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with a higher-dimensional cosmological constant

David L. Wiltshire*
Department ofPhysics, Uniuersity ofNewcastle Up-on Ty-ne, Newcastle Upo-n Tyn-e NE1 7R U, England

(Received 20 August 1990)

Certain static solutions of D-dimensional gravity with a higher-dimensional cosmological constant A

are studied. The solutions are taken to be spherically symmetric in the physical (m +2)-dimensional

spacetime, where D=m+n+2 (or more generally the m-sphere is replaced by an arbitrary Einstein

space), while the internal space is an arbitrary n-dimensional Einstein space. The global properties of all

such solutions are derived by considering the equivalent dirnensionally reduced system in m +2 dimen-

sions, and by using techniques from the theory of dynamical systems after a judicious choice of variables.

All solutions with a nonzero A are either found to contain naked singularities or not be asymptotically

Hat, as would be expected from the "no-hair" theorems. A recent "black-hole" solution derived by Kim
and Cho in the context of these models is shown to be incorrect.

I. INTRODUCTION

If higher dimensions are a physical reality then many
familiar physical systems in four dimensions should have
higher-dimensional counterparts in which the four physi-
cal dimensions and the extra dimensions split off distinct-
ly. In particular, if one adopts the Kaluza-Klein
viewpoint, it should be possible to find regular black-hole
solutions which preserve spherical symmetry in the phys-
ical spacetime, while having a compact internal space.
Although many solutions have been found which have
higher-dimensional spherical or axial symmetry [1], rela-
tively little is known about higher-dimensional solutions
which are spherically symmetric in four dimensions only,
the extra dimensions being compact.

It is true that nontrivial black-hole solutions have been
found, and extensively studied, in the five-dimensional
Kaluza-Klein theory [2—4]. However, if one wishes to
generalize solutions to D ) 5 then extra complications
can arise, since it is now possible for the internal space to
have curvature. Another possible departure is that rath-
er than taking the higher-dimensional action to be purely
Einstein gravity, it may be more natural to consider ac-
tions which arise in supergravity models or the low-
energy limit of string theory.

Solutions with four-dimensional spherical symmetry
for D & 5 have been discussed by Dobiasch and Maison
[2], Lee [5], and Lee and Lou [6] in the case of pure gravi-
ty (with off-diagonal terms of the higher-dimensional
metric corresponding to Abelian gauge fields), by Myers
[7] in Einstein-Maxwell theory, by van Baal et al. [8] in
11-dimensional supergravity, and by Ivanov [9] for an ac-
tion appropriate to the low-energy limit of string theory
(including a dilaton and electromagnetic field). All these
authors, apart from van Baal et al. , considered a Ricci-
Aat internal space only. van Baal et al. took the internal
space to be a seven-sphere, but were unable to analytical-
ly construct any regular black-hole solutions with a com-
pact internal space. Instead, by numerical integration,

g 2 2pdt 2+ 2vd —2+—2—

+e g,&dy 'dy ", (l. la)

where p=p(r), v=v(r), co=co(r), and g,"(x ) and g,b(y)
are metrics on arbitrary Einstein spaces of dimension m
and n, respectively:

R,J =(m —1)A,g,j. ,

R,b
= ( n —1 )Xg,b .

(1.1b)

(l. lc)

The case in which g; represents a two-sphere and the
internal space is compact is of course of most physical in-
terest. The approach we used in Ref. [10], henceforth
denoted I, was to consider the equivalent dimensionally
reduced system of equations and to make a choice of vari-
ables which made it possible to write the field equations
as an autonomous system of first-order differential equa-
tions. Such a choice is possible because the model is in
fact equivalent to a nonlinear Toda lattice [11,12], which
is known to be completely integrable. Thus all the global
properties of the solutions (1.1) can be determined, even
though analytic solutions cannot be written down in gen-
eral. A similar dynamical systems approach has also
been usefully applied to higher-dimensional cosmological
models [13].

In a recent paper [14] Kim and Cho considered
higher-dimensional Einstein gravity with a higher-
dimensional cosmological constant A and tried to find
solutions of the form (1.1) with the added restriction that
k =0; i.e., the internal space is Ricci Oat, and g;
represents the metric on a two-sphere. By making a par-

they found a class of solutions which have the novel
feature of a naked lightlike singularity.

Mignemi and I [10] have considered the problem of
compactified black-hole solutions using a somewhat
different approach. We classified all solutions of the D-
dimensional vacuum Einstein equations which have the
form

1100 1991 The American Physical Society



SPHERICALLY SYMMETRIC SOLUTIONS IN DIMENSIONALLY. . . 1101

S=f d x& g—, (R —2A)
1

4KD
(1.2)

are of course equivalent to those derived from the dimen-
sionally reduced action [18]

S=f d x+—g — g ~B oB~—V((T)
4K m

ticular ansatz for the dimensionally reduced fields, Kim
and Cho claimed to find a "black-hole" solution for
nonzero A. Unfortunately, however, they made two er-
rors which invalidate their results. First, they made a
mistake in deriving the higher-dimensional Ricci tensor
and consequently one of their field equations was wrong
[15]. This mistake was compounded later by a somewhat
more serious error: having integrated some of their field
equations to derive expressions for the metric functions,
Kim and Cho neglected to substitute the functions they
obtained back into the constraint equation to see what
additional restrictions it placed on the integration con-
stants. Had they done so, they would have discovered
that there are no solutions in the context of their metric
ansatz (with the exception of one unphysical solution
which does not possess an asymptotic region). This
remains true if the correct field equations are used, as is
demonstrated in the Appendix.

