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We consider here a nonperturbative mechanism for the production of Higgs particles through
vacuum excitations. It appears that it could already have been seen in “chiron” events, “halo”
events, and some other signals in high-energy cosmic-ray collisions.

I. INTRODUCTION

The search for Higgs particles has been one of the
prime interests of present and future accelerators, since
the standard model of weak and electromagnetic interac-
tions is incomplete without the Higgs bosons being
discovered. Conceptually this is particularly important
since the Salam-Weinberg symmetry breaks spontaneous-
ly. We shall give here a quantum-field-theoretic descrip-
tion of Salam-Weinberg-symmetry breaking as vacuum
realignment, extend it to include temperature dependence
and identify the possible production of Higgs particles
through local vacuum destabilization, including some ex-
perimental signatures in cosmic rays.!

We organize the paper as follows. To fix our ideas, in
Sec. IT we give a quantum description of phase transition
with U(1) symmetry through construction of a nonpertur-
bative vacuum as a coherent state and next generalize it
to Salam-Weinberg phase transition at zero temperature.
In Sec. III we shall bring in the idea of temperature and
construct the “thermal vacuum” using the techniques of
thermofield dynamics of Umezawa, Matsumoto, and Ta-
chiki.2 The methodology used here is variational and
nonperturbative with a self-consistent determination of a
temperature-dependent Higgs-boson mass and the
effective potential. In Sec. IV we look into the possibility
of local heating of the vacuum. The discussions here will
be qualitative. In Sec. V we discuss the experimental sig-
natures for such a process. We shall also consider
cosmic-ray events, such as “chirons,” “halos,” and muon
anomalies from the directions of Cygnus X-3 and Her-
cules X-1 in terms of local vacuum destabilization. In
Sec. VI we shall summarize our results.

II. SPONTANEOUS SYMMETRY BREAKING:
A QUANTUM DESCRIPTION

Let us first consider here the quantum description of
the conventional spontaneous symmetry breaking (SSB)
for U(1) symmetry: The Lagrangian here is

L=(D,$)*(D"$p)—=V($)—LF, F" (1)

with

V(d)=—mp*¢p+Mop*$) . )

D,=09d,—igAd, is the covariant derivative. Classically,
when m?>0 symmetry breaking occurs with
(¢*¢)=m?/2A. To give a quantum description to SSB
of the  Higgs mechanism, let us write
¢=(1/V2)(¢,+id,) with ¢, and ¢, as real fields. Thus
the equal-time algebra

[$(x,1),d(y,1)*]=i8(x—y) (3)
is equivalent to
[¢[(X,1),d;j(y,t)]:i&ij&x“y) . (4)

This equal-time algebra is for interacting fields, as it
holds good for interacting operators' 3 and is consistent
with the expansions

1
V2,

#,(x,0)= [a(x)+a(x)'] (5a)

and
1/2

[—a(x)+a(x)'] (5b)

é,(x,0)=i

X

2

withaand a’ satisfying the commutation relation
[a(x),a(y) ]=8(x—y), (6)

and, for free fields, A, =(—V2+m?2)!/2, but here could be
arbitrary. The Lagrangian (1) has been normal ordered
with respect to |vac) defined by a(x)|vac)=0. Let us
now define a coherent state |[vac’) as®>

£f

=Ulvac) , (7)

172

[a(z)'—a(z)]dz ||vac)

N Az
|vac’) =exp EX

where U is a unitary operator. We wish to define an an-
nihilation operator corresponding to |vac’), such that

(z)|vac’) =0 . (8)

Clearly we then have
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n(z) = — L g/(z)=U¢iN(z)U !
1 = 1
— gan,y_ &
¢1 (z) 7 9)

Hence for the complex field ¢, the vacuum expectation
value (VEV) is given as

(Vac’|¢(z)|vac’)=7/é2 . (10)

The expectation value of the Hamiltonian density, us-
ing Eqgs. (1), (2), and (7), is given as

€= {vac’| T®|vac’)
=—%m2§2+%§4 . (11)

