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The polarization of gravitational plane waves is studied. In particular, it is found that each interacting
gravitational plane wave can be split into two parts: the shock part and the impulsive part. The plane of
the polarization for the plane gravitational shock waves usually gets rotated due to two kinds of interac-
tion: one is the nonlinear interacton between the oppositely moving plane gravitational shock waves,
and the other is the interaction between the gravitational shock wave and the matter fields which are
present. The change of polarization due to the nonlinear interaction is exactly a gravitational analogue
of Faraday rotation, but with the oppositely moving gravitational shock wave as the magnetic field and
medium. The effect of the above two kinds of interaction on the impulsive gravitational plane waves is
different from that on the shock waves. Only the interaction between the impulsive gravitational wave
and the matter fields can change the polarization of the impulsive wave.

I. INTRODUCTION

Einstein's general relativity predicts the existence of
gravitational waves. Among these waves are the simplest
cylindrical and plane waves. The cylindrical gravitation-
al waves were first studied by Einstein and Rosen [1].
Since then, a lot of effort has been devoted to this subject,
and many remarkable features have been found. One of
these features is the nonlinear interaction. Piran, Safier,
and Stark [2] have found that, because of this interaction,
a conversion occurs between different polarization modes
of a cylindrical gravitational wave. Specifically, they
have found that, if an outgoing (or ingoing) cylindrical
wave is linearly polarized, its polarization vector rotates
as it propagates. This phenomenon was interpreted by
Piran, Safier, and Stark as an exact analogue of the elec-
tromagnetic Faraday rotation, but with the ingoing (or
outgoing) Xmode wave component playing the role of
both the magnetic field and medium.

The plane gravitational waves, on the other hand, were
first studied by Brinkman [3], Rosen [4], Bondi [5], and
Bondi, Pirani, and Robinson [6]. In 1965, Penrose [7]
discussed the focusing effect, and pointed out that the
focusing effect of single plane waves should cause the col-
liding plane waves to interact strongly and eventually de-
velop space-time singularities. Motivated by Penrose s
above conjecture, Szekeres [8,9], and Khan and Penrose
[10] first studied the collision of two such gravitational
plane waves, and found that the colliding plane gravita-
tional waves indeed produced space-time singularities
after the collision, although now we know that this does
not inevitably occur [11—14].

In this paper we shall study another feature of interact-
ing gravitational plane waves —the effect of the interac-
tion between plane gravitational waves and the effect of
the interaction between the gravitational plane waves and
matter fields on the polarization of the plane gravitation-
al waves [15].

The structure of the paper is as follows. To facilitate

our discussion, in Sec. II we briefly review the space-time
for interacting plane gravitational waves. Following it, in
Sec. III the geodesic deviation of a null congruence is
studied, and the relations between amplitude and polar-
ization of a plane gravitational wave and the Weyl scalar
which represents the wave is given in terms of the local
basis. To compare the polarization of a plane gravita-
tional wave at different points along the wave path, a
parallel-transported basis along the wave path is found in
Sec. IV. Using the Bianchi identities, which represent
the interaction between the free gravitational field and
matter fields [16], the change of the polarization of a
gravitational plane wave is given relative to the parallel-
transported basis. As an application of the results ob-
tained in Sec. VI, the polarization of head-on colliding
gravitational plane waves is considered in Sec. V. The
effect of several specific matter fields on the polarization
is studied. To further illustrate the feature, in Sec. VI we
study some exact solutions, which represent the collision
of a variably polarized gravitational plane wave and an
impulsive shell of null dust (consisting of unidentified
massless particles). In Sec. VII our main conclusions are
derived.

+e cosh''dy ), (2.1)

where M, U, V, and 8 are functions of only the null
coordinates u and u, and [x"j = [u, u, x,y j.

Solutions of metric (2.1) could describe cosmological
models [18—20], and interacting gravitational plane
waves [9,17].

If we choose the null tetrad as

II. SPACE-TIMES WITH TWO COMMUTING
SPACELIKE KILLING VECTORS

We consider space-time that allows two commuting
spacelike Killing vectors (with open orbits), say,
(3 =2, 3; @=0,1,2, 3). The coordinate system is chosen
so that P~ =6"„,and the metric takes the form [9,17]

ds =2e™dudu —e (e coshW'dx —2sinhW'dx dy
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where

(2.2)

(2.3)

where a semicolon denotes covariant differentiation and a
coinma partial differentiation. Equation (2.4) shows that
each of the null vectors l" and n" defines a null geodesic
congruence. When the function A is chosen to be con-
stant, the null geode sics defined by l" are affinely
pararnetrized, while the function B is chosen to be con-
stant, the null geodesics defined by n" are affinely
parametrized.

Our following analysis is based on the decomposition
of the Riernann tensor:

&p..)p=c„~p+ 2(g„~—.p+g.p „i, gvi.
—

„p g„p—

B(A, ) A(B „)l", n~. n;V (2.4)

and an overbar denotes a complex conjugate, we will find
that the only nonvanishing Weyl and Ricci scalars are,
respectively, 0'o, %'2, %'4, and @oo, No2, @», +22, A, which
have been given in Refs. [17,21].

On the other hand, it is easy to show that

+ p(gppgvx gpxgvp)& ~ (2.5)

where R„& is the Ricci tensor, R the Ricci scalar, and
C„& the Weyl tensor, being thought of as representing
the free gravitational field, which interacts with the
matter fields, R„z, through the Bianchi identities [16]. In
terms of the nonvanishing Weyl scalars, the Weyl tensor
is written as [21]

C„ is = —4(%,+ P, )(l(„ii,]l(i ii, ]+m(„m, ]m(i ms] )+4(%1,—%, )(l(pn ]m (~ m&]+m(pm ]I(i ns] )

4[% pli(&m ]n(i ms] 0 2(l(&m ]n(i ms] +n(&m ]l(i ms] )+0 4l(&m ]l(i ms]+c. c. ] (2.6)

where

A(„B„]=——,'(A B —A B„) . (2.7)

Let q" be the deviation vector between neighbor geo-
desics, and g"l„=O. Then, the geodesic deviation is
given by

The Weyl scalars 0'o, %'2, and %'4 have the following
physical interpretation [16]: The %0 term represents the
transverse gravitational-wave component in the n" direc-
tion, the 0'2 term a "Coulomb-like" component, and the
%'4 term the transverse gravitational-wave component in
the I" direction. Since in the present case 4& and 43 van-
ish identically, the longitudinal components in the n" and
l" directions are zero.