We should note that in order for black-hole solutions
to be consistent with the Kaluza-Klein interpretation the
radius of the extra dimensions e, should be asymptoti-
cally constant. Consequently in the present model realis-
tic black-hole solutions would appear to be ruled out by
the "no-hair" theorems [16]—it is well known that no
regular black-hole solutions can be found if the four-
dimensional Einstein action is coupled to a (massive or
massless) asymptotically fiat scalar field [17]. The field

equations derived from the D-dimensional action

dg + dQ
c

we make a trivial rescaling of the internal dimensions to
set e —+1 at spatial infinity, and thus we expect the no-
hair theorem to hold [19]. Since no-hair theorems have
only been derived for scalar fields with particular poten-
tials, it is of course not ruled out that the field equations
derived from (1.3a) could have regular black-hole solu-
tions. However, in light of the great number of no-hair
results which have been derived for various forms of
matter, such a result is not to be expected.

In the case of the nontrivial Kaluza-Klein black-hole
solutions mentioned above, the scalar charge is a depen-
dent function of the other charges (electric and magnetic)
of the theory [4], a result consistent with the no-hair
theorems. However, there are no extra charges in the
model considered here.

Since we are (in principle) seeking solutions which
represent regular black holes in the dimensionally re-
duced theory, we require that the dimensionally reduced
fields should be regular on a regular horizon. In particu-
lar, the scalar field o. and curvature invariants construct-
ed from the (m+2)-dimensional metric g & should be
finite on the horizon. This condition is of course stronger
than simply requiring that quantities be regular accord-
ing to the higher-dimensional metric: particular com-
binations of the higher-dimensional metric components,
which are not invariant in the higher-dimensional space-
time, are to be interpreted as the physical fields of the
theory. For the models which we are considering here
regularity in the dimensionally reduced spacetime implies
regularity in the higher-dimensional spacetime, but the
converse is not true, as is illustrated by the well-known
example of the Euclidean Schwarzschild metric,

where

(1.3a)
m —1

dp (1.4)

1((T= ,' &n ( m +—n)co,

V( )
1 —4en K~

4K m+m +n

X 2A —n(n —1)Xexp
4Ko

&n (m +n)

(1.3b)

(1.3c)

where c is a constant, which solves the field equations de-
rived from (1.2) if A=O and n =1. The metric (1.4) has
an apparent singularity at r =c, a "bolt" [20] correspond-
ing to a fixed point of the B/By Killing vector, which can
be removed if the y coordinate is identified with period
4vrc/(m —1). Thus the manifold is completely regular
from the D-dimensional viewpoint. However, the dimen-
sionally reduced fields, which are given by

x. =4mG is the (m +2)-dimensional gravitational con-
stant, t(ti =afd "y(d'etg, b

)' is the D-dimensional gravi-
tational constant, and g

—=det(g p) and R refer to the
conformally rescaled ( m +2 )-dimensional metric:

g dx dx ~=e ""
( e "dt +e dr—

g~pdx dx
m —1 1/m

1— C
dt 2

dr
m —1 (m —1)/m

C1—

+t . .dx 'dx 1) (1.3d) c
m —1 1/m

dQ (1.5a)
The requirement that e is asymptotically constant is
equivalent to the requirement that o. is asymptotically
constant, or alternatively that o is asymptotically Hat if and
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~o. = —,'(m+ I)'~ ln 1— C

r

'm —1

(1.5b)
spatial sections at spatial infinity. Instead of the coordi-
nate r defined by (1.6) the appropriate radial coordinate
to use would be

are singular at r =c. This situation is very similar to that
of the Kaluza-Klein monopole, which is completely regu-
lar in five dimensions but not from the viewpoint of the
equivalent dimensionally reduced theory [21J.

In using a definition of regularity based in the dimen-
sionally reduced spacetime we may of course overlook
other special solutions which similarly to the Euclidean
Schwarzschild solution are regular in higher dimensions.
However, since our primary aim is to investigate the
properties of spacetimes obtained by dimensional reduc-
tion, assuming a Kaluza-Klein interpretation, this will
not concern us here.

Our definition of asymptotic flatness shall similarly ap-
ply to quantities defined in the dimensionally reduced
spacetime: for an "asymptotically flat" spacetime R & &

must vanish as r —+ ~, where r is a radial coordinate
based in the dimensionally reduced spacetime. Since the
relation between the lower- and higher-dimensional radi-
al coordinates is

—neo/m —2+n vo/(, m+m +n ) (1.6)

the asymptotic region defined by r —+ ~ will also corre-
spond to an asymptotic region in terms of r if e is
asymptotically constant, or if e —r', where
a (m&m +n l&n, but not otherwise. If e is asymp-
totically constant then asymptotic flatness of the
(m +2)-dimensional metric implies asymptotic fiatness of
the higher-dimensional metric, but of course differences
are possible in other circumstances.

The purpose of this paper is to extend the results of I
to include a higher-dimensional cosmological constant,
thereby classifying all the spherically symmetric solutions
which Kim and Cho sought to investigate. In fact, the
model we will investigate is somewhat more general than
that of Kim and Cho because we will allow the internal
space to possibly have curvature (XWO). Also, although
we are primarily interested in the case in which g;.
represents a two-sphere, we shall continue to take it to
represent an arbitrary m-dimensional Einstein space, as
this leads to a symmetry in the equations which will be-
come apparent. This symmetry is a relic of the symmetry
between the two Einstein spaces in (1.1): we could equal-
ly well choose the I-dimensional space to be the internal
space, while the n-dimensional space corresponded to the

e m co/nr r m /n (1.7)

instead of (1.3d).

