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Graviton-electron interactions
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First-order cross sections for the processes of graviton-Compton scattering, ge ~ye, bremsstrah-
lung, and pair production by gravitons in the Coulomb field, are calculated. The calculations, which are
linear in the gravitational coupling ~, are obtained in the extreme relativistic limit.

I. INTRODUCTION

Several processes in which gravitons, the quanta of the
gravitational field, interact with other elementary parti-
cles are studied in the literature. Since the gravitational
coupling strength Ic=v'8mG is extremely weak, where G
is the Newtonian gravitational constant ( G =6.7
X10 GeV ), only processes linear in tc are usually
considered. Although no real attempt is made to esti-
mate the overall background of gravitational radiation in
the Universe, which would clearly be of considerable as-
trophysical significance, linear processes can be distinctly
singled out that contribute to increase the gravitational
radiation in the Universe. Some such processes have a
direct astrophysical interest; for instance, photoproduc-
tion and bremsstrahlung generate sizable amounts of
gravitational radiation which can be comparable in mag-
nitude to those of classical processes.

Previous work was done by Weber and Hinds [1],
Weinberg [2], Carmeli [3], Boccaletti and Occhionero [4],
Boccaletti [5], and Papini [6]. They have shown that in
astrophysical applications the gravitational radiation
power in quantum processes could be as high as in the
classical ones. Papini and Valluri [7] considered the pro-
cess of photoproduction of gravitons in static magnetic
and Coulomb fields in the first- and second-order pertur-
bation theory and applied the results for studying the
gravitational radiation from some astrophysical objects.
Although the experimental implications of quantum
gravity are normally far beyond the range of contem-
porary experimental physics, some interesting astrophysi-
cal objects have recently been observed that emit
extremely-high-energy electromagnetic radiation which
could be produced by processes involving gravitons.
Indeed it is likely that objects such as Cygnus X-3 or neu-
tron stars radiate a significant fraction of their energy in
the form of very-high-energy gravitons. Also, there is
strong indirect evidence that the rate at which the rota-
tion periods of some massive binary-star systems are
slowing down is consistent with the expectation of energy
loss due to the emission of gravitational radiation [8].

Part of the motivation for considering linear processes
for quantum gravity is due to the question of renormal-
izability, which now appears as a major obstacle to con-
structing a complete quantum theory of gravity. For
nongravitational radiation, renormalizable quantum field
theories exist which seem to describe nature adequately.
However, when one considers gravity, because the gravi-
tational coupling constant ~ of Einstein's theory of gravi-
ty is dimensional, the corresponding quantum field theory
is nonrenormalizable. Although in the case of pure gravi-
ty the one-loop divergences can be eliminated by field re-
normalization [9—11], physical divergences remain for
the more realistic situation of combined matter interac-
tions. It is implicitly hoped that the first-order terms of
perturbation theory are valid for the processes con-
sidered.

The main purpose of this paper is to give an estimate of
the cross section at the tree level (order of tc ), for the
processes ge ~ye, bremsstrahlung and pair produc-
tion by gravitons in a Coulomb field. The motivation is
to find some process which would enable extremely high-
energy gravitons to be detected. In Secs. II—IV, we cal-
culate the cross sections for these processes. Section V
contains the conclusions. We use units fi=c = 1.

II. GRAVITON-COMPTON SCATTERING

The first-order contribution to the reaction ge —+ye
is described by the two diagrams of Fig. 1, where
k, k', co, co' are the four-momenta of the initial graviton,
the final photon, the initial electron, and the final elec-
tron, respectively. The quantities e„,e are the polariza-
tion tensor and vector of the initial graviton and the final
photon, respectively. The intermediate four-vector
momenta are q'=(k+p)=(k'+p'), q=(p —k')
=(p' —k). The corresponding Feynman rule for the
electron-electron-graviton vertex is Ic[(p+q')„y +y (p
+q') ] (p~p' and q~q' in the second diagram), which
has already been discussed in the literature [3,10—13]
(more details are given in Appendix A). The matrix ele-
ment for both diagrams is given by