III. THE NULL GEODESIC DEVIATION AND
THE AMPLITUDE AND POLARIZATION OF A

PLANE GRAVITATIONAL WAVE

Null geodesic deviation was first studied by Pirani and
Schild [22] as an attempt to give a geometrical and physi-
cal interpretation to the Weyl tensor. Later on, Szekeres
[16] chose the timelike geodesics, as the latter brings out
the Petrov structure more clearly. In this section we
adopt the Pirani-Schild approach, since it has the follow-
ing advantage in the present case: (a) null geodesics are
invariant under conformal transformations of the
Riemann space-time; (b) as shown above, the null vectors
l" ad n" define two null geodesic congruences, which
makes the task of studying the null geodesic deviation
very simple; (c) gravitational plane waves in the space-
time described by (2.1) propagate along these two null
geodesic congruences.

Let us first consider the null geodesics defined by l".

D = —R" l lPgVl,P
(3.1)

(3.2)

where

eo:—e~2ez+e]3e3, e~+' —=e~2ez —e~3e3,

e~ =e2e3 —e~3e~;

ep~—: —(m "+m ") e"=—1
2 2— l—(m" —m "),

2

(3.3)

(3.4)

and Re(%0) denotes taking the real part of %0, while
Im(%'o) denotes taking the imaginary part of +o.

For all physically realistic rnatter fields we have

+oo —o (3.5)

Equation (3.2) allows us the following physical inter-
pretation. Let So and Sz be infinitesimal 2-elements
spanned by e2 and e3 and orthogonal to a null geodesic C
at neighbor points 0 and P of C, and let S be an
infinitesimal circle with center 0, lying in So [see Fig.

Inserting Eqs. (2.5) and (2.6) into Eq. (3.1), finally we
obtain

D2 P =e [ —NooePO +2 Re(+o)eP+ +21m(VO)eP&& ]g
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FIG. 1. A null geodesic congruence meets the Sz plane in the circle S. Because of the force generated by the Vo gravitational
plane-wave component, the image of the circle S on the Sz-plane is a sheared ellipse.

1(a)]. Suppose that a beam of light rays meets So in the
circle S, then let us observe the image of these light rays
on S~. The first term on the right-hand side of Eq. (3.2)
shows that matter fields always make the circle S con-
tracted [see Fig. 1(b)]. The second term, corresponding
to the contribution of the real part of %'o, makes the circle
elliptic with the main major axis along e2 [see Fig. 1(c)].
The last term on the right-hand side of Eq. (3.2), corre-
sponding to the contribution of the imaginary part of 0 p,
makes the circle also elliptic but with the main major axis
tilted at 45 to e2 and e3 [see Fig. 1(d)]. Thus, the image
of these light rays on Sz is a sheared ellipse. When
Im(+o) =0, it is an ellipse without shearing; i.e., its main

I

e 2
=cos+pe 2 +Sin+pe 3

e3 = —sinyoe'z+cos+pe 3

we find

e Pv —e &Pv
0 p

e)+ =cos2+o 1++s' 2@pe ~x

e~x s go ~+ +cos go ~x

In terms of e'~2 and e'~3, Eq. (3.2) becomes

(3 6)

(3.7)

major axis is along e2.
If we make the following rotation in the (ez, e3) plane,

2 p =e I
—4ooe'g +2[cos2yoRe( %o ) —sin2polm(@o) ]e'~+'+ 2[sin2yoRe( %o ) +cos2yolm( %o)]e' ~'[ rl

Dk
(3.8)

If the angle is chosen such that

sin2@oRe(+o)+ cos2yolm(+o) =0, (3.9)

D2 P
00 0M[ @ eiPv+2(qP @ )1/2 iPv]

0 0 + v ' (3.1 1)

or equivalently

Im(@o)
tan2yo

Re %o

then Eq. (3.8) becomes

(3.10)

It follows that the main major axis of the ellipse is along
e'~2. We call e'~2 the direction of the polarization of the
4o wave [23,15]. The angle yo is the polarization angle of
the plane gravitational wave with respect to the (e~z, e~3 )

basis. The relative accelerations of neighbor geodesics
are proportional to (qio@o)', which does not relate to
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(3.12)

Following the discussion given after Eq. (3.2) we can see
that the above equation will be brought to the form

(3.13)

if the rotated angle y4 is chosen such that

Im(%4)

Re('I)~)
(3.14)

Thus, the angle y4 is the polarization angle of the V4
wave with respect to the (e)z, e3 ) basis, and the (%~%~)'~
term represents the absolute amplitude of the relative ac-
celerations of neighbor rays due to the %4 wave.

When the angle q&0 (y4) is constant everywhere, we say
that the corresponding plane gravitational wave is con-
stantly polarized; otherwise it is variably polarized.

IV. A PARALLEL-TRANSPORTED BASIS
ALONG A GRAVITATIONAL

PLANE-WAVE PATH AND THE CHANGE OF
POLARIZATION OF THE WAVE

The above definition of the polarization angle for a
plane gravitational wave is local, since the (e)z, e)3 ) basis
is not parallel transported along either the %o wave path
or the )I)z wave path. In fact, from Eqs. (2.1) and (2.2) we
find

any observer. Thus, the (%0(I)0)'~ term represents the ab-
solute amplitude of the relative accelerations of neighbor
rays.