II. THE DYNAMICAL SYSTEM

Rather than working directly with the higher-
dimensional action, as Kim and Cho did, we will use the
equivalent field equations derived from the dimensionally
reduced action (1.3): namely,

4K 2

(a.~a~+g.~v ), (2.1a)

1
a (g m aV

2 ao. (2.1b)

We will follow Refs. [10,12J by choosing coordinates

g &dx dx ~=e "( dt +r dg —)+r g, dx 'dx J, "

where u =u(g) and r=r(g). In addition, we will define
the functions g, rI, and y by

g= u + (m —1)lnr, (2.3)

g=u+m lnr—

y=u+m lnr—

2&m +n ~o
m&n

2&n vo

m&m+n

(2.4)

(2.5)

With these choices the field equations become

g"=(m —1) Ae ~+n(n —1)ie "—2Ae x,
(mm

—1)ie ~+(n —1) Xe "—2Ae x,
g"=m(m —1)ke ~+n(n —1)Xe "

(m+n+1)2Ae x

I+n
with the constraint

(2.6a)

(2.6b)

(2.6c)

based in an (n+2)-dimensional spacetime with a confor-
mally rescaled metric

d&2 r 2m/n( e Pdt +e 2~dr +e2cug dy ady b)

m(m+1)g' +2mng'rI'+n(n+1)g' —2(m+n)( g'm+ g'n)g'+(m+n)(m+n —l)y'~

+m(m —1)Ae ~+n(n —1)ke "—2Ae &=0 . (2.6d)

These equations can be recast in the form of a five-
dimensional autonomous system of first-order differential
equations. If we define variables V, O' X, Y, and Z by

(2.7)
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EpV'= 8 —Pm+n
8"= V8',

(2.8a)

(2.8b)

n ~2 2 m —1X'= (n —1)e Z — W — P,
m

Y'= —(n —1)e,Z P, —
Z'= YZ,

where

(2.8c)

(2.8d)

(2.8e)

then the constraint (2.6d) can be regarded as a definition
of e &. Eliminating the e ~ terms from (2.6a) —(2.6c) we
therefore obtain the system

Although the phase space is five-dimensional it is
nonetheless amenable to analysis because of various sym-
metries. Equations (2.8b) and (2.8e) ensure that trajec-
tories cannot cross either the 8'=0 or the Z =0 sub-
spaces. These two subspaces correspond physically to the
cases in which A=O and X=O, respectively. The A=O
(IV=0) system was studied in I. There is a trivial sym-
metry between trajectories in the 8'&0 and 8'&0 por-
tions of the phase space, and between trajectories in the
Z &0 and Z) 0 portions of the phase space. This merely
rejects the fact that the equations are invariant under
e+~—e +, and under e "~—e ".

If 8'=0 then

P—:m(m+1)X +2mnXY+n(n+1)Y
—2(m+n )(mX+n Y) V

+(m +n )(m +n —1)V2,

1, k&0,
el= 0,

(2.8f)

(2.8g)

1V= (mX+n Y+c, ),m+n —1

while if Z=0 then

Y= [ —mX+(m+n ) V+cz],1

n+1

(2.9)

(2.10)

aild

1, A&0,
e2= -0, A=O,

—1, A&0.
(2.8h)

where c& and cz are arbitrary constants. Thus in each
case a further degree of freedom can be integrated out,
giving rise to a three-dimensional autonomous system.
Another special surface in the phase space is the hyper-
boloid defined by A, =O, or

m(m+1)X +2mnXY+n(n+1) Y —2(m+n)(mX+n Y)V+(m+n )(m+n —1)V +n(n —1)eIZ e28' —=0 .

(2.11)

This surface once again partitions the phase space into
distinct regions which trajectories cannot cross.

Further simplifications arise if any two of the constants
A, A, , and A, are simultaneously zero. In each of these
cases it is in fact possible to integrate the field equations
exactly. This was done in I for cases (i) A=O, X=O [22]
and (ii) A=O, A, =O. In both cases all solutions were
found to have naked singularities, except for some partic-
ular choices of the integration constants. In the X=O
case this combination merely gave the trivial case of the
Schwarzschild solution with an everywhere constant sca-
lar field. In the A, =O case a new solution with a regular
horizon was obtained, but it was not asymptotically flat.
By symmetry this latter solution of course corresponds to
the Schwarzschild solution that we would have obtained
if we had chosen to dimensionally reduce to n +2 instead
of m+2 dimensions, as may be readily seen by trans-
forming to the coordinates defined by (1.7) and (1.8).

The new case which arises here is (iii) X, =O, A. =O. This
case is actually very similar to cases (i) and (ii), especially
when we observe that if we define l = —(m + n ) and

—2AA=
(m+n )(m+n+1) (2.12)

then Eqs. (2.6) become

g"=(m —1) Ae ~+l(l —1)Ae2~,

X"=m (m —1)i,e ~+ (1 —1)2Ae2~,

m(l —1)g' 2mlg'X'+ —l(m —1)X' 2+(l+m )c',

+m(m —1)(m+l —l)Xe2&

+l(l 1)(l+m —1)Ae'~—=O,

(2.13a)

(2.13b)

