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Head-on collisions of kink and antikink solitons are investigated numerically in the classical one-
dimensional A(P —I) model. It is shown that whether a kink-antikink interaction settles to a bound
state or a two-soliton solution depends "fractally" on the impact velocity. We discuss the results using
the framework of perturbation theory which helps to clarify the nature of the fractal structure in terms
of resonances with the internal shape mode oscillations. We also review the technique of collective coor-
dinates used to reduce the infinite-dimensional system to one with just two degrees of freedom. Al-
though we do not expect exact agreement by using such a simplification, we show that the reduced sys-
tem bears a striking qualitative resemblance to the full infinite-dimensional system, reproducing the frac-
tal structure. The maximum Lyapunov exponents are computed for the bound-state oscillations and
found to be -0.3 for both the full and reduced systems, demonstrating the chaotic nature of the bound
state.

I. INTRODUCTION

As the Universe expands and cools, several types of to-
pological defects can form during the spontaneous
symmetry-breaking period associated with a phase transi-
tion. One such possibility is the formation of cosmic
domain walls [1],which can have a number of cosmologi-
cal consequences. In particular, "soft" domain walls
could act as seeds for the energy-density fluctuations
needed to form large-scale structure in the Universe [2].
Stebbins and Turner [3] suggest that the large-scale
streaming motion observed in our local region of space-
time may be caused by a single domain wall encompass-
ing our Hubble volume.

Domain walls can be described by a real scalar field
with the A,(P —1) self-interaction potential. In general,
domain walls can from with all kinds of geometrical
configurations. However, only the planar cosmic domain
wall survives. Spherical and cylindrical walls collapse
under the action of their surface tension, dissipating their
energy by radiation of particles. So we expect the forma-
tion of a network of planar domain walls [4]. In this con-
text studies of the interaction of planar domain walls
among themselves are very important. It is the purpose
of this paper to explore the nonlinear dynamical behavior
found in the simplest of such interactions: the head-on
collision of a kink and antikink pair of plane-symmetric
dotnain walls [5]. Because the possibility of head-on col-
lisions is small in the real Universe, our findings are not
expected to have a profound e6ect cosmologically. How-
ever, even though our analysis is limited to one spatial di-
mension, we believe the results will be important in pro-
viding clues to understanding the role and behavior of
more general domain-wall interactions. Also, numerous
examples of kink-antikink collisions obeying similar
equations of motion may be found in optics, solid-state
and molecular physics, Quid dynamics, plasma, etc.
[6—10]. Our results should be directly applicable to those
systems as well.

The A.(P —1) system is nonintegrable, contrary to its
"cousin" sine-Gordon system. The kink-antikink col-
lision in the A, (P —1) system can behave both as a bion
(meaning bound-) state solution or as a solution having
two distinct oppositely directed solitons. Whether a
kink-antikink collision settles to a bion state or a two-
soliton solution depends "fractally" on the impact veloci-
ty. That is, for some velocities the interaction results in a
scattering of solitons in which the kink and antikink
react from each other. For other ranges of velocities,
the interaction results in a bion state. In contrast, the
sine-Gordon system is exactly integrable and has two-
soliton and bion (breather) solutions, depending on the
inverse scattering parameters. Colliding kink-antikink
pairs in the sine-Gordon system pass through each other
"unscathed" but for a phase shift [11].

Rarely are nonlinear dynamical systems susceptible to
analytic treatment. One must often resort to perturbative
or other methods to obtain a simplified system of equa-
tions to study. In this case the system with infinitely
many degrees of freedom is reduced to one with just a few
degrees of freedom by introducing collective coordinates
[12—14] describing the gross features of the kink-antikink
pair. Of course, such a reduction is justified only if the
resulting equations model some features of the original
system. From the mathematical point of view, it is al-
ways of interest to have one more explicit example of the
treatment of an infinite-dimensional system that can be
modeled by one having similarly qualitative behavior
with just a few degrees of freedom.

We present an overview of the 1I,(P —1) infinite-
dirnensional system in Sec. II, concentrating on the
head-on collision of a kink with an antikink. We present
our numerical simulations of these interactions and show
the well-known two-bounce windows [13,15] in the veloc-
ity range for which the collision results in bion formation
and reAection alternatively. Furthermore, we discuss an
observed fractal structure showing the sequences of
collision-reAection and trapped-state oscillations in the
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parameter space of velocity. The perturbation theory
necessary for the treatment and understanding of the
kink-antikink configuration [12,13] is presented in Sec.
III. In Sec. IV we review the reduction of the infinitely
dimensional system to a system with just two degrees of
freedom via the technique of collective coordinates and
comparisons with the full infinite-dimensional system are
made. It is demonstrated that although the reduced sys-
tem does not represent an exact description of the
infinite-dimensional system, certain features such as the
fractal structure are modeled nicely by the reduced equa-
tions. Section V summarizes our conclusions.

