f d48 L2L Jd48 g2g 2L2 L Jd48 g2 g 2L[7L

The effective theory is renormalizable, but these interac-
tion terms spoil its soft character.

It is easy to check that the hard-breaking terms disap-
pear if and only if the parameters of the broken sector in
the full theory satisfy (6.2} and (6.6). This may be re-
phrased as follows: The naturalness condition on the
breaking of local supersymmetry leads to a low energy-
eQective theory which is a softly broken, one scale Wess-
Zumino model. This it should be noted is only a conse
quence of the smallness of the gravitino mass

Within these conditions both the large hierarchy limit
and m3/2/M —+0 lead (after a finite redefinition of L
necessary for obtaining a standard kinetic term) to the
following one-scale, tree-level effective theory:
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S*(LO )= lim S(B(LO ),Lo )
m 3/p /M —+0

= Jd x d 8(~Lo ~

—m 8 8 0'o ~Lo ~
)+ f d x[d 8(W"(Lo ) —m3/28 f*(Lo ))+H.c. ] .

In order to cast this result in the simplest form, we have introduced the effective potential functions [cf. Eq. (6.1)]

~'=—VoL, o +-'~ol. 0*2+-'~oL, o3

f*=bo +mo roLo + —,'moBoLO + —,'Ao AoLo

(6.7)

Here the quantities denoted by asterisks are the e6'ective tree-level parameters. They are related to the original parame-
ters through the definitions

1 ~3 2
Po (1+a, )

~BL 0+ 02

1
mp =

2 [m+A4ap+(m+1 +A3ao)a, ](1+a, )

1
~p / (12+3K,4Q& +313a &

+k&a
& ),(1+al) /

1
0 O (0'I +2Q l 0'llL +Q l 0'g )(1+a, )

m3/2bp = ,'bp+m3/2—(b+M 7BQQ+ —
lm3/2 B00Q+ 2MBBQ0+ 6klA lap)

17'

3/zeal

Q 70 (1+a, )
2 1/2 (mllL +A3QO )bp+m 3/2(m rL +mill Bill ap+m3/20 IlL Qp+ IL3 A 3ap )

2

2

1
m3/2m pBo =

2 [m3/2mBI. +m3/2A4A4ao Ã4bp+a l (m3/2MBJl +m3/2kl A &ao A &bo )1+a]

+2Q&(m3/2mllr BllL ™3/2A3A3ap—A3bp)],
1

Ap Ap =
2 3/2 (A2A2+3A4A4a, +3A3A3a, +A, , A, Q, )

( 1+a 2 )3/2

From these explicit expressions one checks immediately the previous statements about the size of the heavy tadpole ~z.
Only for those values (6.2) and (6.6) are the effective tree-level parameters really light.

As in the scalar case, it is convenient to write the one-loop correction for the theory in terms of the shifted heavy
superfield B'. (The shift implies that we are building up the radiative correction around the classical minimum of the
heavy sector of the theory. ) In terms of the superfield basis B' and L, the action I'"(B',L ) has the same functional
form as the corresponding quantum correction for the exactly supersymmetric case (5.3), but with the X; matrices

D 2D2
Xll = U(x)JR'G(k)

16k

2D 2 2 D2
P'Jkf, 'G(k)8 +p G(k)8 8

2 4 4

2 D 2 D — D DX,2= —U(x )G(k) + V'G(k)8 +p At'G(k)8 8
4

'
4 4 16k

&zi =&iz

Xzz Xi i

where

U(x)=—+lB(x)++2L(x) 8 m3/2GBl( )x8m3/2G2L(x) . —

The matrices A, and Az are the ones that were introduced for the supersymmetric case; the remaining are

(6 8)
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kl Al A3A3
1=

A3A3 A4A4
2—

2= 2p—:m 3/2 ~BL O'L

M +A, lao MBL +A, 3aQ

mBL +I 3aP m +A4aQ

m 3/2MBB +m 3/21 A 1 aQ 116Q m 3/2mBLBBL +m 3/2k3 A 3aQ 3I6Q

m3/2mBLBBL +m 3/2k3 A 3aQ X3bQ m3/2mBL +m 3/2A4A 4aQ X4jPQ

The function G(k) is constructed with the shifted mass matrix G(k)= —(k +Sf' )
' We .point out that the softly

broken terms in the original action have been considered as interaction terms.
The expansion of the functional trace for this broken theory can now be calculated in complete analogy with the un-

broken case. Any term in the expansion is reduced by using D algebra until one is left with a single 8 integration. (We
recall that only a finite set of integrands do not vanish inside the last 8 integral. ' ' )

Next, we compute the limit mo /M, m3/2/M~O on I "'(8',L). The next step consists in rewriting the action
I'"(b', L ) in terms of the old field B. It turns out that for technical reasons, having to do with algebraic details, it is
more convenient to write I'"(8',L ) in terms of B.