In a similar fashion, if we consider the geodesic devia-
tion of the null congruence defined by n", we will find

D2 p
=eM[ —@zze)0 +2 Re((P.4)e)+ —21m(%'4)e "&& ]2), .

A,(2)".„l =(—,'sinhWV —y' ')i A,"I: ( —slnh WV pg )I

Therefore, if the angle y4(
' is chosen so that

—,'sinh WV, —y4( ', =0,

(4.2)

(4.3)

then the spacelike orthogonal vectors iP(2) and A,)("3) are
parallel transported along the null geodesics (or the %4
wave path) defined by 1",and the difference

64—=0'4 0'4
(0) (4.4)

defines the angle between the polarization direction of the
%4 wave and the iP(2) direction.

Similarly, if the basis (e z, e 3 ) is rotated so that the ro-
tated angle yo

' satisfies

—,'sinhWV „—yo' ' „=0, (4.5)

the vectors A,~(2) and iP(3) are parallel transported along the
%0 wave path, and the angle

In order to compare the polarization of a plane gravi-
tational wave at two different points along the wave path,
we have to find a parallel-transported basis carried by the
wave, and then define the polarization angle relative to
this parallel-transported basis. In this way we can see
that the change of polarization angle of the wave along
the wave path has absolutely physical meaning and in-
dependent of the choice of the coordinates. For example,
if the change (relative to a parallel-transported basis) is
zero, it means that the polarization vector e'l2 defined
above is parallel to the parallel-transported basis. Such
defined parallelism is independent of the coordinates.

To find a parallel-transported basis along the null geo-
desics defined by l", we make a coordinate rotation in the
(e~z, e~3 ) plane but with the angle denoted by (p&

) and the
new basis by A,~(2) and A,~(3) respectively. Then we find

e2". $ =—,'sinhWV l e~3, e3". I = —
—,'sinhWV I e~2, ~o =—0'o 0'o

(0) (4.6)

(4.1)

e2".~n =
—,'sinhWV, n e~3, e3".~n = —~sinhWV ~n e~2.

determines the polarization direction of the %o wave rela-
tive to the (A('2) A(3)) basis.

On the other hand, from the Bianchi identities, we find

A %0 „=—,
'

t A [4(lnB ) „+U „—i2 sinhWV „]%0—3B(cosh WV, —i W, )%2—2B(I)02,

+ B ( U „i2 sinh WV „)C&0—2
—2B (cosh WV, i W, )(I—&11

—A (cosh WV „iW „)40—0],
B%4, =

—,
' (B[4(ln A ),+ U „+i2 sinh WV, ]%4—3 A ( cosh WV „+i W „)%2—2 A (I&20 „

+ A ( U „+i2 sinh WV „)@20—2 A (cosh WV „+iW „)@11 B(cosh WV, +i W— , )C&22]

It is now convenient to introduce the following "scale-invariant" quantities via the relations [9,17]

@(0) B —
zq) )I)(0) ( AB )

—1' @(0) A
—

2(I) q)(0) B —
2(I) (I)(0) ( AB )

—1(p

(I&02 =( AB) @02 &P = A @ A =( AB) A

(4.7)

(4.8)

Since from now on only the "scale-invariant" terms are used, we shall drop all of the superscript zeros without causing
any confusion.

Inserting Eq. (4.8) into Eq. (4.7) we obtain
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0'p „=
2 [ [ U „—i 2 sinh WV „]%p—3(cosh WV, i—W „)%2—2@p2 „+( U „—2M, —i 2 sinh WV „)@p2

—2(cosh WV, —i W, )&0» —(cosh WV „i—W „)@ppI,

qi&, =
—,
' [[U „+i2 sinhWV, ]%4—3(cosh WV „+iW „)%2—2@zp „+(U „—2M „+i2sinhWV „)@2p

—2(cosh WV „+iW „)@»—(cosh WV, +i W „)@22I .

(4.9)

From the above equation we can see that the two plane gravitational waves 'P0 and %'4 interact with each other
through the Coulomb-like field 0'2. The components 402 and 4» of the matter field interact with both O0 and +4. In
other words, Npz and 4» are "gravitationally active" to both of them [16]. happ is "gravitational active" only to %p, and

@22 only to 44, while A is "gravitationally inert" to both %0 and %'4.

Combining Eqs. (3.10), (4.5), (4.6), and (4.9) we find that the change of polarization angle of the %'p wave along the
wave path is given by

8p „=— [3[cosh WV „Im(@pT)12)+ W, Re(@pqi2) ]+2 Im((lip@2p, )+ (2M, —U „)Im(+p@2p)
0 0

+2%»[coshWV „Im((lip)+ W „Re(+p)]+@pp[coshWV „Im(+p)+ W „Re(+p)]
—2 sinh WV „Re(Vp@2p) ] .

Similarly, for the %4 wave, the change of the polarization angle along the wave path is given by

84 „= I3[coshWV „Im(%„)I)z)—W „Re(%4(P2)]+21m(%~@p2„)+(2M„—U „)Im(%'„@pz)
1

4%4%4

+2@»[cosh WV „Im()II4)—W „Re(%4)]+C&22[cosh WV „Im(%4)—W, Re((114)]

+2sinhWV „Re(%~@p2)] .

(4.10)

(4.1 1)

8() „=0=8~„(W=O) . (4.12)

When 8'=0, all the Weyl and Ricci scalars are real.
Consequently, Eqs. (4.10) and (4.11) yield

2

(i +i )up

()u+u»(AB) ' (AB)

(p+p)up
(4.16)

That is, in the collinear case the polarization of plane
gravitational waves does not change. In the following we
shall consider only the cases where WWO.