(2.13c)

if X=O, where c2 is the integration constant defined by
(2.10). This system is in fact identical to the A=O system
studied in I if we make the replacements g —+g, l~n,
A~X, and c2 —+cl. Thus if X=O also, then the solutions
for e~ and e~ can be read off from Eqs. (4.1) of I, and the
other metric functions derived. We find
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CA1e&= exp( —'Cg),
2 (2.14a)

m+ne&= A, exp (x+c3k)m+n+1

CA1
eu A mA n(m —1)/m exp —C+mc +(m —1)c

(m+ n )/[m(m+ n+1) ]

(2.14b)

(2.14c)

CA1
exp

A n/m
0 2

1—C —c0

(m+ n )/[m(m+ n+1)]

(2.14d)

2KO
exp

&n(m +n)
CA1

exp —C+ —(m+n)(mc —c )
2 n 3 0

1/(m+n+1)

(2.14e)

where

b, —:(m + n + 1)[A —A, exp(Cg) ], (2.14'
1C0= n+1

(m+n+1)nc2
+ +mc3 (2.1411)

while A0, A1, A2, and c3 are arbitrary constants, C is a
nonzero constant given by

—,'(n+1)(m+n )C =n(m+n+1)c2+m(m+n ) c3,

Some restrictions on the signs of the various constants,
and on the range of g will be imposed by the requirement
of reality when roots are taken in the expressions
(2.14c)—(2.14e) [23]. If we replace the coordinates (2.2)
by the more standard Schwarzschild-type coordinates

and the constant c0 is defined by

(2.14g) dX~ adX~ P e2udt2+e2vdp. +I" g; dX 'dX

then e" is given by (2.14c) while

(2.15)

mAO(b. ICA, exp[( —,'C+c3)g]J +")' '

(m + n )[CA, exp[Cd]+( —,
' C —co)(m + n + 1) '&]

(2.16)

and g is defined implicitly in terms of r by (2.14d).
Similarly to cases (i) and (ii) [10] we find that the limit

g —+ —oo corresponds to r~O except in the special in-
stances when c2 =(m + n )c3 =

—,
'

~
C

~
(and hence

co= —'~C ), for which r~const, suggesting the possible
presence of an horizon. This indeed turns out to be true:
(2.14d) can be inverted and if we make the choice

- n/(m+n)
A1= A

Am+1A n '
0 2 A0

(2.19)m+n

Similarly the limit g~+ ~ also corresponds to r ~0 ex-
cept for the special cases when c2=(m+n )c3= —

—,
' C~

(and hence co= —
—,'~C~), for which r —&const. Equation

(2.14d) can once again be inverted, and we retrieve the
solution (2.18) if we now make the choice

n/(m +n)

A m+1A n
1 0

A0

m

m+n

then we find the solution

(m+n) C
m ( m + n + i ) /( m + n )

ds = —r Ddt + +r g-.dx 'dx JdT

g@2m /(m + n)

where

(2.17)

(2.18a)

(2.18b)

The spacetimes thus have naked singularities except in
the special cases above.

An asymptotic region is defined only for A(0 (i.e.,A) 0): r ~ oo when Cg=ln~A/A i ~. The asymptotic
form of all the A (0 solutions (2.14) is given by

2u 2 2v —2m/(m +n) 2zo. m+n /+m +n

(2.20)

exp
2v m+n )(o

m&n
m+n

while the scalar field is given by
(m +n)/n

r . (2.18c)

Thus none of the solutions is asymptotically Aat. The
general solution (2.14) holds for CAO. If one sets C=0
while integrating the differential equations one finds a
solution which corresponds to the C =0 limit of (2.18).
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III. GLOBAL PROPERTIES OF SOLUTIONS

The analysis of the full five-dimensional phase space is
greatly simplified by the fact that the only critical points
at a finite distance from the origin are those for which
8'=0, Z =0, and P =0, as can be quickly seen from Eqs.
(2.8). This is equivalent to saying that the only critical
points are those for which all three constants A, A, , and A,

are identically zero. Since A=O these critical points are
of course precisely those which have already been dis-
cussed in I. For each c I and for each X0 such that

1/2
(m 1)( +n)

(3.1)m(m+n —1)

values for trajectories in the first (third) quadrant, as well
as two zero eigenvalues. The zero eigenvalues corre-
spond to degeneracies in the 8' and Z directions which
arise because at the linearized level the relations (3.4)
hold approximately. Thus each critical point in the first
quadrant is a repellor for a three-dimensional set of tra-
jectories, while each point in the third quadrant is simi-
larly an attractor for a three-dimensional set. Thus most
trajectories end at r =0. However, for each c,AO there is
a three-dimensional set of trajectories which approach
the same point H [cf. Fig. 1(b)], corresponding to a regu-
lar horizon. Hence there is a four-dimensional set of tra-

we take Y0 to be given by the solution of the quadratic
equation

n(m —1)Y0 2m—nXD YQ+m(n —1)XD+(m+n )c, =0 .

(3.2)

The critical points are then given by

X=XD, Y= YQ, Z=O, 8'=0,
1

(mX0+nY0+c, ) .m+n —1

(3.3)

We have of course chosen the parametrization so that c
&

coincides with the integration constant defined by (2.9).
The surface defined by (3.1)—(3.3) is a cone within the
8'=0, Z =0 subspace.