II. COLLIDING DOMAIN WALLS

This leads to a set of N coupled second-order ordinary
differential equations (ODE's) for the P„:

2p

dt
(
—P„2+16$„,—30$„

12(hx )

+16/„+,—y„+,)

—
A,P„($2—1) . (2.7)

second spatial derivative [16]:
a'O„

2 ( —P„2+16$„,—30$„
Bx 12(~)

+16/„+,—p„+2)+O((&x) ) . (2.6)

We consider the theory of a real scalar field P with the
scalar potential

V(P) =—(Q' —1)',2

2
(2.1)

which has minima located at /=+I and is unbounded
[V(P)~00] as /~+00. The system is defined by the
Lagrangian density

L, (x, t)= ,'a„pa~ -,'V(y),——

which gives, for the Euler equation of motion,

(2.2)

+A/(P —1)=0 .
Bt Bx

(2.3)

Note that there is no reference to an expanding cosmolo-
gy in Eq. (2.3). If a justification in terms of early
Universe physics is required, we simply assume that the
collision time scale =~PIP~ is much smaller than the
time scale of the expansion of the Universe = ~a /a ~, and
so we work in a Minkowski background spacetime.

Equation (2.3) has two stable vacuum solutions
/+=+1, in addition to the topologically stable and static
kink (K) solutions

X
Px(x) =tanh (2.4)

where 5—:&2/A, is the thickness of the wall [5]. An an-
tikink (EC) solution may be obtained from (2.4) by the
space reflection x ~—x to get P~ = —Px. A solution for
solitons moving with speed v along the x direction is ob-
tained by boosting the solution (2.4) to give

Px(x, t) =tanh Z
(2.5)

where Z =y(x Ut) and y is the L—orentz factor.
We use a numerical approach in this work to solve the

dynamical equation pertaining to colliding kink-antikink
pairs. The partial differential equation (2.3) is solved on a
discrete spatial grid with periodic boundary conditions.
Zone widths Ax in the simulations are of fixed size so the
location of the nth point on the grid is given by
x„=n hx. The scalar field is defined by P„(t)=P(x„,t)
for n =1,2, . . . , X on a grid with N nodes. We use a
fourth-order center difference scheme to approximate the

The ordinary differential equations (2.7) are solved using
a fourth-order Runge-Kutta scheme, and so our numeri-
cal algorithm is accurate to fourth order in both time and
space, with errors that scale as (ht ) and (b,x ) . The ac-
curacy of our solutions can be verified by computing the
conserved energy of the system:

E=Jdx—1 dg 1 dg )(, 2+ +—(4 —1) . (2.8)
, 2 dt 2 dx 4

For all cases tested, the energy was conserved to at least
one part in 10 for the worst-case scenario simulating er-
ratic bion states. Simulations of the less-erratic scattered
two-soliton solutions preserved the energy to at least one
part in 10 .

The initial data used in our simulations represent a
widely separated kink and antikink configuration moving
toward each other with velocity v at t =0. This is accom-
plished through the formula

P(x, O) =Px(x +xo, O) —Px (x —xo, O) —1, (2.9)

and its time derivative. The expression 2xo with xo»1
is the spatial separation of the kink centers [Px.(x +x0,0)
is the kink solution centered at —xo and —Px. (x —x0, 0)
is the antikink at xo]. As long as the separation distance
is much larger than the thickness of the kinks (2xo »5),
the kink-antikink profile (2.9) is a very good approximate
solution (with exponential accuracy) to the equation of
motion (2.3). Note that the field takes the values
P(x =+ 0O, O) = —1 at the boundaries and P(x =0,0)
=+1 at the center of mass.

Because we use periodic boundary conditions on the
spatial grid, any radiation emitted during the collision
process will eventually find itself back to interact with the
kinks. This problem can be controlled by making the
grid sufticiently large that radiation does not have time to
propagate back into the grid after reaching the boun-
daries. It is also important that the rejected kink and
antikink forms do not travel to the boundary. However,
a larger grid must be discretized with a greater number of
nodes for equivalent accuracy, and so we must reconcile a
large grid with accuracy and computational time (N
nodes imply solving 2K first-order ODE's). We set the
left and right grid boundaries at x& = —40 and x„=+40.
The grid is discretized with N =1000 nodes with zone
widths b,x =(x„—x&)/(% —1). The separation distance
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is set by 2xo=2[x&+(x„—xt/3], or, equivalently, one-
third of the grid length. Separation distances varied in
our experiments with the larger grids used to test the
effect of back radiation. All simulations presented here
were run with time steps ht=0. 7(bx). The particular
choices for N and ht were experimentally determined as
the least costly combination (in terms of computational
time) that reproduced results from higher-resolution
runs.

We now show some of the diverse output we obtained
for several different incident velocities. Although radia-
tion is very small even for the bound states and has little
effect on the dynamics of the collisional process, the small
dissipation of energy through radiation allows the ex-
istence of long-lived bound states. For sufficiently large
velocities it is expected that the kink and antikink will
reAect off each other because there is no time to radiate
enough energy during the collision process to form a
trapped state. This is evidenced in Fig. 1, where we
display the center-of-mass evolution P(x =0, t) for
U =0.4. This figure clearly shows a spike representing
the collision followed by a leveling off at /=+ 1, indicat-
ing that the kink and antikink have reQected and are
receding from each other. It is also expected that for
sufficiently small velocities the kink-antikink pair will
have time to radiate enough of its energy to form a
trapped or bion state. We demonstrate this in Fig. 2,
where we plot P(x =O, t) for v =0.18. The solution im-
mediately settles to an erratically oscillating bion state.