Mf, = —e V8~G e„e*u(p', s')

X [(p+q ) y.+y (p+q ).], , y, +y», [(p +q)„y.+y„(p +q).] u(p s)
g'+m g+m

(2.1)
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FIG. 1. Graviton-Compton scattering ge ~ye FIG. 2. g-e collision c.m. frame.

where u(p, s), u(p', s') are the Dirac spinors for the ini-
tial and final electron and g=q„y"=(q y). Disregarding
polarization effects, we average the cross section over the
initial spins of the graviton and electron, and sum over
the polarizations of the final electron and photon.
Neglecting the electron masses and squaring Eq. (2.1) one
obtains

~Mf, ~

=8nGe ge—„,E &e sz(u 'T„zu)(uT &u')
polar

2~Ge Tr—Pg (g„g,t3+g~t3g, g„g p)—

X (p'. y T„„p y T t3 )],

(2.2)

(2.3)

QE (k', A, ')E (k', A, ')= —g (2.4)

g E&„(k,A, )E*&(k,A, )=—,'(g„g,&+g„&g, —g„,g &),

(2.5)

T„=[(2p+k)„y,+y„(2p+k), ] 2 yp
gf+g

(p+k )

+y [(2p' —k )„y,+y„(2p' —k ) ](p' —k )

(2.6)

and

T tt=y [(2p+k) yp+y (2p+k)p]p+ i|!
(p+k )

where we have used the polarization sums of the photon
and graviton [3,13,14]:

p'"=(E', —k'). After very lengthy calculations of traces
in Eq. (2.3), we get the differential cross section

doc, = t+ (2t +3t s+3t u
S

+ts +2tsu+tu ) dA', (2.8)

where a is the fine-structure constant and 0' is the
emitted photon solid angle. Setting s =4k,
t= —2k (1—cos8, ), u = —2k (1+cos8, m ) and in-
tegrating over the angle 8, (where 8, is the c.m. an-
gle) we get o„=gmaG=O. SX10 cm, which no
longer depend on the energy of the colliding particles.
The radiation of the final particles becomes strongest in
the directions of the initial momenta. This result is in
agreement with the results of Vladimirov [15] for the col-
lision e+e ~yg. Actually this is expected since these
two processes are related by crossing symmetry. The cal-
culation by Papini and Valluri [7] of one vertex y-g in-
teraction also shows that the results are energy indepen-
dent.

III. GRAVITON BREMSSTRAHLUNG IN
THE COULOMB FIELD

We consider graviton emission in a collision between
an electron and a nucleus (e +Z~e +g+Z). The
momentum k'=p' —p+k is the four-vector momentum
transfer to the nucleus. Since the recoil of the nucleus is
neglected, the time component ko =0. According to Fig.
3 the matrix element Mf; has the form

Mf; = —e&8n G 4&( ~k'~ )e'&(k, A, )u (p', s')

X [(p'+q') y&+y (p'+q')&I yo+yo

+[(2p' —k) y&+y (2p' —k)&] 2y(p' —k)'
(2.7)

We define the kinematical in variants
s=q' =(k+p) =(k'+p'), t=(k —k') =(p —p'),
u =q = (p —k ') = (p

' —k ), and s +u + t =—0. Equation
(2.3) is evaluated in the center-of-mass frame, where the
four-vector momentum of the given particles are
(Fig. 2) k"=(co,k), p"=(E, —k), k'"=(co', k'), and

X [(p+q) ytt+y (p+q)&] u(p, s), (3.1)

where the intermediate four-momenta are q' =p
+k'= k+p', q =p —k =p' —k', and @(~k'~ ) is the scalar
potential of the external field; for a Coulomb field

(3.2)

After averaging the cross section over the initial spin of
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where

T„,=[(2p'+k)„y„+y„(2p'+k) ] yo
P'+k

(p'+k )