For a perfect Quid, the energy-stress tensor reads

(a)(p) (P i ) (a) ()S) l(a)(p)P

u u g' '~'=1,(a) (P)

(4.13)

0 1 0
1 0 0 0
0 0 0 —1

0 0 —1 0

(4.14)

Since all of the metric coefficients are the functions of
only u and u, without loss of generality we assume that
u( ), p, and p are only the functions of u and u, too, and
that u( ) have the form

= 1 —1
u(a) —[ (up)&u (p) &0,0]v'2 (4.15)

where u(p) u(p)(u, v).
From the Einstein field equations we find that the non-

vanishing Ricci scalars are given by

where u( ) denotes the null tetrad components of the
four-velocity of the Quid, p the energy density, p the pres-
sure, and

Before closing this section we note that in the present
case Petrov type-N solutions cannot exist in a perfect
fiuid [16],since, as mentioned previously, the gravitation-
al waves propagate along the null geodesics defined either
by l" or n".

V. THE POLARIZATION OF COLLIDING
GRAVITATIONAL PLANE WAVES

As an application, in this section, let us consider the
collision and interaction of plane gravitational waves cou-
pled or without coupled matter shells. In the following
we shall consider only the head-on collision, since it is al-
ways possible to make a Lorentzian transformation to a
coordinate system in which the two waves approach each
other from exactly opposite spatial directions [9].

The space-time for the collision and interaction of such
two plane gravitational waves can be arranged as follows.
Prior to the collision, there are two plane waves moving
toward each other in opposite directions: one is incident
in region II where u (0 and u)0, and the other is in-
cident in region III where u &0 and v (0. In region II
all the functions M, U, V, and 8 depend only on v, the
only nonvanishing Weyl scalar is +0, while in region III
they depend only on u and the only nonvanishing Weyl
scalar is %4. After they collide at the surface u =O=u,
the two incoming waves enter the interaction region IV
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and

%0(u, v) =%v (uH(u), v)H(v)+%~™(uH(u))5(v),

%z(u, v) =%& (u, v)H(u)H(v),

4'(u, v) ='P4 (u, vH(v))H(u)+%4 (vH(v))5(u),

(5.1)

@~(u,v) =4&~(uH(u), v)H(v)+&9~(uH(u))5(v),

42@(u, v) =4zz(u, vH(v))H(u)+@22(vH(v))5(u),

C&o2(u, v) =@2o(u,v) =@0&(u,v)H(u)H(v),

4»(u, v) =N'„(u, v)H(u)H(v),

A(u, v) =A' (u, v)H(u)H(v),

(5.2)

where

'Po(uH(u)):——
—,'[coshW(uH(u), 0)V, (uH(u), 0)

—iW „(uH(u), 0)],
(5.3)

'PP(vH(v))—:—
—,'[coshW(0, vH(v)) V „(O,vH(v))

+i W „(0,vH(v))],

@()()(uH(u)) —= —,'U „(uH(u), 0),
@zz(vH(v)) = —,'U „(O,vH(v)),

(5.4)

and

(u, v) 0), in which the functions M, U, V, and Wdepend
on both u and v. Region I (u, v &0) is the region in which
the two incoming waves do not arrive yet. Thus, the
space-time in this region is Bat and all the above func-
tions vanish [21].

To consider the polarization of colliding plane gravita-
tional waves, we first notice that the Weyl and Ricci sca-
lars in such space-t™s,in general, consist of two parts
[21], the shock part and the impulsive part, although the
former essentially includes three different cases: smooth
wave, shock wave, and the wave with unbounded wave
front [14] (the treatment for these three cases, however, is
the same for the present problem so in the present case
we do not distinguish them). As shown in Ref. [21],all of
them can be written in the form

U(O, v)= lim U(u, v), U(u, O)—= lim U(u, v),
u ~0+ U ~0+

(5.5)

U„(O,v)=—lim U„(u, v),
u~0

U„(u,O)—= lim U„(u, v),
v~0+

etc. The quantities with the superscript IV denote the
ones calculated in region IV, H(x) the Heaviside step
function, which is unity for the non-negative arguments
and otherwise zero, and 5(x) the Dirac delta function.

The terms &00 and @zan are, in general, thought of as
representing impulsive shells of null dust with support,
respectively, on the hypersurfaces u =0 and v =0
[24—26] while the terms Vo and 4' are thought of as
representing the gravitational impulsive wave part with
support on the above two hypersurfaces [10,27,28]. For
each part of V0 and %4 we can assign a polarization an-
gle. In the following we use 8&" and Oz to denote the po-
larization angles, respectively, for the shock part and im-
pulsive part of I'0, and 04", 04 the shock part and the im-
pulsive part of V4.

In region II, all the metric coe%cients are functions of
only v, consequently, the nonvanishing Weyl scalar 40 is
a function of only v, too. So we have 00"=HO"(v) and
00 =const. That is, the shock part, in general, is vari-
ably polarized while the impulsive part is always con-
stantly polarized in region II. Along the wave path, 0&"

and 00 do not change in this region

ash 0 g™0 , u 0 , Q (5.6)

Of course, in regions I and III, Oz" and 00 vanish, since
%0 vanishes there.

Similarly, for the %4 wave, we have

ash 0 g™
4 , U 4 , U

(5.7)

in region III, and 04", 04 vanish in regions I and II.
Note that the angle y4~

' (y&'P)) is constant in region III
(region II) [see Eqs. (4.3) and (4.5)]. Without loss of gen-
erality we can choose

y~4
'

(yo~ ') to be zero in region III
(region II) so that the (k~~z), AF~')) basis coincides with the
(e~z, e~3) basis in these regions.