At this point we are left with the usual task of computing the effective low-energy action to one-loop order from the
full action including its radiative corrections:

I (B,L ) =S(B,L )+ »m r'"(B,L)+O(X ) .
mo /M, m3/2/M~O

From now on everything proceeds as in the supersymmetric case. In the end we find that the effective action is given by

r*(L*)„i)=f d x d 0(ILi i, ~

—m3/28 8 cri (,p~Li i, p~ )

+j 'x{ ' { iioop( iioop)
— 3n 'fi iona( iioop)l+

The superpotentials W»„and fi'i„are functions of the same form as those of the tree-level case, but written in
terms of the one-loop effective field and parameters. These one-loop effective parameters are very complicated func-
tions of the original parameters of the initial action. However, one discovers again that they can be recast as

)ft A $
P1 loop P 0

1

32~ 2 p

1 loop=I 0 1

3277 p

~1 loop ~ 0
3

3277 p

cr,*)„=&o
— [(A,o Ao ) +3crok, o ]ln

32m' p

b»„~=ho —
z (m3r2oo +2m3r2rrio cro+rrr3nrrio Bo +2poiomoBo )ln

64~ p

(6.9)

W2 ilc — 42m 1 loop+1 loop m0 +0 m3/2 A 0B0 ~0m 0 +2m3/2~00m 0 +Po A 0 ~0 +B0 ~0 m 0 + m 0 ~0 T0
327T2

m11 pB11oop mQBQ
C1

(2m o A.o 8 o +2 2 o m o A,o )ln
327T2 p

~1 loopA 1 loop ~0 A 0
—AO A.O ln

32m.2 2 p
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In these formulas cl represents the heavy eigenvalue of the square of the shifted mass matrix JN' , R. emarkably, these
parameters have the properties we mentioned in Sec. I. To test for decoupling we must check that the one-loop
effective parameters defined above satisfy the renormalization-group equations of a one-scale, softly broken Wess-
Zumino model in four dimensions. That this indeed is the case may be seen by applying the scaling operator d /d lnp to
both sides of (6.9). Up to A' terms we obtain

42(Pl loop) 2 Pl loop~1 loop &

32m.

fi
)fC

1 loop ) 2
™ 1 loop ~1 loop &

327T

( ~1 loop ) 2 ~1 loop &

3277

fz
( o-*,„,p)

=
2 [2( /I 1„,p

A, 1 l„p)+6cr*,„,pk, *, l„p],32~

3 42 42 42
( b 1 loop ) 2 ( 3/2 1 loop ™ 3/2 1 loop 1 loop ™ 3/2 ~ 1 loop+ 1 loop + P 1 loop~ 1 loop 1 loop+ 1 loop )

3277

(6.10)

)fC(~ 1 loop+1 loop) 2 (2m 3/2 ~ 1 loop+1 loopm 1 loop~1 loop+4m 3/2 1 loop~1 loop 1 loop
327K

42 42
Pl loop 1 loop 1 loop 1 loop 1 loop 1 loop 1 loop 1 loop

42(~ 1 loo 1 loop ) 2
(~m 1 loop~1 loop+1 loop+~~ 1 loop~1 loop 1 loop )

32m

43(~1 loop~ 1 loop ) 2
~ 1 loop~1 loop

32m

This proves that the RGB's are closed and the ones cor-
responding to a fully decoupled theory. They may be in-
tegrated together with the boundary conditions

O*, ...p(1M=M)=O,*(@=M) .

We observe that the one-loop effective parameters will
remain light if the original parameters of the fully theory
satisfy the boundary conditions (6.2) and (6.6). This
proves the stability of the hierarchy of the one-loop
effective parameters under renormalization.