A minimization of the energy density €, with respect to &
now gives the usual result
1/2

, (12)

m?
A

§=50=

which makes €, negative for m?2>0, thus demonstrating
that |vac’) is the ground state. This gives a description
of phase transition as a vacuum realignment at the quan-
tum level, which we shall use later to discuss Higgs-boson
production with local vacuum excitations. Let us now
reorder the Lagrangian (1) with respect to ¢’ operators.
Then we have, e.g.,

. . iy 86
D, $)* (D) =N (D, )" (D'¢))+ £ 54, 4¥

ig , "k
+7§§[A#(aﬂ¢>—AH(aﬂ¢ ), (13)

where N, denotes normal ordering with respect to ¢’
operators. Thus gauge bosons now have a mass g&,.
Similarly, the mass of the physical scalar field becomes as
usual V'2A&. Thus the conventional Higgs mechanism is
reproduced through reordering with respect to the new
quantum state |vac’).

We now consider the Salam-Weinberg theory. Here

L=—1F F**—1B B*+|D ¢I>*+¢ v"D b,

+2g "0, —g'B,)er —A(P deg +Trd Y, )~ V() .

(14)
In the above,
Vig)=—m2'¢p+Ns'¢)?, (15)
with ¢ being a complex scalar doublet given as
¢( +)
¢ = d)(o) (16)

For the present description of the Higgs mechanism, we
may now identify ¢'©) of Eq. (16) with ¢ of Eq. (1) and run
through the algebra as quoted. We then obtain that
|[vac’) defined in Eq. (7) is the description of electroweak
theory with SSB and
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0
(vac'|d|vac’) =
¢ £
V2
The tree-level potential is then given by, parallel to (11),

1 a0 Ay
V)= —om+ gt (17)

We can then see that the present gauge-covariant kinetic
term ID#¢>|2 with respect to |vac’) as in Eq. (13), now
yields the usual masses of the gauge bosons and Higgs
particles as

_ (g2+g'2)1/2

m » Mo 2 £ my=V2AE ,

_850
wtT Ty

(18)

where £°=(m?2/A)!/? is the field expectation value corre-
sponding to the minimum of the potential as in Eq. (17).
We note that the above results are identical with the re-
sults for the Higgs mechanism starting with an equation
parallel to Eq. (9).

III. TEMPERATURE DEPENDENCE OF VACUUM

We shall now consider the temperature dependence of
|vac’), where the above nonperturbative solution of field
theory corresponds to the zero temperature. This is clear
when we note that for any operator 0,

im Tr[exp(—BH)O ] _ (vac'|O|vac’)
B—w Tr[exp(—BH))] {vac'|vac')

, (19)

where |vac’) now is the state of lowest energy correspond-
ing to zero temperature. We shall now generalize this to
finite temperatures. For this purpose we shall use the
methodology of thermo field dynamics.> In the Appen-
dix, we summarize the salient features of the same. The
idea is to calculate an effective potential at finite tempera-
ture as an expectation value over a “thermal vacuum”
which at zero temperature reduces to Eq. (11). As shown
in the Appendix, the thermal vacuum is given by

|vac’,B)=U(B)|vac’) , (20)
with

U(B)=exp(B'—B) , 21)
where thermal modes are created with?

B'= [0(k,B)a(x)"a(—k)'dk . (22)

In the above the operator a(a’) are the annihilation
(creation) operators in the extra Hilbert space and satisfy
the same quantum algebra. We note that |vac) of the
Appendix is replaced by |vac’) here, and we consider the
thermal excitations over |vac’), the stable vacuum after
Salam-Weinberg phase transition at 77=0. For bosons,
the function 6(k,f3) is given by?