In the interaction region, IV, the situation is quite
different. From the generalized Bianchi identities [21] we
find

„=—,'[[U „i2sinhWV „—]CO —3(cosh WV, i W, )+—z —24&02', +(U „—2M „i2sinh—WV „)@oz

—2(cosh WV „iW, )@),——(cosh WV „iW „)COO j, —

„=—,'I [U „+i2sinhWV, ]%4 —3(cosh WV „+iW „)%z —2@20 „+(U„—2M „+i2sinhWV „)@2O

—2(coshWV„+iW„)@),—(coshWV„+iW„)C&zz] (u, v)0)

(5.8)

%0™„=—,'[[U „—i2sinhWV „]%0 —2@0&—(coshWV „iW „)C&~™—] (u )0, v =0)

%4™,=—,'I[U „+i2sinhWV „]%4 —2@&0—(coshWV„+iW, )@22] (u =O, v) 0) .
(5.9)

Equation (5.9) shows that the impulsive gravitational wave Vo interacts only with the matter components @o2 and Ng,
and 0 4 interacts only with @pp and C 22.
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Using Eqs. (3.10), (3.14), (5.8), and (5.9), we find

8O'" „=—,, [3[coshWV„Im(+o %z )+ W, Re(%0 42 )]+21m(+o @@0,)+(2M, —U, )lm(+o @z~o)

+2@'„[coshWV, Im(%O )+ W, Re(%'0 )]+@oo[coshWV „Im(%0 )+ W „Re(+o )]
—2 sinh WV „Re('Po 4&20) I,

(5.10)
8„'"„= [3[coshWV„Im(%~ Viz )

—W „Re(@4 %2 )]+21m(%'4 @02' „)+(2M„—U „)Im(%'4 No&)

and

+2@i&[coshWV „Im(%4 ) —W„Re(%~ )]+Nz2[coshWV„Im(%~ )
—W„Re(%4 )]

+2sinhWV„Re(%~ NO2)I (u, U &0),

80™„=— . . [[coshWV „Im(%0 )+ W „Re(+o™)]Woo+21m(%~™@2o)J (u &O, U =0),

8~' „= . . [[coshWV, Im(%~ ) —W, Re(%'„)]@&™&+21m(+P@oz)J(u =O, U &0) .1
(5.11)

Equation (5.10) shows that, due to the interaction be-
tween the two plane gravitational shock waves and the
interaction with the rnatter fields, the polarization direc-
tions of the ~o' and 4,"waves get cha~g~d relative to the
parallel-transported basis along the wave paths. In other
words, the polarization direction of a plane gravitational
shock wave is no longer parallel transported along the
wave path, because of the above two kinds of interaction
(note that for a single gravitational plane wave the polar-
ization is always constant along the wave path). The
change of polarization of a plane gravitational shock
wave caused by the interaction with the other plane grav-
itational shock wave is exactly the analogue of the well-
known electromagnetic Faraday rotation, but having the
other plane gravitational shock wave as the medium and
the magnetic field. We call the effect caused by the in-
teraction between the plane gravitational waves and
matter fields the deAection effect, and the effect caused by
the interaction between the plane gravitational waves the
gravitational Faraday effect (or gravitational Faraday ro-
tation).

Equations (5.11), on the other hand, show that the case
for impulsive gravitational waves is different from that
for the shock waves. In particular, only the interaction
between the impulsive waves and matter fields can
change the polarization of the impulse gravitational plane
waves.

To further illustrate the properties of the polarization
of colliding plane gravitational waves, in the rest of this
section we restrict ourselves to several specific cases
which are most interesting from the point of view of
physics.

Because of the symmetry shared by the two plane grav-
itational waves, it is sufhcient to consider only one of
them, say, the %z wave. In addition, since we are now
working in region IV, we do not make any more specific
statements about it in the following, and understand all
the following results valid only in that region (plus its two
boundaries u =0, U & 0 and u & 0, U =0).

A. The space-time being vacuous

When the space-time is vacuous, the corresponding
collision is a purely gravitational one, and the Ricci sca-
lars are zero

4; =0, A=O.

Equations (5.10) and (5.12) yield

(5.12)

O, u 4gpIV@ IV

gim 0 (5.14)

That is, the impulsive plane gravitational wave does not
change its polarization after the collision, when the
space-time is empty. From Eq. (5.9) we can see that in
the present case the %'o wave component does not in-
teract with the others.

B. The space-time 6lled with null dust

When the space-time is filled with null dust, the
energy-stress tensor can be written in the form [29,25,30]

T„=c&l„l +c2n„n (5.15)

which is the superposition of two pure radiation fields,

+ W „Re(%' 4 )]

(u, u &0) . (5.13)

It follows that, if %z =0, we have Oo'" =0. However, it
has been shown [9] that due to the nonlinear interaction
between the 4'0 and 414 waves, the Coulomb-like gravi-
tational field +z necessarily appears in the interaction re-
gion, IV. Thus, in the vacuum, the change of polariza-
tion of a plane gravitational shock wave is totally due to
the nonlinear interaction with the other plane gravita-
tional shock wave.

On the other hand, from Eqs. (5.11) and (5.12) we find
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where s, and E2 are nonnegative. Equation (5.15)
represents a pair of oppositely moving null dust clouds
with the energy density c, and c2, respectively, each of
which is separately conserved [25]. The corresponding
nonvanishing Ricci scalars are given by

+00—
—,'8 C2, +22 —

—,
' A C, ) . (5.16)

On the other hand, Eq. (5.2) shows that, like %0 and
+4, the components @00 and 422, in general, consist of
two parts: the H-function part and the 6-function part.
When attention is restricted to the interaction region,
only the H-function part remains, and from Eq. (5.10) we
find

80'" „=—,, [3[coshWV, Im(%0 V2 )+ W, Re(%0 %z )]+4&00[coshWV „Im(%0 )+ W „Re(%0 )]] .
4' IV@ Iv (5.17)

Thus, unlike the vacuum case, 00'" „can now be different from zero even when %z =0, because of the presence of the
last term on the right-hand side of Eq. (5.17), which represents the interaction between 'Po and @00 [see Eq. (5.8)].

It was shown [26] that, when null dust is present, the collision of two plane gravitational waves does not require the
Coulomb-like gravitational field 4'z to appear necessarily in the interaction region. Thus, a plane gravitational shock
wave can change its polarization due to the deflection effect.