VII. SUMMARY AND CONCLUSIONS

In this paper we have considered the low-energy limit
of two-scale quantum field theories. We have studied
several mode1 theories, each with its own special field
theory behavior. In all the models the heavy sector cou-
ples to the light sector via some coupling that we intro-
duce in the tree-level potential; because of this, one has to
check on the effects that the heavy sector has on the light
sector due to quantum corrections. In principle, if we do
not appropriately separate both sectors, there will be
dangerous contributions from the heavy-light mixing
whose final effect will be to make heavy the light sector.

Here we have shown that there is a fieId-theoretic solu-
tion to this problem and have illustrated its application in
each of the models that we have considered. This solu-
tion is based on a straightforward application of
%'eisberger's procedure for multiple-scale field theories,
to which we add a new, renormalization-group-based, in-
terpretation for the effective parameters. Assuming the
existence of a tree-level hierarchy, we show how it is

maintained through radiative corrections without any
need for either fine-tunings or having to impose global
symmetries to this end. The dimensional, effective tree-
level parameters receive quantum contributions which
are proportional to heavy logarithms of the heavy mass,
and this happens in such a way that the dangerous terms
destroying the original hierarchy cancel each other. The
dimensionful proportionality factors for the dimensional
parameters, and the dimensionless factors for nondimen-
sional couplings, turn out to be such that the effective
low-energy parameters satisfy a set of closed
renormalization-group equations. That is, the low-energy
effective theory is consistent and stable under renormal-
ization. This is a consequence of the following two prop-
erties, which are common to all of the models considered
and highly nontrivial and unexpected: (i) when comput-
ing the low-energy limit of the full quantum correction to
the original, two-scale theory, one obtains as the
coe%cients of the heavy logs the precise combinations of
the tree-level effective parameters which later on display
this decoupling, and (ii) the one-loop effective parameters
can always be written in terms of a set of parameters
which are fixed points of the renormalization group, plus
A times the necessary combinations of the tree-level pa-
rameters from which follow a decoupled set of
renormalization-group equations.

As far as we can tell, these results are independent of
the model under consideration and very general. They
hold uniformly for supersymmetric and nonsupersym-
metric theories, and one is led to conclude that they must
be a general property of local quantum Geld theories with
two mass scales, for they always come out by taking the
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low-energy limit of the appropriate Feynman momentum
integrals. ' It is quite surprising that, for such different
theories, the limit m/M~O of the quantum correction
to the full theory may always be written in terms of
effective parameters defined at the tree level and without
any fine-tuning. Furthermore, there are indications that
this feature also holds for higher-order perturbative
corrections, because the renormalization-group-invariant
parameters that show up in the calculation can be con-
sidered as bare parameters with respect to the heavy-
mass scale.

It is interesting to note that even for scalar theories
with quartic and quadratic divergences, the procedure
goes through and allows the construction of a stable,
light field theory. The same holds true for softly broken
supersymmetric theories. The contributions from the
softly broken sector to the supersymmetric sector do not
necessarily destabilize the original tree-level hierarchy.
Furthermore, the effective low-energy theory is a softly
broken theory if and only if the scale of the breaking of
local supersymmetry m»2 is of the same order of magni-
tude as the low-energy scale m.

Finally, the discussion of the magnitude of the effective
parameters and their scaling behavior leads to the same
conclusions: One can have a tree-level hierarchy (when
appropriate boundary conditions are imposed), and this
hierarchy is maintained through radiative corrections.
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component fields. Using the explicit 0 expansion of the
superfield and the representation by dift'erential operators
of the supersymmetric covariant derivative, ' one finds
the identities

0 @=0 ( A+&20 P +8 F)
0@=0 A,

8 (any) = —E ~—,D' 1 . a
4 a0~ a0

8 (any),

D202 (g) — 0 2+
4

D2 4= —8 A+t'&2(d P )o .8 — 80—(Hf )

F —0—8 (—F)+i8 o 8(.B F),

—4= —3+i0o 08 2 ——0 0R 1 2-2
4 m 4

+ 0 m0$ g + 0202
16 4

The last two properties prove that (R/4)@ is an an-
tichiral superfield and that (RR /16)N is a chiral
superfield. Furthermore, these properties show that the
proper functions we have used in the expansion B=B(L )

are, all of them, independent. Finally, we see that the
power-series expansion B =B(L) does not generate any
other proper function which cannot be constructed using
this basis of proper functions.