+yo [(2p —k)„y +yq(2p —k) ]
(p —k)

and

(3.5)

FIG. 3. Graviton bremsstrahlung in the Coulomb field.

the electron and summing over the polarizations of the
final electron and graviton, by squaring (3.1) one obtains

Tpv VQ Tap/0

=yo, 2
[(2p'+k) yp+y (2p'+k)p]

P'+ k'

(p'+k)

+[(2p —k) yp+y (2p —k)p] yo .
(p —k)

(3.6)

X(p' yT„..P yT.p. ) l (3.4)

~Mf;~ =8~6
~

—g E„,e*&(u'T„u)(uT &u') .
polar

(3.3)

Inserting (2.5) into (3.3), we get

Z'e4
~Mf, ~

=4~6 Tr[ ,'(g„g,&+—g„&g,—g„g &)

do'brama ~Mf' ~
dc& dQk dQ

1 2 E'~
(2n. )

(3.7)

where d Qk d 0' are the solid angles of the graviton emis-
sion and the final electron. Inserting the value of IMf
in Eq. (3.7), we obtain the following expression for brems-
strahlung cross section:

The difFerential cross section for bremsstrahlung is given
by [16]

dob„,= 4
deed(cos8)d(cos8')32Z cx 6 E co

gi 4

T

X (p k) —2(poko)+
1

X [3(p'.p )'(p.k )+2(p' p )' —3(p' p )'(p'. k ) —4(p' p )(p,' po)(p. k ) —4(po po )(p' p )'

+4(popo)(p'. k)(p' p) —2(p'.p)(p' k)(p.k)+(p' p)(p' k)'+(po kll)(p' p)(p k)+2(po ko)(p'.p)'
—(po ko)(p' p)(p' k) —(popo)(p k)' —2(popo)(p' p)(p k)+(popo)(p' k)(p k)+2(pop, )(p' k)(p.k)

(popo)(p''k) +(p''p)(p'k) (popo)(p'k) +(popo)(p''k)(p k)+2(popo)(p''k)(p 'p)

—(popo)(p' k)' —(poko)(p'. P)(p.k) —2(poko)(p' p)'+(poko)(p' p)(p' k)]—(p' k)+2(poko)

(3.8)

where ko,po po are the energy components of the graviton, the initial, and the final electron, respectively; 0, 8' the an-
gles between k and p, p, respectively. It is convenient to write, at extremely high energy E &)I the relations

and

p'.p =p'. k —p k —k' /2, where p' =p =m,
p k =Ere(1 —cos8) =ro5, where 5=E(1—cos8),

k =0, (3.9)

(3.10)

p'. k =E'co(1 cos8') =c—o5', where 5'=E'(1 —cos8'), (3.11)

substituting (3.9)—(3.11) in (3.8). The integration of Eq. (3.8) over the angles 8, 8 is rather lengthy (see Refs. [16—19]
for photon bremsstrahlung). We shall give only the final result (a few steps are described in Appendix B):

dob„, =32Z a G(E'/E)(dcolco)

X [ ,' +PL ( 1 3E'/2E+ E' /E2)—+L(
———", +3E /16E' 5E'/16E )+P( —" 9E'/8E—2E/3E')— —

+P'( —', —29E /16E' 9E'/16E ) +PP'( 1 —5E'/4E )], — (3.12)

where P=ln[(E+p )l(E —p )]—=21n(2E/m ); P'=ln[(E'+p')/(E' —p')] —=21n(2Elm ) and L =ln[(EE'+pp'
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—m )/(EE' p—p' —m )]=—21n(2EE'/mao) as defined by Bethe and Heitler [18]. The presence of the logarithm of a
large quantity [the ratio (2EE /me@) »1 even if co=-E] should be noted, the logarithmic terms become the principal
ones in (3.12). Finally, we shall give the limiting formula for the region near the end of the spectrum, when the
extreme-relativistic electron radiates almost all its energy co =E—»E' » m, then L =P' one can easily find

dob„,=32Z a G de/E(2P/3+13P'/8) .