The transition between reAection and trapped states in
the parameter space of impact velocity is not a smooth
one. Several authors [13,15] have reported "windows" or
regions of values of U for which re6ection and trapping al-
ternate. For example, a solution representing the first
window is presented in Fig. 3 for v =0.2 and shows the
kink and antikink to collide, reQect, recede to finite sepa-
ration, and then return to collide again. This state is
called the two-bounce window, referring to the number of
reQections. The second and third two-bounce windows
are represented in Figs. 4 and 5 by U =0.225 and 0.238,

CI
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FIG. 2. Formation of a bion state with v =0.18 is represent-
ed by an erratically oscillating center of mass P(x =0, t)

respectively, and differ from solutions in the first window
only by a longer time interval (evidenced by additional
cycle oscillations) between reflections.

Detailed information on the two-bounce windows ex-
tracted from our numerical work is presented in Table I.
We have observed over 30 two-bounce windows of de-
creasing width in our work, but present details only for
the first five in Table I, where we give the ranges of veloc-
ities (v& —= minimum velocity and v2 =—maximum veloci-
ty) and the window widths (b, v =vz —v, ). The various
windows in Table I are labeled by an integer m denoting
the window number. The integer m is a unique charac-
terization of the different two-bounce windows and is re-
lated to the number of cycle oscillations (M) present be-
tween collisions (which increases by one for each higher
order window as Figs. 3 —5 demonstrate) by m =M —2.
For example, in Fig. 3 we show the first two-bounce win-
dow; hence m =1. Also, M =3 since there are three cy-
cle oscillations present (evidenced by the two large spikes
and a smaller amplitude oscillation between them). We
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FIG. 1. Reflection of a kink and antikink is evidenced by
plotting P(x =O, t) for v =0.4. The collision is represented by
the large spike after which kink and antikink reflect and recede
from each other forming a two-soliton state.

FIG. 3. First two-bounce window shown here with v =0.2.
The kink and antikink collide, reflect, recede, and then return to
collide again.



1150 ANNINOS, OLIVEIRA, AND MATZNER

CIl

Cl

Cl
O

CO

CCl

O
I

CD

CCl

C

20.0 %0.0 60.0 60.0 100.0 120.0 100.0 160.0 20.0 40.0 60.0 60.0 100.0 120.0 110.0

FIG. 4. Second two-bounce window shown for v =0.225
differs from the first two-bounce window only by a longer time
interval between reflections, allowing for an additional cycle os-
cillation between collisions.

FIG. 5. Third two-bounce window shown for v =0.238
differs from the first and second two-bounce windows by a
longer time interval between reflections allowing for an addi-
tional cycle oscillation between collisions.

also present in Table I results from an approximate scal-
ing relation found between the different windows. In for-
mulating this relation we assume that the window widths
are inversely proportional to some power of the number
of internal mode oscillations AU ~ M ~. Normalizing the
window widths with respect to the m = 1 window, we ob-
tain a solution for P= —in(bu„)/ln(M /M, ), where
b,u„=b,u /b, v =,. The variables b U„and P are present-
ed in Table I and the constant values of P indicate the
scaling relation is an accurate description.

We have found that the parameter space is much more
complex than the above description because the regions
between the two-bounce windows are not simple bion
states. In fact, the edges of the two-bounce windows are
not sharp well-defined regions. They appear to be fractal
containing a hierarchial structure of n-bounce windows
with n +3 at all scales that we have observed. This is
better demonstrated diagrammatically in Fig. 6. Figure
6(a) shows the two-bounce windows in dark with the
rightmost dark region (beginning at U =0.25) represent-
ing the single-bounce state above which no bion states ex-
ist and the leftmost white region (beginning at u =0.19)
representing bion states below which no reflection win-
dows exist. In between are two-bounce windows of de-
creasing widths separated by regions of bion formation.
If one zooms in on the edge of a typical two-bounce win-
dow (for example, the second two-bounce region outlined
by a box) in Fig. 6(a), one finds what appears to be a self-
similar structure [drawn in Fig. 6(b)] where now the dark

regions represent three-bounce windows of decreasing
widths. Zooming in once again on the outlined region of
a typical three-bounce window of Fig. 6(b), one finds
similar sequences of four-bounce windows [Fig. 6(c)].
The basic feature of this fractal may be described as an
endless succession of higher-order n-bounce windows
with decreasing widths and separations converging on the
edge of a (n —I)-bounce window. This remarkable self-
similar fractal structure was found on both edges of all
n-bounce windows that we have investigated. It should
be noted that Fig. 6 is only a schematic and the window
structures are not drawn to scale.