From these properties we also derive the projection
formulas we used in the last two sections:

APPENDIX: USEFUL PROPERTIES

For the model described by (6.1), the equation
of motion is given by (6.3). In order to solve it, we re-
write it in terms of the operator R —=D 0 = —4
+40 D +0 D and its complex conjugate. They have a
set of properties which will be useful in the calculations.
Some of them can be found in Ref. 14, but we need some
extra properties which we demonstrate in this appendix.
With F(x ) and G(x ) two arbitrary and general
superfields, and using the properties of the D and R alge-
bras, we can show that

R R R—6 = — —FG
4 4 4

2

R
4

RR
16

R D RR D
4 4 ' 16 4

D —R
4 4

D2 —RR- = —AF,
4 16

2 R D= —2A F+P P, — 4 . =2AF

R R
4 4 e/=A,

D2

4 2
= —F, —D 4

RR
16

RR
16

D

We also have to check that the basis for proper functions
that we have used in the expansion of B =B(L ) is com-
plete. Let @ be a chiral superfield and A, g, and F its

notationtheHere we have
anything

~

= anything ~~

The superfield and component formalism for construct-
ing the effective action corresponding to a supersym-
metric theory are equivalent. Obviously, we have to corn-
pare the results produced by both procedures and check
that they indeed coincide. Here we need a set of identi-
ties which relate the superspace actions with the usual
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four-dimensional Minkowski space. In the exactly super-
symmetric case, we only need the identity which gives the
component form of the Wess-Zumino action. When su-
persymmetry is softly broken, we need many other new
identities, viz,

fd'88'8')eI' =[A['

f d 88 8 @O@=AHA,

f d 88 f(N)=f(A),
D2f d48 8'8'e C = —AF

f d 88 @4=AF,

f d48 O'C'C =A'E,

f d 88 @N =A(2A F g, f~)—,

f D2
d 88~8 @' @=—A F,

4
D2

fd 888 44 N= —AAF,
4

D2f d 88'8 4 N = —A(2AF gP ), —

Dfd 888 4 =(F~
4

D2fd'88'4 4 = F'. —
4

In both sides of these equations, an integral over the
four-dimensional spacetime is understood.

After solving the equation of motion, we have to elimi-
nate the HDF from the tree-level action by computing
S(B(L ),L ). This action contains nonrenormalizable
terms, but we omit them since they are suppressed by
powers of the heavy mass. For the renormalizable in-
teractions we use two kinds of identities:

fd 8 —4 = —fd 88~4=0,
4

f d 8 (any) = —f d 88 —(any) =0 .
16 4

The other type of interactions do not vanish. However,
we can recast them by using identities such as

D 2fd'OI. L, ' = —fd488'O'L, ' I. ,16 4

f d'OL L~ = —f d488—'L 'L,
4

D2f d'OL. ' L = fd488'O'—I, L'
16 4

f d OL' L= —f d 8 O'L—L',

D2fd28L LL = —f d488 8 LL L,
16 4

fd'8 O' L.—= —fd'8 8'O'L, ,4

fd'8 O'L L—= —f d488 O'LL,
4

2

f d4g 82L —L = f d4g g2g2L
4 4

f d OL L=——f1 8 8 8 LAIL,
4

2
R D D2

fd 88L — L = fd 888 L
4 4 4

f d 8 L=f—d 8 8'8 LCIL .
4

After regrouping the contributions to each interaction
term, using the equation of motion, and taking the low-
energy limit, we find that S(B(L),L ) is modified by the
hard-breaking terms

f ding g'g'Lgg,

f ding 82g2L~L

D2fd 88~8 L L+H. c.
4

f d g( g L L +H. c.),
D2f d4g g2g2 L L2+H. c.
4

f d 8(8 LL +H.c. ),
D2f d 88 8 L L+H. c.

D2f d 88 8 LL L+H. c.

2

f d4g 8&g&
4

D 2

f d48 8 L L+H. c.
4

f d 88 8 (L L+H. c. ) .

As we have already mentioned, these hard terms vanish if
the parameters which break supersymmetry are propor-
tional to m3/2.
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