1
exp[Bw(k,B)]—1°

corresponding to the Bose distribution of the number

sinh?0(k,B)= (23)
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operator a'(k)'a’(k) for the physical particles and com-
mutator algebra. The Bogoliubov transformation corre-
sponding to Eq. (A6) becomes

(k,B) cosh@(k,B) —sinhé(k,B) k)'
a(—kpB" —sinh6(k,3) coshé(k,pB) —)f
(24)

A few remarks regarding construction of thermal vacu-
um as in Eq. (20) may be relevant. Clearly, at zero tem-
perature, with = oo, the Hilbert space consisting of only
physical particles decouples in the extended Hilbert
space. Further, |vac’,) contains Higgs-particle excita-
tions as is clearly seen from Egs. (21) and (22). In princi-
ple we should include the gauge bosons and fermion exci-
tation as well in BY. As a first approximation we ignore
J

wo(k,B)*+k*+3AE—m

these channels to illustrate the qualitative features and
possible experimental signatures with only the Higgs sec-
tor.

As is clear from the Lagrangian in Eq. (14), and the
fact that |vac’,B) contains only ¢] quanta, the contribu-
tion to energy density will come from ¢}-dependent terms
only when expectation value of the Hamiltonian with
respect to thermal vacuum is taken. We thus have the

expression for the effective Hamiltonian density T as
TH=1 ¢ 2+ vﬂm+§¢7
+(30E2— 2+ = §4 m? (25)

The energy density at temperature 3 now becomes

V(€,B)=e(B)={vac',B| Tq|vac’,B) =127 3]'
(27m)~ 3f
where
o(k,B)=(K*+my(B))'/?, 27)

with mg(B) being the Higgs-boson mass at temperature
1/B. Equation (26) is an implicit definition for the
effective potential with the parameters to be determined
self-consistently as explained below.

In the thermo field method, temperature-dependent
field theory needs the physical mass of the Higgs particle
as input while using the distribution function in the cal-
culation of temperature-dependent effective potential as
in the right-hand side of Eq. (26) through w(k,B). At
finite temperatures Lorentz invariance is broken and thus
mass is not well defined. We shall, however, still follow
the method of defining mass through the second deriva-
tive of the effective potential at its minimum along with a
self-consistency requirement. The mass of the physical
Higgs particles shall be taken as sz(g’ﬁ)/d§ZI§=§min,

where &, corresponds to the expectation value of the
field for the minimum of effective potential as on the left-
hand side of Eq. (26). However, for the calculation of
V(&,B) in Eq. (26) we need a value for the masslike pa-
rameter my(f3) on the right-hand side. We shall call the
mass on the right-hand side of Eq. (26) for such calcula-
tions as the input mass and the square root of the expres-
sion d2V(§,B)/d§2|§=§min after V(£,[3) is evaluated as the

output mass. Self-consistency demands that both be the
same. Such a determination of mass through self-
consistency is very much like solving the integral equa-
tion for self-energy in perturbative calculations with self-
energy both as an input as well as an output. The situa-
tion here is, however, technically different in the sense
that the effective mass enters on the right-hand side of
Eq. (26) for using thermal distributions, and on the left-
hand side through a second-order derivative of the poten-

dk

w(k,B){exp[Bw(k,B) ]—1}

1

2
Apa_m?,
w(k,B){exp[Bwlk,B) —1} +4§4 ) 5, (26)

[
tial at its minimum. We determine my(S) in Eq. (26)
through an iterative procedure until the input mass
equals the output mass. The methodology here is not a
loop calculation, but self-consistency simulates the
dynamical effects of something like loop calculations. We
note that this definition, however, is not the same as
through the pole of the propagator and an alternative
definition of the mass might give somewhat different re-
sults.

For numerical evaluations it is useful to rewrite Eq.
(26) in terms of the dimensionless quantities with the sub-
stitutions

B _ mg(B)
e TG
and
Yy =B& (28)
where £,=(m?/A)!/? is the value of &, for zero temper-

ature. The expression for the effective potential now be-
comes

Vigyy=eb | 2o 22y Ly ooy %}[uz,mz

4 2 2
=£&V1(zy) , (29)
where
L(zmy)= g [ 2leltr i -D] ) g
e 2 w(x){exp[yw(x)]—1}
and
Iz(zy}’)="‘L”fw x? dx (30b)
272 Yo wlx){exp[yw(x)]—1}
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with

o(x)=(x*+u>)"? . (30c)

In the above p is the Higgs-particle mass in &, units and
as stated is to be determined self-consistently. ¥V (z,y) as a
function of £ and B is accepted as the effective potential
at finite temperature only after an iterative determination
of u or my(pB) through self-consistency. The results of
the calculations are stated below.