The pattern of trajectories in the 8'=0, Z =0 subspace
is extremely simple because this is just the special case (i)
discussed above: the trajectories are the straight lines
[10]

Y= (X+k),
m —1

mX 1 mnk +ci
m —1 m+n —1 m —1

(3.4)

where k is an arbitrary constant. In Fig. 1 we sketch the
projection of these trajectories onto the X, Y plane. The
bold lines correspond to sections through the cone of crit-
ical points defined by (3.2) and (3.3). As discussed in I,
the critical points correspond to the limit r —+0 except for
the special trajectories with

c, =mkAO . (3.5)

In these cases one critical point corresponds to the hor-
izon of the trivial Schwarzschild solution, and c, is in
fact proportional to the Schwarzschild mass. If c

&
& 0 the

critical point corresponding to the horizon occurs in the
first quadrant, as in Fig. 1(b), while the continuation of
the line Y=(mX+c, )/(m —1) to the third quadrant
gives the negative-mass Schwarzschild solution of the
same absolute mass. If c& )0 then the roles are reversed
and the critical point corresponding to the horizon is in
the third quadrant.

The eigenvalue equation for small perturbations about
the critical points yields three positive (negative) eigen-

FIG. 1. The projection of the A=O, A, =O phase space onto
the X, Y plane: (a) c& =0; (b) c&%0. The broken line corre-
sponds to flat space in (a) and the Schwarzschild solution in (b).
The bold lines denote sections of the A=O, A, =O, X=O cone.
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jectories with a regular horizon in the full phase space.
To determine the global properties of the solutions it

only remains to investigate the critical points at infinity.

X=p, sinO, cosg, ,

Y =p, sinO, sing, ,

Z =picosOi

(3.6)

A. Critical points at in6nity in the A =0 subspace

The critical points at infinity which lie in the A=0 sub-

space [with W=O and V determined by (2.9)], were of
course obtained in I. There we found it useful to define

spherical polar coordinates

and to then bring the surface at infinity to a finite dis-
tance from the origin by the transformation

(3.7)

If we define a coordinate r by dr=p&dg=p&(1 —
p&) 'dg,

then on the sphere at infinity, i.e., at P, = 1, dp, /dr=0
identically while [24]

dOi

d~

r

=cosO, . (n —1)e,cos 8, cosP, —sing, —sin 8, sing, +P, cosp ) +sing ) (3.8a)

1

sinO&
(n —1)—e,cos 8, cosP, +—sing, +sin O,P, sing, —cosP,

El . . 2
— Pl 1

(3.8b)

+n(m —1)sin P&] . (3.8c)

where

1 2
P& = [m(n —1)cos P, —2mn cosP, sing&

Pl +71 1
8, =arctan[+(2n 2n +—I )'~2],

(3.11a)

(iii) If X)0 then there are four critical points, which
we will denote X& to N4, which are located at

Four sets of critical points are found.
(i) Four critical points, which we will denote L, to L4,

are located at or

n —1
P =arctan

1 n

'7l
0 =—

1

(3.9a)
X=+~, n —1 XX, Z=+-

n n
(3.11b)

or

mn+[mn(m+n —1)]'
P, =arctan

n m —1
These points lie in the A, =O subspace.

(iv) If X)0 then there are four critical points, which
we will denote P& to P4, which are located at

mn+[mn(m +n —I)]'~
n(m —1)

X, Z=O.
(3.9b) 8, =arctan [+[2(n —1)( +mn —1 ) ]'

5~
4 0 4

(3.12a)

These are just the end points of the one-parameter family
of critical points corresponding to the A, =O and A, =O.

(ii) Two critical points, which we will denote M& and
M2, are located at

or

X=+~, Y=X,
(3.12b)

8& =—,P& =arctan (3.10a) [(n —1)(m + n —1)]'~

or

X=+~, Y= X, Z=O.
m —1

(3.10b)

These of course correspond to the end points of the tra-
jectories which lie inside the cone in the A, =O subspace
(cf. Fig. 1). They lie in the portion of the phase space
with A, &0.

These points lie in the portion of the phase space with
A, &0.

The pattern of trajectories on the A=O sphere at
infinity are sketched in Fig. 2. Although these trajec-
tories are unphysical it is helpful to sketch them since by
continuity arguments they will determine the behavior of
the physical integral curves which lie within the sphere at
infinity but near its surface. We will delay a discussion of
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the nature of the critical points until we have listed a11

the other ones.

B. Critical points at in6nity in the A. =0 subspace

The critical points at infinity which lie in the A. =O sub-
space [with Z=O and Y determined by (2.10)], can be
studied in a similar fashion to those of the A=O sub-
space. In particular, if we now define spherical polar
coordinates pz, Oz, $z by

V =pzsinOzcosgz,

8"=p~cos02,

X=pzsinOzsingz,

and similarly make a transformation

Pz=Pz( 1 —Pz) ', 0 Pz 1

we find that, at p2=1,

(3.13)

(3.14)

d Oz cosfz slnfz= —cosO~ 62cos 0~ + +sin Oz cosgz+Pz cosgz+ singzd7. m+n m m
(3.15a)

d Pz 1 singz
E'2COS t92d~ sin02 m +n

COsfz + sin OzPz sin(bz— COSfz (3.15b)

O f7/,
I

2 '

FIG. 2. The A=0 sphere at infinity: (a) A, & 0; (b) A, & 0. (The case sketched here is that for m =n =2, but the features of the phase
space are the same for other m and n. )
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where d r =p2d g =P 2(1 —P2) 'd g and

P2= [(m —1)(m+n)cos $2n+1
02=arctan +

1/2
m+n m+n+1

m+n+1 m+n
(3.19a)

2m —( m +n )cosg2sing2

+m(m+n+1)sin Pz] . (3.15c)

$2 =arctan

or

m+n
p1 +n+1

There are once again four distinct sets of critical points.
(i) Four critical points, which we will denote L5 to Ls,

are located at
m+v+1

m+n (3.19b)