Equation (3.13) covers all the range of co values for extremely relativistic initial electron.

IV. PAIR PRODUCTION BY A GRAVITON IN THE COULOMB FIELD

(3.13)

The process of pair production by a graviton in the field of a nucleus (g+Z~e +e++Z) is very closely related to
the process of bremsstrahlung in the previous section. Figure (4) shows the corresponding diagrams, where
E,p —+ —E, —p;co, k~ —co, —k; and c,*&—+c.„.The four-vector momentum transfer to the nucleus can be written as
k'=p'+p —k, and the energy transition is ~=E+E'. The matrix element Mf, is, therefore,

Mf; = —ev'Sm G 4(lk'l )s„u(p', s')

[(p'+q')„r. +r„(p'+q').],ro, [( p+—q)„r.+r„( p+—q).] v( —p s»
q' q

(4.1)

where the intermediate four-momenta are q'= —p+k'= —k+p', q= —p+k =p' —k', and v( —p, s) is the Dirac spi-
nor of the emerging positron. The differential cross section for the pair production is

(4.3)

(4.4)

where

da~„,= [1/(2n )']IMf; l'(EE /co)dE dQ'dQ; (4.2)

we have multiplied (3.7) by (E /co ) dE/1 co and replaced by d Qk by d 0, the solid angle of the emerging positron (see
Ref. 16, Sec. 91]). By squaring (4.1) one obtains

lMf l
SnG 4

——P s„,s'p(u'T„v)(vT &u')li4 2 P~

Z2e 4
=4 G, , f [-,'(g„.g.p+g„pg..—g„.g.p)(p'. yT„.p yT.~)],

and

T„„=[(2p'—k)„y,+y„(2p' k), ]— yo+yo [(—p+k) y, +y„(—p+k) ]
—k'+p' —p +k'

( —k+p') ( —p+k)

~ap Xp~ap Vp

(4.5)

=y [(2p' —k) yp+y (2p' —k)z]+[( —p+k) yp+y (
—P+k)p], yo .

—g+p' —p+g
(
—k+p~)~ (

—p+k)
By means of (4.4) and (4.2) the cross section can be now written as

(4.6)

32Z 0 G EE'
dg „.,= — dE d(cos8)d(cos9')

1
X (p k) —2(poko)

&p p'

X[3(p' p) (p k) —2(p'.p) +3(p' p) (p' k) —4(p' p)(p k)(popo)

+4(p' p) (p' p )
—4(p' p)(p' k)(p' p )—2(p'.p)(p' k)(p.k)

—(p p)(p k)'+(poko)(p' p)(p k) —2(p' p)'(poko)+(poko)(p' p)(p''k)

—(popo)(p. k) +2(popo)(p' p)(p k) —(popo)(p' k)(p k)

+2(p' p )(p' k)(p.k)+(p' p )(p' k) —(p' p)(p. k)'+(p' p )(p k)

—(popo)(p k)(p k)+2(popo)(p' k)(p' p) —(popo)(p'. k) +(p' p)(p k)(poko)

2(P''P) (Poko)+(P' P)(p''k)(Poko)1+(P' k) 2(Poko) (4.7)



1144 H. N. SAIF

APPENDIX A

Lagrangian and the Feynman rule

FICx. 4. Pair production by a graviton in the Coulomb field.