On the other hand, Eq. (5.11) now becomes

80' „=— . . [[coshWV„Im(%0 )+ W„Re(40 )]@~™](u )O, v=0) .1 (5.18)

Obviously, when @00 is different from zero the polar-
ization of the impulsive part of %0, in general, changes
after the collision because of the interaction between +0
and @00.

(5.20)

Since in the present case all of the metric coef5cients are
functions of u and v only, without loss of generality, we
assume that P=P (u, U). Then Eq. (5.20) becomes

C. The space-time filled with a massless scalar field

For a massless scalar field, the energy-stress tensor is
given by

(5.19)

2P„„—U„P„—U„$„=0.
The nonvanishing Ricci scalars are given by

(5.21)

(5.22)

where P satisfies the massless Klein-Gordon equation Inserting Eq. (5.22) into Eq. (5.10) we find

80'" „=—,, [6[coshWV, Im(%0 %z )+W, Re('Po %~ )]
8@IV@Iv

+P, [cosh W(P „V„+P,V „)Im(%0 )+(P „W,+P, W „)Re(%0 )]] . (5.23)

Equation (5.23) shows that a plane gravitational shock
wave can change its polarization due to both the non-
linear interaction between the two plane gravitational
shock waves and the interaction with the massless scalar
field P.

When the space-time is filled only with a massless sca-
lar field we have

does not change its polarization when it passes through a
massless scalar field, since in this case there is no interac-
tion between the gravitational impulsive wave and the
massless scalar field [see Eqs. (5.9)].

Note that Eq. (5.25) is also the condition under which
the hypersurfaces u =0 and U =0 are free of matter [14].

@im 0 C im
00 22 ~

or, equivalently,

U „(u =O, U ) =0= U, (u, u =0) .

Combining Eqs. (5.24) and (5.11) we find

g 1m 00, 74

(5.24)

(5.25)

(5.26)

D. The space-time filled with a non-null electromagnetic field

When an electromagnetic field is null, its energy-stress
tensor takes the form of a pure radiation field, which has
been already discussed in Sec. V B. Thus, in this subsec-
tion, we consider only the non-null case.

For an electromagnetic field F„,the energy-stress ten-
sor takes the form

which means that an impulsive plane gravitational wave T„=F„&F —
—,'g„F &F (5.27)
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F( .~) =0, F .gg =0 .

Introducing the notation

eo=F(0„2)=F„.l m

(5.28)

where the antisymmetric tensor F„satisfies the Maxwell
equations

(y(0) —B —
& @ (y(0) —g —

&(y (5.32)

and drop the superscript zero, then the nonvanishing
Ricci ("scale invariant") scalars are

regions II and III, using the Maxwell equations (5.28) it
can be easily shown that it must be also zero in region IV
[31,17]. If we introduce the "scale invariant" quantities

N2 =——F())(3)= —F„n"m

@1= z [F(p)(2) (2)(3) ]
=

—,
' (F„,l "n —F„m"m "),

(5.29) =4 4 =4' 4&' =(I) 4 (5 33)

and the Maxwell field equations (5.28) read

2@p „=(U „isi—nh WV „)@p—(cosh WV, i W „—)@2,

or inversely

F„=2[ 4p—n(„m )
—4&pn(„m )+@2l(„m )+@zl(„m ) J

—4 Re(C ) )l(„n.) + i4 Im(C, )m(„m,),
we find that the Ricci scalars are given by

A=O (m, n =0, 1,2) .

(5.30)

(5.31)

Since the component N, defined by Eq. (5.29) is zero in

I

(5.34)

2@2 „=( U „+i sinh WV, )@2—(cosh WV „+i W „)@p .

Note that in the present case all of the Ricci scalars
have only the shock part; otherwise, the Maxwell poten-
tials Nk (or equivalently, the electromagnetic field tensor
F„)will contain the square roots of 5 function, which is
not acceptable physically [32].

Equations (5.10), (5.33), and (5.34) give

Op'" „=—,, [3[cosh WV „Im(+t) (p 2 )+ W „Re(+p (p
2 )]+21m(@p@p,C&2)

4qpIV@ Iv

—sinhWV „Re(+p 4&p@2)+2M, Im(+p @p@2)J (5.35)

Im(% p C p&2)

2gplmgy IIH
0 0

(5.36)

Thus, similar to the last two cases, the polarization of a
plane gravitational shock wave can be changed, when it
interacts with a non-null electromagnetic field.

On the other hand, for the impulsive part of +0, Eq.
(5.11)becomes

3—:( Y—vH(u) ) '+ q ( Y+vH(v ) ) ',
B=( Y—vH(u)) '( Y+ uH(u))

+q (Y+vH(v)) '(Y uH(u))—
2Y2t4a —2H( )+g2]1/2

Y—= (1—uH(u))'

(6.2)

It follows that a gravitational impulsive wave can change
its polarization due to the interaction between the impul-
sive wave %z and the electromagnetic field component

IV+02.

VI. EXAMPLES FOR COLLIDING
GRAVITATIONAL PLANE WAVES

e = t " ' e =t=l —uH(u) —v H(v)
Y

y C 2 + ( . 4qUYt
e =—t '+', sinh8'=—

B H(U),

where

(6.1)

As examples, we consider the colliding gravitational
plane wave solutions obtained recently by Tsoubelis and
the present author [33] using the Belinsky-Zakharov soli-
ton technique [34]. A subclass of those solutions is given
by

4'k =0 (k =0,2,4), (6.4)

which means that the space-time is Aat in the interaction
region, IV. Hence, from Eqs. (5.1) and (5.3) we find that
the nonvanishing Weyl scalars are given by

and q, a are arbitrary constants.
It has been shown in Ref. [33] (see also Ref. [35]) that

this subclass of solutions represents the collision of a
plane gravitational wave and an impulsive shell of null
dust. The latter may be accompanied by a constantly po-
larized plane gravitational wave.