7T0 =—

$2 =arctan
m(m+n )+[m(m+n )(n+1)]'~

m(m+n+1)

(3.16a)

]. /2
fly + n + 1

m+n

These points lie in the A, =0 subspace.
In Fig. 3 we sketch the pattern of trajectories on the

A, =O sphere at infinity.

m(m+n+1)
m(m+n )+[m(m+n )(n+1)]'

W=O . (3.16b)

m —1
8 =—,P =arctan2 2' 2 (3.17a)

Similarly to the points I.
& 4 these points are the end

points of the one-parameter family of critical points cor-
responding to A =0 and A, =0. In the full five-
dimensional phase space the points L, , 4 and L5 8 will
be members of a one-parameter set of critical points
which correspond to the intersection of the A=O, A, =O,
X=O surface with the sphere at infinity.

(ii) We of course reobtain the critical points M, and
M2 which lie in the A, =O, A=O subspace. In terms of 02
and $2 they are located at

+Zz= —',
E

(3.20)

V=, W=+U +w
C

and examine the limit c—+0. The differential equations
become

C. Other critical points at in6nity

In the fu11 five-dimensional phase space we can of
course define five-dimensional spherical polar coordinates
similarly to (3.7) and (3.13), and proceed in a similar
fashion. However, the expressions one obtains are very
cumbersome, and since it is impossible to sketch the
four-sphere at infinity the spherical polars method pro-
vides no advantages over the more wide1y used Poincare-
sphere mapping technique. We will therefore use the
latter approach. We set

y —3'

E,

or

X=+~, V= X, W=O.
Pl 1

(3.17b)

GC

d7

dy &2 2 2 n+ = w y —(n —1)e,z2 1+ y
fPl pyg

w + (n —1)e&z —(m —1)—
m Pl m

(3.21a)

(iii) If A(0 then there are four critical points, which
we will denote Q &

to Q4, which are located at +p (m —1) —1 (3.2 lb)
1/2

2(n+1)02=arctan +
m+n

=~ 5&
t 4

(3.18a) dz 62 2 n PZ+ = w z+z y — (n —1)e,z' +(m —1)d'T vl fPl Pl

or

X=+-, V=X, W=+X n+1

1/2

(3.18b)

dU 2 U 1+ —E2W
flan Pl +n

+p (m —1) —1
f71

(n —1)e,z U

(3.21c)

(3.21d)

These points lie in the portion of the phase space with
A, &0.

(iv) If A (0 then there are four critical points, which
we will denote R, to R4, which are located at

dw
d7.

E2=w U+ w (n —1)e,z w+(m —1)
PPZ P7Z

(3.21e)
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where

p—:m(m+1)+2mny+n(n+1)y
—2(m+n )(m+ny)v+(m+n )(m+n —1)U

points L
& 8 to the one-parameter family of critical points

which coincide with the intersection of the A=O, A, =O,
A, =O surface and the sphere at infinity. We shall denote
the whole set by L(y), where

(3.21f)

dr=E 'dg, and the overall plus or minus sign refers to
the choice of the same sign in (3.20).

In addition to the critical points given in Secs. IIIA
and III B we find three more sets of points.

(i) The first set is just the extension of the critical

mn —[mn(m+n —1)]'
n (m —1)

mn+ [mn(m+n —1)]'
n (m —1)

The points are located at

(3.22)

X=+~, Y=yX, Z =0,
( m + n )

'
( m + ny )+[2mny n(—m —1)y ~ —m (n —1)]

'

( m+n )'~ (m+n —1)

(3.23)

FIG. 3. The X, =0 sphere at infinity: (a) A & 0; (b) A )0. (The case sketched here is that for m =n =2, but the features of the phase
space are the same for other m and n. )
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(ii) If A & 0 and X & 0 then there are eight critical
points, which we will denote Si to S8, located at

X=+~, I =X,
(3.24)

V=X, W'=+X(m +n )'

These are points for which P =0 (but A.AO). They occur
in the portion of the phase space for which k & 0.

(iii) If 4 &0 and X&0 then there are eight critical
points, which we will denote Ti to Ts, located at

m+1

1/2
+X m+1
m n 1

(3.25)

W= [( m+1)(m+n )]'~+X

+1

+y
E,

(3.26)

and investigating the resulting differential equations as
E~O, similarly to above. (Since the W'=0 case corre-
sponds to the spherical polars analysis of Sec. IIIA, we
know that there are no critical points at infinity with
both W'=0 and X=0.) The analysis reveals that there
are no new critical points in addition to those already list-
ed.

These points lie in the X=O subspace.
To complete the analysis we must also check the possi-

bility of the existence of critical points at infinity with
X=0. This may be done, for example, by setting

D. Asymptotic form of solutions

We find that as trajectories approach the various criti-
cal points at infinity (~go=const, except for the points
L(y) when g~ —oo for X~+ ~, and g~+ ao for
X~ —~. The points L(y), which lie on the edge of the
A=O, X=O, A, =O surface, of course correspond to r ~0
(the possibility r —const being excluded at infinity).
These points have exactly the same properties as the cor-
responding points at a finite distance from the origin: the
points with X)0 (X & 0) repel (attract) a three-
dimensional set of trajectories. However, the trajectories
in question here are the entirely unphysical ones which
are confined to the surface at infinity.

In the remaining cases we find that the limit
/~go=const corresponds to r ~ ~ for all points except
Si 8. For these points r~const, ~o. -const, and al-
though the metric functions diverge the curvature invari-
ants are finite, indicating the presence of an horizon.