The Lagrangian density for a spin- —, fermion in a gravi-
tational field is given by the sum of the Dirac and Ein-
stein Lagrangian densities [10]:

X(e, i'�)= 2ex——R (g ) eely—'eI'D„P, I~ =8wG, (Al)

where g is expressed in terms of e by the relation

a be pe v1as =pv . (A2)

The electron and the positron are emitted at angles 0, 0'
relative to the direction of the incident graviton. The in-
tegration over the angles O, L9' is completely analogous to
the bremsstrahlung case [Eq. (3.8)]. We assume the
electron and positron share equally the energy of the
graviton co=E+E'=2E, th—en f3=f3'—=21n(2E/m ) and
L —=2 ln(E/m ). We find the differential cross section is

do „,=Z a G(dE/E)(7P /2+201@/5 —31/5) . (4.8)

As in bremsstrahlung, the logarithmic terms in pair pro-
duction become the principal one in (4.8) and (4.9). Tak-
ing ~=10 TeV, Z=1, then oz- »,—= 10 cm . Near
threshold, i.e., co~2m, Eq. (4.9) can be reduced to
aii, =(370)Z a G -=0.05X10 cm .

Integration of Eq. (4.8) over E from m —+co gives the total
cross section for pair production by a graviton having a
given energy co &)I:

cr r „,=Z a G I
7 ln (co/m )+ln (co/I )

X [7 ln(2/m ) + ',o' ]+in(co /m )

X [71n (2/m ) + +~' ln(2/m ) ]——", ]

(4.9)

The matrix e, (the inverse of e ) is a set of vierbein fields
or tetrad fields (which is defined as the matrix square root
of the metric tensor g„),and e is given by

e—:det(e„') = [det(e,")] '=
[ —det(g„)]'~ . (A3)

g,b is the Minkowski metric tensor; R is the curvature
scalar; P and P are fermion fields, which can be intro-
duced into general relativity [20] by describing them with
respect to local Lorentz frames; they are defined to be
world scalars and transform as ordinary spinors under lo-
cal Lorentz transformations of the vierbein frames
(Lorentz spinors). The covariant derivatives D„can be
introduced as a covariant world vector and a Lorentz spi-
nor,

(A4)

where a"= ,'(y'y-' y'y—') and

co„,I, = [e,'(B„eI„Be&„)+,'e—, ei, (B—e,~ B~e, —)e„']~,&~
.

The last syinbol denotes antisymmetrization in (ab), co„,&
is a covariant vector, ' under local Lorentz transforma-
tions it is not a tensor, but acquires an inhomogeneous
term which is needed to make D„P a Lorentz spinor.
The fields e, g can be written as a sum of background and
quantum fields:

V. CONCLUSIONS
e „'=e„'+~c„', 1(~ir 'g+1tj . (A5)

We have calculated the first-order cross sections for the
processes graviton-Compton scattering (ge ~ye ),
bremsstrahlung, and pair production by a graviton in the
Coulomb field at extremely high energies. In the process
ge —+ye the final result is energy independent, which
is in agreement with the results obtained in Refs. [7] and
[15]. We have treated the graviton bremsstrahlung and
pair production in a manner similar to photon brems-
strahlung and pair production [16—18]. Since the brems-
strahlung and pair production depend on the logarithmic
terms, one might hope, at least from the astrophysical
point of view, that these processes are significant.
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where 6,"=e, 6 " and 6" is the symmetric Einstein
tensor R"'——,'g" R (R"' is the Ricci tensor). X, vanishes
if and only if the classical field equations are satisfied by
the background field, namely,

G = ,' T„, y"D„g= (D—„g—)y"=0 . (A7)

The Einstein equations consist of a symmetric part

The factor ~ has been inserted to give the quantum fields
canonical dimension (units fi=c = 1 are used). The quan-
tum field c„' can be considered just like other matter
fields, such as photons and fermions, and g is a fermion
field. We expand X(e+~c, Ir 'g+f) in quantum fields
(c,1() around the background fields (e, g). For the first
variational derivative (neglecting the other Lagrangians)
one has [10]

X,(e,c;g, g)=~ 'eIc„'[2G,"+TI'(e,g))

(A6)
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G„=—
—,
' (T„+T„)

T,"=—5X l5e„'is

T„'= 0y—'DI, 0+5„'4"D.0+ ,' D~—(ky'a"'0}

and an antisymmetric part
fermion stress tensor

+-', D.[Py"a"+y'a" )4) (A8)

APPENDIX B

and is a priori nonsymmetric, but it becomes symmetric,
conserved, and traceless as a consequence of the Dirac
equation y"D„g=O [for convenience, we have neglected
the fermion mass in Eq. (Al)], which reduces it to the
usual expression T„=g(y„D,+y~„)g. Thus, the cor-
responding Feynman rule for a spin- —,

' fermion-graviton
vertex is ~(y„P +y+„),P =p+q (where p and q are the
momentum components of the initial and final fermion
states).