In Fig. 1 we have plotted V' (&,8)—V (0,p) for different
temperatures. For T =T,~=2.1§,, the shape of the po-
tential changes, which thus determines the critical tem-
perature T, which is the same as obtained by Dolan and
Jackiw.® In Fig. 2 we have then plotted in curve I
my(B)* as a function of temperature 7. For T =T,
my(B)? goes to zero as expected. However, it again rises
for temperatures T >T,. We have also plotted in curve
IT of the same figure m*(B)=d V(£,B)/d &~ corre-
sponding to the ‘“mass square” of the effective Lagrang-
ian at £=0 for the double-well potential, which as expect-
ed is negative below T, and becomes the same as my(B)?
above T, as £,,=0. We have next plotted the order pa-
rameter £,;, as a function of temperature in curve III of
the same figure. The order parameter goes to zero as
temperature approaches the critical temperature 7,.. T,
could be determined through any of these three curves
and turns out to be 2.1£,=525 GeV. We did not use
here loop expansion or a high-temperature approxima-

0.6
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4
0

V(§)in §

-o0a}

1 1

1 1
-20 -1.5 =10 -05 0 0.5 1.0 1.5 20
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FIG. 1. Effective potential V' (&,3)— V(0,B) has been plotted
at different temperatures 7T =1/B. Critical temperature
T, ~2.1£,~525 GeV.

tion® but used the thermofield method with a self-
consistent variational ansatz giving results similar to
those of Ref. 6. It is reassuring that the present nonper-
turbative numerical technique yields the same result in
spite of the expressions being different. The gap in ener-
gy density of the thermal vacuum with respect to the vac-
uum at zero temperature is given by

Ae(B)=V (& pinsB) — V(Epmin, B= )

=&

Vi (Z o)+

4 (31)

The number density of Higgs particles at temperature /3 is
here given as

N(B)={vac’,Bla(z)Ta(z)|vac’,B)

_ 1
- 3
am= [ explBallB)]—1 %"

IV. LOCAL DESTABILIZATION OF VACUUM

We shall now consider possible local “heating” of the
vacuum with particle collision, which, from the very na-
ture of the problem, will be intuitive and heuristic and
can only lead to qualitative conclusions. As in
condensed-matter physics, such a destabilization of a vac-
uum can occur if we pump in enough energy into a small
macroscopic volume which thermalizes locally and be-
comes hot. The dynamics of such a “bubble” formation
is known to be complex,’ and shall not be tackled here.
We shall rather consider the possibility of excitation of a

0.50}

-0.25F

-0.50
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

T in 5 units
o

FIG. 2. In curves I, II, and III we have plotted my(B)?%,
(d?V /d ") ¢=0 and &in(B), Tespectively, as functions of temper-
ature in units of £,~250 GeV. Critical temperature 7, can be
determined from any of the above curves as 2.1&,.
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vacuum with a bubble formation which has a nonzero
temperature and local thermal equilibrium. With vacu-
um as the medium in which collisions take place, we con-
jecture here that during particle collisions a part of the
collision energy might excite the vacuum locally.