We display in Figs. 7 and 8 the first two three-bounce
windows with U =0.2062 and 0.2049, respectively, to
show that they are qualitatively similar to the two bounce
ones. The chosen velocities lie in three-bounce windows
found on the edge of the first two-bounce window. Fig-
ures 9 (U =0.2298) and 10 (v =0.22933) show the first
two three-bounce windows found on the edge of the
second two-bounce window. From Figs. 7—10 it can be
seen that the signature of the two-bounce window, in
which the three-bounce solution can be found, is
preserved. That is, the complete sequence of "splashes"
and small cycle oscillations separating them can be used
to place any n-bounce result properly in the fractal
hierarchy. The first two "splashes"tell of the two-bounce
window edge that harbors the sequence of three-bounce
windows. The number of cycle oscillations between the
second and third "splashes" then distinguishes the

TABLE I. Initial impact velocity intervals for the first five windows in the two-bounce kink-antikink
interactions for the fully infinite-dimensional system.

Vl

0.192 575
0.224 041
0.237 127
0.243 969
0.248 034

0.203 425
0.228 851
0.239 646
0.245 460
0.248 996

0.010 850
0.004 810
0.002 519
0.001 491
0.000 962

Av&

1.0
0.443 318
0.232 166
0.137419
0.088 664

2.83
2.86
2.86
2.86
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FIG. 6. Fractal structure composed of sequences of different
n-bounce windows. 0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

correct window among all those in the endless sequence
of three-bounce windows.

We have summarized the properties of the first five
three-bounce states near the first and second two-bounce
windows in Tables II and III, respectively. We point out
that because the window edges are fractal, the numbers
presented in the tables can only be approximate and do
not represent exact boundaries. The normalization of
window widths (b,u„) are made with respect to the same
window as that in Table I, namely, the window with a
single-cycle oscillation between rejections. A compar-
ison of the normalized widths and the scaling power P in
each table supports our earlier claim (made visually) that
the fracta1 of Fig. 6 is self-similar. When rescaled to the
proper window, the structure present at different scales is
found to be identical both visually and quantitatively.

Finally, in this section we study the nature of the bion
state formed in the space of impact velocity separating
the different reAection windows. Bion states in the
A, (P —1) theory are more complex than the exact
breather solutions of the sine-Gordon equation. Are the
complex oscillations we have observed for the bion state
chaotic?

To address this question we generate a time series for
ltI(0, t) with intervals dt between data for the bion state re-

FIG. 8. Second three-bounce window (v =0.2049) near the
first two-bounce region.

suiting from a u =0.18 collision (see Fig. 2). The time
series was started after a sufficiently long time
(t =tp ~200) to eliminate transients and model only the
bion-state oscillations. The time delay embedding tech-
nique is an appropriate method to reconstruct the phase
space and obtain the maximum Lyapunov exponent
[17,18]. Let V(t)—:P(0, t). A d-dimensional vector V; is
constructed as

(2.10)

p pII p (2.11)

where d is the assumed dimension of the "attractor",
Vk(t;)= V(t;+(k —1)r), and r is the time delay. Let T
be the characteristic time scale for the system. For the
bion we use the result from perturbation theory (dis-
cussed below in Sec. III), T=2m. c/o= 51. We made
several runs with r ~ T/d.

To obtain the largest Lyapunov exponent, we choose a
pair of vectors, say, Vo and Vo, such that

lII
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0.0 20.0 40.0 60.0 60.0 100.0 120.0 110.0 160.0

FIG. 7. First three-bounce window (v =0.2012) near the first
two-bounce region.

FIG. 9. First three-bounce window (v =0.2298) near the
second two-bounce region.
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FIG. 10. Second three-bounce window (U =0.22933) near
the second two-bounce window.

where
~ ~ ~ ~

is the Euclidean norm and 5o is a small dis-
tance (50( 10 for all cases we tried). The quantity

(2.12)

FIG. 11. Maximum Lyapunov exponent for a bion state with

U =0.18 approaches the positive value A.
&
=0.31, indicating the

chaotic nature of the oscillatory trapped state.

Figure 11 clearly shows that A,
&

approaches a positive
constant value A,

&
=0.31 at t —to =800, suggesting that

bion-state oscillations are chaotic.

is computed for each time interval dt. If the time series
represents chaotic motion, the distance between vectors
grows exponentially. After a time At the largest
Lyapunov exponent is calculated as the average of the
different A, '

(2.13)
ht

A new partner vector is then chosen using a Gram-
Schmidt reorthonormalization procedure so that the two
vectors are close again. Care is taken to choose a new
vector with the same angular orientation as the discarded
one (or at least to within a small error). The reorthonor-
malization time ht is chosen to be At ~ T.

We computed Lyapunov exponents for several different
input parameters: 2 &d &9, T/d &r&4T/d, 1 & ht
&4T, and angular error within 10'. All results con-
sistently give a narrow window for the value of A, &, pro-
vided we use a sufficient number of points to construct
the vectors (approximately 6000 points over the time in-
terval of 1000 in our dimensionless units). The time evo-
lution of a typical case is presented in Fig. 11, where the
input parameters are d =4, r=3T/8, and b, t=3T/2.