(p 2+ 7 2) —mE —n

X f d(cos8')(1 —p' c) (1—p' d) " . (B2)

We And the following cases: I, p I2 p Ip ] Ip 2 I
~

I, „I
& „I2 &, I2, , I2 2. The integrals for m =0

or n =0 may be easily evaluated by choosing c or d as the
polar axis for the integration over 0'; then

I, 0
= (p' + T )

' f d(cos8~, )(1—p c)

= (p'c ) '(p' + T ) 'ln[(1+p'c ) l(1—p'c ) ]

=(p'T) 'pT,

where p'z =ln[(T+p')l(T+p')], at E »m p'T =(L-
+P')/2, with

EE'+pp' —m 2 2EE'
EE' —pp' —m m co

and

Integrated cross section

The integrals to be evaluated have the general form

I „=fd(cos8')k' 5' (Bl)

P'=ln[(E'+p') l(E' —p') ] -=2 ln(2E'/m ),
Iz 0=(p' + T ) f d(cos8', , )(1—p' c)

2(p
2 + 7 2

)
2

( 1 p
2c2

)
1 2 ( 7 2

p t 2
)

2

m= —1,0, 1,2, n= —2, —1,0, 1 .

where 5'=E'(1 —cos8'), if one writes k' =(p —p'
—k) =(T +p' )(1—p'. c), with c=2T/(T +p ),
T=p —k, and 5' =E '( 1 —p' d ), with d =k/coE', then the
integrals reduce to the form

Io, =(E'p'b) 'ln[(1+p'd)l(1 —p'd)]=P'/p',

I0~=2E' (1—p' b ) '=2(E'2 —p' )

The integrals such as I, &, I, &, I2 &, and I2 2 can be
expressed in terms of the others by choosing c as the po-
lar axis for the integration over O'. For example,

1Ii, =(p' + T ) 'E' f d(cos8'. , )(1—p' c) '(1 —p'. d)—1
1=(p' +T ) 'E'f d(cos8', )(1—p' d) '[1—(p' c)(c d)/c ]

=(p' +T ) 'E'I& 0[1—c.d/c ];
using c=2T/(p' + T ); d k/c=oE and',2k T=p —T co, one finds—

El
I, i =,P'z[1 —(p —T co )(T +p' )/—4coET ),

2Tp

I, i =(p' +T )E' 'Io, [1—c.d/d ]
p~2+ T2 p2 Z

2 ~2
p'

CO

The integrals I& &,I2 &
may be easily evaluated by using the Feynman integral

dx(ay) ox+y 1 —x

and those find by differentiating (B3) with respect to a and y. For example

(B3}

I, , =(p' + T ) 'E' ' fd(cos8', )(1—p' c) '(1 —p' d)

=(p'+T') 'E' ' f dx f d(cos8', )(1—p' h)

where h =cx +d(1 —x ). If h is now as the polar axis, the integration over 8' may be performed, giving
I» =2(p' + T ) 'E' '

g
' dx, where g is given as a quadratic in x:

0

g'=1 —p' h =1—p' c —2xp' (c d —b }—x p' (c—d)
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2

2 2
[E'(p T—ru —

) ro(—p' + T )]L .
(p'p )(T p' —)

4coE'T

(p ~2+ T2)4

then one can obtain I& &
=co(p'p) '(T p'—) 'L. By a similar method one also gets

I2, =4(p' +T ) E' 'j xg dx

32p p p T co

3E 4
( 2+ T2)2
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