From Eqs. (5.2), (6.1), and (6.2) we find that the only
nonvanishing Ricci scalar is

5(u)
22 2A 2a(a —1)+1Ai

which represents an impulsive shell of null dust with sup-
port on the hypersurface u =0. To study this subclass of
solutions as a whole is too complicated. In the following
we consider only several subcases [36].

Case o:: a =0. In this case we find
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0'o(u, v) =
2 [(1—

q )
—i2q]5(v),

1

(1+q )Y

%z(u, u) =0, (6.5)

%'~(u, u)=
2 [(1—

q )(1—v )+i2q(1+u )]5(u) .vH(u)
2(1 —u )C

Thus, in this case, the solution represents the collision of
an impulsive gravitational plane wave and an impulsive
shell of null dust. Since the space-time is Aat in region
IV, the hypersurface t =0 is free of curvature singularity.
After the collision, the gravitational radiation (%~) is
stimulated.

Since on the hypersurface U =0, we have W =0. Then,
from Eq. (4.5) we find

Inserting Eqs. (6.5) and (6.8) into Eq. (4.4) we finally ob-
tain

10' =—arctan4 H(U) .
1 q

(6.9)

It follows that, after it is created, the impulsive gravita-
tional wave 44 does not change its polarization.

Equations (6.7) and (6.9) show that the stimulated grav-
itational impulsive wave %4 has the same polarization
direction as the +p wave. Thus, if we make a coordinate
rotation in the (e2, e3) plane, the metric should be
brought into diagonal form. In fact, it is indeed the case.
After rotation with the angle given by Eq. (6.7), the
metric takes the form

(P) 0fp

Hence, Eqs. (3.10), (4.6), (6.5), and (6.6) yield

(6.6)
ds = du du —( Y—uH(v)) dx2 2(1+q )

Y

10 ' =—arctanp
2q

1
(6.7)

Obviously, Op' „=0. That is, the polarization angle of
the impulsive gravitational wave, Wz, does not change.
As we can see from Eq. (5.9), this is because Vo does not
interact with the others.

On the other hand, Eqs. (4.3) and (6.1) give

—(Y+uH(v)) dy (6.10)

1 —2&1 —u, u &0,
0

u —1, u~0. (6.1 1)

This solution was first found by Babala [37]. Actually,
Eq. (6.10) will reduce to the exact form used by Babala,
after u is replaced by u'

(0) 4q(1 —
q )v H(u)

(1+q )
—(1—6q +q )u

Case P: a =
—,'. In this case, if we define the functions

F(x,y) and G(x,y) as

F(x,y ):—(x —y) —6q x(x —y ) +q (x+y) +i2q(x —y )[(1+q )(Sx +y )y
—2(1 —

q )(x +2y )x],
G(x,y):—(x —y) (x +xy+y ) —6q xy(x —y ) —

q (x+y) (x —xy+y )
—i2q(1+q )(x —y )

(6.12)

%2 (u, u)= — G(Y, u),1

2t2A 2Y

%4 (u, v)= — F(v, Y) . —iv 3(1+q )u—
4tCA 'Y'

Then, Eqs. (5.1) and (6.13) give

Vo(u, u)=To (uH(u), u)H(u)

(6.13)

we find that the nonvanishing Weyl scalars in region IV
are given by

@gv( )
3(1+q ) Y

( )
tCA

Thus, this model represents the collision of a variably po-
larized gravitational shock+impulsive wave and an im-

pulsive shell of null dust which is accompanied by a con-
stantly polarized gravitational impulsive wave. In this
model, region III is Rat, while region II is curved due to
the presence of the variably polarized gravitational wave.

As t —+0+, all the nonvanishing Weyl scalars become
unbounded. Thus, the space-time now is singular on the
hypersurface t =0.

On the other hand, Eq. (6.14) shows that qio and %4
consist of two parts: the shock part and the impulsive
part. In the following we consider them separately.

Let us first consider the impulsive part. Following the
discussion carried out in case a we find

+
~ I(1—

q ) —i2q]5(v),
(1+q )Y

'P2(u, v) =%& (u, v)H (u)H(u), (6.14)
=1 2q

0~ =—arctan
2 1 q

%~(u, v) =%4 (u, v)H (u)H(v)

1+q+ I(1—vH(v)) +q (1+vH(u))
2AC

+i2qu(1 —v )H(u)]5(u) .

1 2qU
94 =—arctan H(u) .

2 (1—u)+q (1+u)

(6.15)

Thus, the polarization angle for the impulsive part of 0 p

remains constant even after the collision. The reason is
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that, similar to the last case, %'o does not interact with
any of the others. However, for the %4 wave the situation
is different. The interaction between the impulsive part
of %4 and the impulsive shell of null dust @zz is such as to
make the polarization angle 04 change along the v axis
according to Eq. (6.15).

In a similar fashion we find that for the shock part of
Vo and %4 the polarization angles Oo" and 04" are given,
respectively, by

Oo = ——arctan ' H(U),I(U, Y)
2 J(U, Y)

84 =—arctan ' H(u)H(U),sk I(Y;U)
2 J(Y v)

(6.16)

where the functions I(x,y) and J(x,y) are defined by

(6.17)

I(x,y)=2qy[(x —y )(x —y)(x+5y)+q [(4+6q +4q +q )x +4(2—2q —
q )x y+2(4+14q +4q —3q )x y

+4(6—6q~+q )xy —(60—126q +60q —Sq )y ]],
J(x,y)—:(x —y ) (x —y)+q [ (5+10q +10q +Sq +q )x —(3+2q —2q —3q —

q )x y

+2(3+14q +14q +3q —
q )x y —2(13+14q —14q —13q +q )x y

—(27 —42q2 —42q +27q —
q )xy +(45—210q +210q —45q +q')y ] .

Equation (6.16) shows that the plane gravitational
shock waves of +o and +4 change their polarization an-
gles along each of their own paths. The change is due to
the presence of the Coulomb-like field %2, which is the re-
sult of the nonlinear interaction between %'o and +4.