In Table I we display the asymptotic form of the
metric functions (2.15), and of the scalar field, for integral
curves which approach each of the remaining six sets of
points [25]. In order to use these properties to classify
the various solutions we must first of all determine the
nature of the various critical points. It is straightforward
to evaluate the ei.genvalue spectrum for small perturba-
tions at infinity if the coordinates (3.20) are used. In
Table II we display the eigenvalues for the points with
X)0. For the corresponding points with X &0 the sign
of the eigenvalues is simply reversed. Thus the dimension
of the set A of trajectories which are attracted, as given
in the third column, becomes the dimension of the set of
trajectories which are repelled for the corresponding
points with X &0.

With regard to the points M& 2, N, 4, and P, 4 the
picture of the phase space that emerges is unchanged
from that of I. The dimension of A is greater by one
than the dimension of the corresponding set of trajec-
tories in I. However, this is merely due to the effect of
the "redundant" coordinate V which we were able to in-
tegrate out in I. The important point to note is that none
of the trajectories with nonzero A are attracted to any of
the points M, 2, N, 4, and P, 4. In particular, the
points M& 2, which have realistic asymptotics, are not
reached.

With regard to the trajectories for nonzero A, the first
point to note is that if A & 0 then there are no solutions

TABLE I. Asymptotic form of solutions for trajectories approaching critical points at infinity which
correspond to the limit v~ ~.

M12
&1—4

&1-4
Qi-4
&1—4

T1—8

Values of A, k, A,

A=O, A, =O, A, &0
A=O, A &0, X=O
A=O, X&0, A, &0
A&0, A. =O, X&0
A&0, X=O, A, =O
A&0, k&0, A, =O

e2Q

Const
p 2

2n/(m +n)

2(m +n)!n

p 2

p 2

e2U

Const
2m /n

Const
Const

r —2m /(m+n )

—2r

2K'

Const
&m+m+n /+n

m't/n /'t/m + n

m+m+n /+n
m t/n /+m +n

Const
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for which an asymptotic region exists. The trajectories
simply leave the A =0, A, =0, A, =0 surface in the X & 0 re-
gion of the phase space at a point corresponding to a
singularity (with r =0), or exceptionally to a horizon, and
return to a similar point on the A =0, A, =0, k =0 surface
in the X &0 portion of the phase space. This is identical
to the case of the A, & 0 and A, & 0 trajectories with A=0,
as was observed in I.

If W & 0 then the points R, 4 are reached by all trajec-
tories with both A, ~ 0 and A, ~ 0, and by some trajectories
in each case that at least one of the constants k or A, is
negative. In particular, all possibly interesting Kaluza-
Klein black-hole trajectories, with A, & 0 and A, & 0, end at
these points. Most of these trajectories begin at a naked
singularity, but a four-dimensional subset begins on a reg-
ular horizon, as discussed above. We see from Table I,
however, that none of the solutions is asymptotically Aat
and that the scalar field diverges as e " -r~&«&~+&.
Thus no new regular black-hole solutions are obtained.

The trajectories which reach the points Q, 4 and T,
do not provide any new solutions of immediate physical
interest since the spacetimes have A, & 0 in the first case,
and A, &0 in the second case. It would appear that the
separatrices of trajectories which reach Q, 4 divide I, (0
solutions which reach the points R

& 4 from other A, &0

trajectories which have no asymptotic region, similarly to
the A & 0 case. By symmetry the trajectories which reach
T, s similarly divide the X(0 solutions into two such
classes also. Given the large dimensionality of the phase
space, a complete characterization of all solutions with
X & 0 or A, & 0 is not immediately obvious though, particu-
larly since the nature of the separatrices of trajectories
which end on the points S, 8 seems obscure. Since none
of these solutions is physical, however, they will not con-
cern us here.

IV. CONCLUSION

As expected from the no-hair theorems a model con-
taining just Einstein gravity plus a cosmological constant
in higher dimensions leads to no nontrivial solutions in
four dimensions which represent an asymptotically Rat
black hole with a regular horizon, if metrics of the form
(1.1) are considered. If A(0 solutions with a regular
horizon do exist, but they are not asymptotically Oat and
the scalar field corresponding to the radius of the extra
dimensions diverges at spatial infinity (cf. points R, ~ in
Table I). Most solutions also have a naked singularity,
however. The solutions of Kim and Cho I14] are

TABLE II. Nature of critical points at infinity. In the second column the eigenvalues for small per-
turbations which are degenerate have the degeneracy listed in parentheses. In the third column the di-
mension ofA, d~, is listed. The values ofy and U listed are defined by (3.22) and V= vX in (3.23).

Eigenvalues (with degeneracies)
Nature of the set A

of trajectories attracted

&i —4

P1 —4

Qi —4

0, (2);2;y;u

—1,(3);,(2)
1

'm —1'
—(n —1) 1 2(3)' ——

n
' 'n'n

1/2—I m+n —91+
2 m+n —1

—1,(2);
1

' m+n —1

-1,(2);' n+1'

1/2
1

1
+9

2 n+1
—(m +n +1) —2 —1

, (3);m+n ' ' m+n ' m+n

—2, (2) —1 1,(2)

—(m +1) —2(2)'
m

' '
m

1
[ —(m+1)&v'(m +1)(m +9)]

2m

All A=O, A, =O, A, &0 trajectories

All A=O, A. &O, A, =O trajectories

All A =0, A, & 0, A. & 0 trajectories

Separatrix of trajectories in por-
tion of phase space with A&0,
X&0]

All A & 0, k ~ 0 trajectories; 5-d
subset of A&0, A, &0 trajectories
Separatrix of trajectories in por-
tion of phase space with A & 0,
A, &O

Separatrix of trajectories in por-
tion of phase space with A&0,
A, &0
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discounted because they necessarily lead to a choice of
A, ~0 (cf. the Appendix).