III. PERTURBATION THEORY
AND INTERNAL SHAPE-MODE OSCILLATIONS

P =Ptt(Z)+ g(x, t) . (3.1)

Substituting this expression into the field equation (2.3)
and linearizing, we get

2 Z
+A, 3 tanh ——1 g=0,

5
(3.2)

for the fluctuations g around the kink and antikink. We
solve for the normal modes by setting

rI(x, t)=e' 'y(Z) . (3.3)

Substituting (3.3) into (3.2) and assuming only for co%0

Linear superposition of kink and antikink solutions
(2.9) is not an exact solution to the nonlinear equation of
motion (2.3). However, perturbation theory is extremely
useful in understanding the results in the previous section
and motivating what follows. In reviewing the Auctua-
tion modes around kink and antikink solutions, we intro-
duce g(x, t) as a small perturbation:

TABLE II. Initial impact velocity intervals for the first five windows in the three-bounce kink-
antikink interactions found near the first two-bounce window. Results are for the fully infinite-
dimensional system.

0.206 175 2
0.204 847 4
0.204 302 5
0.204 0194
0.203 855 8

0.206 532 0
0.205 017 5
0.204 378 8
0.204 059 9
0.203 881 4

0.000 356 8
0.000 170 1

0.000 076 3
0.000 040 5
0.000 025 6

1.0
0.448 559 6
0.238 095 2
0.150499 7

2.79
2.81
2.73
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TABLE III. Initial impact velocity intervals for the first five windows in the three-bounce kink-
antikink interactions found outside the second two-bounce window. Results are for the fully infinite-
dimensional system.

0.229 755 7
0.229 303 5
0.229 127 8
0.229 039 5
0.228 989 1

V2

0.229 893 7
0.229 368 3
0.229 158 6
0.229 056 3
0.228 999 3

0.000 1380
0.000 064 8
0.000 030 8
0.000 016 8
0.000 0102

hv„

1.0
0.475 308 6
0.259 259 2
0.157 407 4

2.59
2.64
2.67

that
~
v

~ y (&
~ wy/( d y/dZ)

~
(that is, co ))

~
U

~ y /5, corre-
sponding to a stationary limit in which the translational
dynamics is dominated by the relatively high-frequency
oscillations of the normal-mode vibrations), we get the ei-
genvalue equation

a2

az

T

sech — g(Z)6 2 Z
g2

4
X(Z) .

$2
(3.4)

This is the Schrodinger equation with a reAectionless po-
tential and also the equation describing the two-soliton
solution for the Korteweg —de Vries (KdV) equation [11].
The eigenvalue equation (3.4) has two discrete roots (ei-
genvalues) and eigenvectors given by [11,12]

co1T =2nnz + (3.7)

linear equation of motion. As they approach each other,
perturbations in each are excited by the proximity of the
other. Campbell et al. [13] proposed that a resonance of
energy exchange between the internal shape mode and
the translation mode accounts for the two-bounce win-
dows. They claim that the first reAection sets up internal
shape oscillations, which take energy from the kinetic en-
ergy of the walls, resulting in binding kink with antikink.
The second collision destroys the shape vibrations, put-
ting energy back into the translational mode, unbinding
the pair. Annihilation of the shape modes must coincide
with some characteristic phase angle of the internal vi-
brations. Thus Campbell et al. were led to deduce that
the condition for the restoration of translational or kinet-
ic energy after the second collision should take the form

and

coo=0, yo(Z) =
1/2

3 2 Z
4$

sech
5

a
az

1/2
Z

tanh
5

Z
X sech

6

2= 3 3
C01—,Xi(Z) =

2 ~

2

(3.5)

(3.6)

where T is the time between collisions, m is an integer,
and 0 is a phase shift.

In Figs. 13 and 14 we plot the time between bounces
versus window number for the two- and three-bounce
cases, respectively. The circles in Figs. 13 and 14
represent numerical results, and the straight lines are a
least-squares fit to the data. Data for the three-bounce
cases presented here were taken from the vicinity of the
second two-bounce window. The slopes in both Figs. 13

In addition, Eq. (3.4) has a continuous spectrum of solu-
tions with eigenfunctions that behave as dispersive plane
waves at asymptotic infinity with frequency
col, =4/5 +k . The continuous spectrum is identified
with a boson mode of mass p =2/5= /2A. .

The translational mode coo=0 appears in virtue of the
translational symmetry of one kink configuration. That
is, yo(Z) is the infinitesimal translation correction to the
kink solution. The internal shape-mode oscillations
(xvi=3/5 =3k, /2) represent localized deformations of
the kink-antikink solutions. In Fig. 12 we present a su-
perposition of the kink solution Pz. (x) in the solid line
and the kink solution with perturbations due to the
shape-mode eigenfunctions fir(x)+0. 3g, (x) in the dotted
lines.