VII. CONCLUSION

In the previous sections, the polarization of interacting
gravitational plane waves have been studied. It has been
found that the polarization of a plane gravitational shock
wave can be changed due to two kinds of interaction.
One is the nonlinear interaction between two oppositely
moving gravitational shock waves, and the other is the
interaction between the shock wave and matter fields,
which are present. The former is exactly an analogue of
the well-known electromagnetic Faraday rotation, but
with the other gravitational shock wave as the magnetic
field and the medium. The effect of the above two kinds
of interaction on the polarization of a plane gravitational
impulse wave is different. In particular, the polarization
of an impulsive plane gravitational wave is affected only
by the interaction between the impulse wave and matter

fields.
The above study of polarization of plane gravitational

waves may give us a possible way to detect gravitational
plane waves. In this direction, let us consider a gravita-
tional wave moving in the direction of the z axis, emitted,
say, by a remote star. If we let such a wave pass through
a medium, then, we can see that, due to the interaction
between the wave and the medium, the polarization of
the wave will be changed. So, if we equip two rings in the
(x,y) plane, one is in front of the medium, and the other
is right after the medium, then we will find that, after the
gravitational wave passes through them, the two rings are
deformed into ellipses but with different shearing angles.
Thus, by measuring the difference between these two an-
gles we can determine whether or not a gravitational
plane wave passes through the medium.

ACKNOWLEDGMENTS

I would like to thank Professor D. Tsoubelis, Universi-
ty of Patras, for his useful discussions and suggestion on
the above subject.

'Permanent address: Physics Department, Northeast Nor-
mal University, Changchun, Jilin, People s Republic of
China.

[1]A. Einstein and N. Rosen, J. Franklin Inst. 223, 43 (1937).
[2] T. Piran and P. N. Safier, Nature (London) 318, 217

(1985); T. Piran, P. N. Safier, and R. F. Stark, Phys. Rev.
D 32, 3101 (1985).

[3] H. W. Brinkman, Proc. Natl. Acad. Sci. (U.S.A. ) 9, 1

(1923).
[4] N. Rosen, Phys. Z. 12, 366 (1937).
[5] H. Bondi, Nature (London) 179, 1072 (1957).
[6] H. Bondi, F. A. E. Pirani, and I. Robinson, Proc. R. Soc.

London A251, 519 (1959).
[7] R. Penrose, Rev. Mod. Phys. 37, 215 (1965).

[8] P. Szekeres, Nature (London) 228, 1183 (1970).
[9] P. Szekeres, J. Math. Phys. 13, 286 (1972).

[10]K. A. Khan and R. Penrose, Nature (London) 229, 185
(1971).

[11]S. Chandrasekhar and B. C. Xanthopoulos, Proc. R. Soc.
London A408, 175 (1986); V. Ferrari and J. Ibanez, Gen.
Relativ. Cxravit. 19, 405 (1987).

[12]A. V. Feinstein and J. Ibanez, Phys. Rev. D 39, 470 (1989).
[13]U. Yurtsever, Phys. Rev. D 38, 1706 (1988);40, 329 (1989).
[14]D. Tsoubelis and A. Z. Wang, Cyen. Relativ. Gravit. 21,

807 (1989).
[15]A. Z. Wang (unpublished).
[16]P. Szekeres, J. Math. Phys. 6, 1387 (1965);7, 751 (1966).
[17]J. B. Cxriffiths, Ann. Phys. (N.Y.) 102, 388 (1976).



GRAVITATIONAL FARADAY ROTATION INDUCED FROM. . . 1131

[18]P. J. Adams, R. W. Hellings, R. L. Zimmerman, H.
Farhoosh, D. I. Levine, and S. Zeldich, Astrophys. J. 253,
1 (1982).

[19]B.J. Carr and E. Verdaguer, Phys. Rev. D 28, 2995 (1983).
[20] E. Verdaguer, in Observational and Theoretical Aspects of

RelatiUistic Astrophysics and Cosmology, Proceedings of
the International Course, Santander, Spain, 1984, edited
by J. L. Sanz and L. J. Goicoechea (World Scientific,
Singapore, 1985), p. 311.

[21] A. Z. Wang, report, 1991 (unpublished).
[22] F. A. E. Pirani and A. Schild, Bull. Acad. Polon. Sci. 9,

543 (1961).
[23] J. Ehlers and W. Kundt, in Gravitation: An Introduction

on Current Research, edited by L. Witten (Wiley, New
York, 1962), p. 63.

[24] T. Dray and G. 't Hooft, Class. Quantum Grav. 3, 825
(1986).

[25] A. H. Taub, J. Math. Phys. 29, 690 (1988).
[26] D. Tsoubelis and A. Z. Wang, Gen. Relativ. Gravit. 22,

1091 (1980)~

[27] Y. Nutku and M. Halil, Phys. Rev. Lett. 39, 1379 (1977).
[28] S. Chandrasekhar and V. Ferrari, Proc. R. Soc. London

A396, 55 (1984).
[29] S. Chandrasekhar and B. C. Xanthopoulos, Proc. R. Soc.

London A403, 189 (1986).
[30] D. Tsoubelis and A. Z. Wang, J. Math. Phys. 32, 1017

(1991).
[31]P. Bell and P. Szekeres, Gen. Relativ. Gravit. 5, 275

(1974).
[32] S. Chandrasekhar and B. C. Xanthopoulos, Proc. R. Soc.

London A398, 223 (1985).
[33] D. Tsoubelis and A. Z. Wang, report, 1991 (unpublished).

[34] V. A. Belinsky and V. E. Zakharov, Zh. Eksp. Teor. Fiz.
75, 1955 (1978) [Sov. Phys. JETP 48, 985 (1978)].

[35] A. Z. Wang, Int. J. Mod. Phys. A 6, 2273 (1991).
[36] A. Z. Wang, Ph. D. dissertation, submitted to University of

Ioannina, 1990.
[37] D. Babala, Class. Quantum Grav. 4, L89 (1987).