This result may seem superficially discouraging for
higher-dimensional theories. After all one would expect
uncharged black holes to exist in the Universe as a result
of stellar collapse, and without extra charges there is no
obvious way of including a scalar field corresponding to
the compactified dimensions, while at the same time cir-
cumventing the no-hair theorems. However, one could
optimistically take the view that the problem is just an
artifact of the extremely simple nature of the model we
have considered here. The inclusion of dilaton fields, or
of additional powers of the Riemann curvature in the
higher-dimensional action, or other even more sophisti-
cated schemes, may lead to more interesting results.

—8 8 3 8
2A 4A 3 8

mB 2AB

8
28

8 A 8
48 2 8

mA
2rA

exp
m

4cxKo

—2AA
exp

m

—4o.vo.

, "(1—XA)+ '
p2 2r 8

4(xKcT

(A2a)

(A2b)

(A2c)

APPENDIX

1 . 8 A 2m
KO + KCT +

2 8 2 r
= —aAA exp

We will present here the corrected version of the in-

tegration of the field equations Kim and Cho [14] at-

tempted. We will use their coordinates, which are similar

to (2.1S) for the physical part of the higher-dimensional
metric:

(A2d)

is equivalent to d /d p,

r —I3e 2yKa
(A3)

where an overdot
a=&n /&m+n.

Following Kim and Cho [14] we adopt the ansatz

dsD =exp2=
( Bdt + A—dr2

m&n(m +n)

where p and y are constants. By adding (A2b) and A /B
times (A2a) one then obtains an equation which may be
integrated to give

+r g,~d~ 'dX J) AB =r~~, (A4)

4KO+exp g,5dy 'dy
n(m+n)

(A 1)

where 5=1/(my) . (We have used the freedom to re-
scale t to absorb an unphysical constant. ) lf we now sub-
stitute (A4) into (A2c) we obtain

where A = A(r), B=B(r), and o. =o(r), but we retain
our definitions of o. and A, which difFer from those of
Kim and Cho by a factor of 2. Rather than restricting g, .

we shall continue to take it to be an arbitrary m-
dimensional Einstein space metric [cf. (1.1b)]. The inter-
nal space is Ricci fiat (X=O).

The Einstein equations with a A term in D dimensions
for the metric (Al) are

m —) —5)
dI'

exp
40!Ko

(AS)

This equation can be integrated, taking account of (A3),
and we find

(m —1)A,B=r
6+m —1 r 5+m —1

2Ar
m [fl+ m+1 —2a/(m]/)] (A6)

where M is an arbitrary constant, with a similar expres-
sion for A on account of (A4). To check how the various
constants are restricted by the constraint equation we
must now substitute our solutions for 2, 8, and o. back
into (A2b) or (A2d). After a little algebra (A2b) becomes

5(m —1)Xr 5

while (A2d) similarly becomes

(m —1)Xr
2p

1 A p2a/(my) 2[5—a/(my)] 0
my m

p2 a /( m y )r 2 [5 —a /( m y ) ] —0
2p m

(A7)
If m & 1 there are two possibilities for satisfying each of
these equations.



SPHERICALLY SYMMETRIC SOLUTIONS IN DIMENSIONALLY. . . 1113

1. A. =O, a= 1
my

Thus

tx=my, P =(m —l)(m+n)X/(2A)

Thus

2v'm+n ao.
exp

m&n 13
' (A9a)

2&n Iro.
exp

m&m+n

' 1/2

(m —1)(m+n )
2A

(A12a)
and the (m +2)-dimensional metric is

g p X Xd d

where

(A9b)

where

+ r gJ~dX dX

and the ( m + 2)-dimensional metric is

dr
g dX dX ~= —r ' +n~ "ddtaP

(A12b)

—2(m+n )A

m (m+n+1) m(m+ n + 1)/n (A9c)

We therefore simply recover the solution (2.18), up to
some trivial rescalings. Alternatively, if instead of (2.17)
and (2.19) we make the choices

A m+1A n A
' nj(m+n)

o 2 m+n
A m+n m

(A10)

when co =ci = (m + n )c3 =
—,
'

~
C

~
and

n/'(m +n)
Aq

Ao

(m+n )A

A m+1An '
0 2

m+n
(Al 1)

when co =cz =(m + n )c3 = —
—,
'

~
C ~, then instead of

(2.18a) and (2.18b) we have (A9b) and (A9c) with
M =C/(m +n —1).

p( +„)/„n (m —1)A,2

m (n+1) r m (, n +1)/n (A12c)

We require that k(0 (and hence A (0) in order that the
metric have the correct signature. Consequently this
solution is just a special case of the solutions which ap-
proach the critical points Q& 4 at infinity [cf. (3.18)]. A
solution also exists for I, & 0, A )0, and
0(r ( I

—m (n+1)M/[n (m —1)A.]]" ( '", if M is
taken to be negative, but this solution of course has no
asymptotic region.

Kim and Cho required A, = 1 and m =2 to obtain
black-hole-type solutions. However, this possibility is not
admitted by the solutions (A9) and (A12) (if we also re-
quire that an asymptotic region be defined).
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