At spatial infinity the linear superposition of one kink
and one antikink is an approximate solution of the non-

CI

p o
8
cl

O

I

-%.0 0.0 1.0 2.0 3,0 4.0

FIG. 12. Superposition of the kink solution (solid line) and
the kink solution with perturbations due to the shape-mode
eigenfunctions (dotted line).
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8-

two degrees of freedom. In analogy with Eqs. (2.9) and
(3.1) and following the work of Sugiyama [12],we assume
a colliding kink-antikink system with the field
configuration

P(x, t) =P„(x +X(t) ) —Px (x X—(t) ) —1
+ A (t)[X,(x+X(t)) X—, ( x—X(t))] . (4.1)

CI
O-

0,0 2.5 5.0 10.0 12.5
T

17.5 20.0 22.5

The variable X ( t ) is introduced as the collective coordi-
nate representing half the distance between the kink and
antikink, pz(x) and X,(x) are given by (2.4) and (3.6), re-
spectively, and A (t) is the amplitude of the internal vi-
bration modes. Note that X(t) and A(t) are related to
the center-of-mass evolution P(x =0, t) by [see Eqs. (4.1),
(3.6), (2.9), and (2.5)]

FIG. 13. Window number vs time between reflections for the

two-bounce windows. Circles represent code results, and the

straight line is a least-squares fit with slope 5.23.

and 14 were found from the least-squares fit to be 5.23,
which compares well with the value 2m. /co, =5.13 that
one expects from (3.7). In computing these slopes we
used data from the first 14 two-bounce windows (we also
include the 20th window to demonstrate that this pattern
continues in the same fashion for higher-order windows)
and the first eight three-bounce windows. This verifies
the resonance structure of the n-bounce windows as an
energy exchange between translational and internal mode
vibrations or, equivalently, a competition between two-
soliton and bion-state solutions. Note also that Eq. (3.7)
predicts that an additional cycle oscillation must occur
between collisions in the mth n-bounce window com-
pared to the (m —l)st n-bounce window preceding it.
This is exactly what we have observed in Figs. 3—5 and
7—10.

IV. REDUCED SYSTEM

p(O, t)=2tanh —1+2A(t)Xi(X(t)) . (4.2)
X(t)

We define the effective Lagrangian of the finite-
dimensional system as [12,15]

I. (X,X, A, A)= Jdx[-,'a„ya~y —
—,'V(y)], (4.3)

where V(P) is the self-interacting potential given by (2.1)
with A, = l. Substituting (4.1) into (4.3) gives

L (X,X, A, A ) = [Mo+I(X)]X —U(X)+ A

—co, A +2F (X)A +2C (X)AX, (4.4)

for the effective Lagrangian when the higher-order terms
of A and X have been neglected on the assumption that
they are small ( A is the amplitude of internal mode per-
turbations and the impact velocity must be less than the
speed of light, ~X

~

—=
~ v~ & 1). To help simplify the system

further, we have not included terms in (4.4) that couple
the X,(x +X) and y, (x —X) modes. Also, we have
defined

We will use collective coordinates to reduce the
dynamical system (2.3) to a Hamiltonian system with just

O

I(X)=3MO(1 —tanh a)(a —tanha)coth3a,

U(X) =6MO[ —
—,'+a+3 cotha

—(2+3a)coth a+2a coth a],
F(X)= tanh a(1 —tanh~a),

(4.5)

C(X)=
2+Mo

tanha( 1 —tanhia ),

2.0 3.0 1.0
T

5.0 6.0 7.0

FIG. 14. Window number vs time between reflection for the
first eight three-bounce windows found near the second two-
bounce window. Circles represent code results, and the straight
line is a least-squares fit with slope 5.23.

where a=&2X. A comparison of the two terms F(X)A
and C (X)AX shows that the assumption
justifies neglecting the C(X) as a higher-order term and
we do so in our analysis. This condition is appropriate in
our simulations of thick domain walls. Figure 15 shows
the behavior of the variables I (dashed line), U (solid line),
and F (dotted line) as functions of X. Note that U(X) has
a shape similar to the van der Walls potential for large
neutral molecules or atoms with "perfect shielding" [19].

The Lagrangian (4.4) leads us to the Hamiltonian
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FIG. 15. Behehavior of the functions I (dashed li
line), and F (dotted line) as fun

as e ine), U (solid

X.
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3.0-1.0 -0.5 0.0 0,5 1'0'

X
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FIG. 16.6. Vanous level curves for the
with V =M 2M,p p and 3Mp.

or e effective potential Veff

Px
X,PX, A, P„)= + + U(X)

2D (X) 4

+w f A 2F(X)A—, (4.6)

where we have dropped the term with C(X) and defined

Px =D (X)X

D(X)=2[Mo+I(X)] .

(4.7)

The Hamiltonian (4.6) is a. ~ is a more simplified version f th
ormfoundb Su i

' ' ' oy giyama [12] and is identical to th H
iltonian used 1 8y Belova and Kudryavtsev [15] in demon-
strating a qualitative likeness to the fieldo equ t'o (2. ).

with
on s equations are the inverse of E (4 7)q. . together

F
A — + [F +coi(V —U)]'

1

(4.11)

and plotting the results for different values of V z Noteeff'

with
fixed point (X&, A

&
) =(0.1976 0.2223) b~ 7 etween them

eigenvalues A, i
=+l.7778i, + l. 1484.

0 o corresponds to a state of corn lete
lation of the kink and

mp e e anni i-
e in an antikink forms with the scalar fi ld

settling into the = —1

ar e
stable vacuum solution. Th

xed points (X A
e

representin s
d

'
2, 2 and (Xi, A, ) are localized 1 t'so U ions

solution
g stable and unstable station b d

ons, respectively, that satisfy P(x =+~, r = —1.

'
nary ound-state

igures 16 and 17 show contours or i
e e ective potential V,s defined by (4.10).

The contours were obtained by solvin (4.10) a
tic equation for A:

o ving . as a quadra-

aa
ax '

BH
aa

(4.8)

Equations (4.8 aree a Hamiltoman system with two dc-' ~

grees of freedom resulting in the followin s
diff r tial e t'o

~ 1 2
( I'X +2F'A ——U'),

(4.9)
3 = —co)A +F,

where the prime is equivalent to d /dX.
The fixed points of the above set of equations ar

stationary points f th ffs o e e ective potential

LA

C)

C)
LA

C3

V,s(X, A)=U(X)+co A 2F(X)A (4.10) LA

C3
I

anal
defined in the Hamiltonian (4.6). A

ysis for perturbations near thes fi
linear stabilit

that th
ese xed points shows

(Xo, A = 00
ere are two elli tic'p points for this system:
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= 0,0) and (Xz, A2)=(0. 5144,0.7671) '

h ei-
genvalues A,o =+1.5492i, +1 2247i.

i, respectively. In addition, there is a hyperbolic
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TABLE IV. Initial impact velocity intervals for the first five windows in the two-bounce kink-
antikink interactions for the reduced system of equations.

0.199765
0.254050
0.270 260
0.277 269
0.280 942

v2

0.215 490
0.259 230
0.272 533
0.278 475
0.281 632

0.015 725
0.005 180
0.002 273
0.001 206
0.000 690

Av„

1.0
0.329 412
0.144 547
0.076 693
0.043 879

3.86
3.79
3.70
3.69

I =Ma(1 —
—,'a + —,', a ),

MpF = — (9a —15a ),
4&&

(4.12)

4MpU= (3a —2a +—'a ),

that because we are simulating the collision of widely
separated kink and antikink, it is necessary that X be
large and open channels of infinite extent are expected.
The limit X—+ ~ implies that F~0 and
U~4V2/3 =2MO. So we get from (4.11) that
A =+(1/coi)(V, &

—4&2/3)'~, which sets a constraint
on the effective potential, V,ir )4&2/3 =2M0. For
values of V,~ less than this, the potential represents a
bounded or closed system. Figure 16 displays three level
curves of the effective potential: closed with V,~=Mp,
critically bounded with V,z =2Mp, and a wide channel
with V g =3Mp ~ Figure 17 is an isolation of the local re-
gions surrounding the three critical points and clearly
identifying the elliptic and hyperbolic points.

Hamilton's equations (4.9) are solved numerically using
a fourth-order Runge-Kutta method. Care must be taken
when solving these equations because as kink and an-
tikink approach each other, ~X~ goes to zero (in fact, Fig.
16 shows that X can become negative), and although the
expressions (4.5) are well defined for X =0, they are com-
posed of individual terms that become infinite, creating
difBculties with our numerical solutions. This can be
avoided by expanding (4.5) in powers of X for ~X~ ((1 to
give, in terms of a =&2X,

and

I'=& 2MO( ——a+ —a )5 2&

m+MOF'= ( 1ga —60a ),4
(4.13)

4Mo&2U'= (6a —6a +—'a +—"a )
5 7 7

for a series accurate to fourth order in a. These equa-
tions are solved in place of the full unperturbed equations
whenever ~X~ becomes too small (~X~ (0.0005). Using
this procedure, the total energy given by the Hamiltonian
(4.6) is conserved to better than one part in 10 in our
simulations for the worst-case scenarios simulating errat-
ic bion states with time steps set by At =0.01.

The initial conditions used in all our simulations were
Xp =7 c4p = 3p =0, and the velocity Xp—:—v is the
free parameter. Note that because of the exponential
dependence of U, F, and I on X, the large value of the ini-
tial data chosen for Xp is effectively infinity with I,F=0
and U=4+2/3. Under these initial conditions the Ham-
iltonian (4.6) can be written as H =MD(X +2)
=2&2(u +2)/3. Varying u„gives us different poten-
tial contours. The condition V,s &4&2/3 necessary for
extended channels to exist is equivalent to setting

~
v

~
)0. Also, the effect of increasing

~
v „~ increases the

value of H, which results in wider channels, as observed
in Fig. 16.

Numerical simulations of the reduced system of equa-
tions (4.9) have shown a similar dependence on the im-
pact velocity as the fully infinite-dimensional system (2.3).

TABLE V. Initial impact velocity intervals for the first five windows in the three-bounce kink-
antikink interactions found near the first two-bounce windows. Results are for the reduced system of
equations.

Vl

0.222 875 8
0.218 006 2
0.216 742 5
0.216 246 0
0.216 000 9

V2

0.223 473 8
0.218 391 2
0.216 907 5
0.216 325 5
0.216 044 6

0.000 598 0
0.000 385 0
0.000 165 0
0.000 079 5
0.000 043 7

hv„

1.0
0.428 571 4
0.206 493 5
0.113506 4

2.95
3.09
3.14
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TABLE VI. Initial impact velocity intervals for the first five windows in the three-bounce kink-
antikink interactions found near the second two-bounce window. Results are for the reduced system of
equations.

0.260 927 1

0.259 810 8
0.259 525 3
0.259 415 9
0.259 363 0

V2

0.261 087 7
0.259 907 0
0.259 565 8
0.259 435 5

0.259 373 6

0.000 1606
0.000 096 2
0.000 040 5
0.000 0196
0.000 0106

1.0
0.420 997 9
0.203 742 2
0.110187 1

3.01
3.11
3.18

In particular, we have observed analogous sequences of
n-bounce windows which we have summarized in Table
IV for the two-bounce windows and Tables V and VI for
the three-bounce windows near the first and second two-
bounce windows, respectively. A fractal structure such
as that reported in Sec. II appears also in the reduced
equations. This result is anticipated since the reduced
equations model the shape-mode vibrations which were
determined in Sec. III to be the source of the resonance
windows. However, it can be seen that restriction to
finite phase space substantially changes the quantitative
parameters of the structure, including the window size
and the fractal exponent P, which is more erratic and
larger in the reduced phase-space case.

Examples of the two- and three-bounce solutions in
this reduced model are presented in Figs. 18-21. Figures
18 and 19 show P(x =O, t) defined in (4.2) for the first two
two-bounce windows with v „=0.2 and 0.255, respective-
ly, while Figs. 20 and 21 display the first two three-
bounce windows near the first two-bounce window for
v „=0.183 and 0.194, respectively. The resonance condi-
tion (3.6) between the period of collisions and the fre-
quency of internal mode vibrations was tested for the first
two-bounce window. A least-squares fit gave a straight
line with slope 5.11, which models the numerical data
very well and is also in excellent agreement with
2m /(co, ) =5. 13, which one expects from (3.6).

We present graphs of the separation distance X(t) in
Fig. 22 and the internal mode amplitudes A (t) in Fig. 23
for the first three-bounce window with u„=0.183. Fig-
ures 22 and 23 clearly show the three-bounce signature as
X—+0 and the internal mode amplitudes become strong-
est. In addition, the two-soliton solutions in the n-bounce
windows are characterized by a linear growth in separa-
tion distance (solitons move away from each other with
constant velocity) during which the internal mode excita-
tions are simple periodic oscillations with frequency co&.
This is predicted from Eqs. (4.9) by taking the limit
X && 1 corresponding to a separated kink-antikink
configuration to get X=0 and A = —

co~ A with the trivial
+scol t

solutions X =Xpt +Xp and A = Ape . Another rep-
resentation of the same case (u =0.183) is shown in Fig.
24 where we have plotted the phase-space trajectory (dot-
ted line) in the X-A plane. Boundaries on the motion
(solid line) are defined by the level curve for
V,tt=Mo(u „+2).

Although the fractal resonance structure present in the
full infinite-dimensional system is reproduced nicely by
the reduced model, we point out that the reduced equa-
tions ignore energy radiated in the collision process. In
addition to shifting the exact scaling of the solution, radi-
ation dissipation is expected to contribute to the ex-
istence of long-lived bound states which occupy the com-
plementary velocity space between reflection windows.

CI

C)
CI

CD

ll

H

C7

CI

10.0 20.0 30,0 00.0 50.0 60.0 70,0 60.0 90,0 10.0 20.0 00,0 60,0 70,0

FICx. 18. Center-of-mass fix =O, t) evolution for the first
two-bounce window with v =0.2 in the reduced system of
equations.

FICi. 19. Center-of-mass P(x =O, t) evolution for the second
two-bounce window with v„=0.255 in the reduced system of
equations.
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dimensional case.
The main differences in the full and reduced system are

attributed to neglecting the radiation dissipated during
the collision process which contributes to the existence of
long-lived bound states.

Chaotic behavior is now a well-studied phenomenon in
bounded dynamical systems. Hamiltonian systems with
an unbounded phase space (such as the one described in
this paper) representing irregular scattering processes are
known to exhibit chaotic motion with underlying mecha-
nisms similar to those found in bounded systems [22].
Chaos, or the sensitive dependence on initial conditions,
in these systems shows up as a Cantor set of singularities
for which scattering is not defined (for example, initial
conditions which lead to trapped states). Slight changes
in the initial data may cause dramatic changes in the final

states. In view of such systems, our results are not unex-
pected.
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