We shall now apply the above ideas to such a situation
with temperature defined locally inside the bubble. Thus
the energy density gap is no longer constant throughout
the volume but is maximum at center of collision and de-
creases to zero away from it. The total energy of such a
locally excited region or the bubble shall be given as

Ez= [ Ae(B(r))dr , (33)

where Ae(B(r)) is the same function as in Eq. (32) except
that B is spatially dependent. Similarly, the number of
Higgs particles inside the bubble becomes

Ny= [ N(B(r))dr . (34)

As stated, the determination of B(r) as a function of r
from first principles is impossible. We shall therefore
look into the qualitative structure only through a Gauss-
ian distribution for the same. For the temperature distri-
bution inside the bubble we shall therefore take

B(r) '=T(r)=Tyexp(—ar?) . (35)

In the above, T, is the temperature at the center of bub-
ble and the parameter a essentially decides the region
over which vacuum is excited with the corresponding
“yolume” being approximately a ~3/2,

We have noted in Eq. (32) that such a bubble will con-
tain Higgs particles. Such particles in Salam-Weinberg
theory are, however, coupled to fermions and get con-
verted to quark or lepton pairs® as the bubble cools. The
Higgs particles in the bubble will primarily go to heavy-
fermion—antifermion pairs. The decay width of such a
process for free Higgs particles at finite temperature is
given as®

I'(B)=tan 4

I‘0 y (36)

where Iy is the decay width for H — ff at zero tempera-
ture. Then the average decay width of the Higgs parti-
cles in the bubble may be calculated to be

Bmy(B(r))

T, =D, [ tanh 7

Ng(B(r))dr . (37)

Inside the bubble, the masses of the fermions decrease in
the same manner as the vacuum expectation value (VEV)
or mass of the Higgs particles, since the masses of the fer-
mions are generated through the vacuum expectation
values. As they come out of the bubble, these will be-
come more massive as the temperature outside decreases,
resulting in a cooling of the bubble. The average mass of
the decaying Higgs particles will depend on both their
lifetimes as well as the number of Higgs particles with a
specific mass. Thus we may calculate this average mass
as

4
My = fNB(ﬁ(r))L(IgmlmH(ﬁ(r))dr
avg
J Ny (r)tanh[Bmy (B(r)) /41m (B(r))dr e
- , (38

J Np(B(r))tanh[Bm(B(r) /4]dr

which will correspond to the average transverse momen-
tum of the decaying particles at any fixed time. This,
however, will be a dynamic phenomenon as the bubble
cools here mainly through the decay of Higgs particles
with a corresponding loss of energy. To get an idea of
the mass distribution inside the bubble we may calculate
the variance of the same as

o?=[(M?),,— (M, )], 39)
where (M 2)avg is given by

L(B(r))
r

avg

(Mz)angINB(B(r)) my(B(r))dr . (40)
We note that the conjecture quoted in Eq. (35) for the
temperature distribution in a bubble has not been so far
utilized. We shall now explicitly take it to get a qualita-
tive idea of possible experimental signals. For this pur-
pose, the total energy as in Eq. (33) should be available
for vacuum excitation from some collision process. Fur-
ther, the number of Higgs particles in the bubble as in
Eq. (34) should be large enough for thermal equilibrium
to be possible. With this in mind, we now look for quali-
tative experimental signals.

V. EXPERIMENTAL SIGNATURES

The experimental signatures of bubble formation as
compared to heating of any material in condensed-matter
physics is extremely sharp, since the bubble here has en-
ergy dissipation through the conversion of Higgs parti-
cles to fermion and antifermion pairs, which has no ear-
lier parallel. The signature here is particularly strong
since there will be a preferential production of heavy-
fermion and antifermion pairs, as the coupling of fer-
mions to Higgs particles is proportional to their masses.
Such a preferential production of heavy fermions is ab-
sent for the conventional mechanisms for particle pro-
duction. Hence, irrespective of the details of the model-
ing, excessive heavy-fermion production in a collision can
be a signature for bubble formation. The explicit model-
ing will decide whether we could anticipate to observe
the same anywhere, or interpret existing data with the as-
sociation of Higgs particles. Before doing this, however,
we shall note some preliminary calculations for different
Ep and a in Egs. (33) and (35) as inputs. We shall consid-
er the possibility of a destabilization of vacuum over a
volume =~a ~3/? due to a collision. A natural ansatz here
appears to be the length scale associated with the cross
section of the collision process. Hence, for vacuum exci-
tation, we shall tentatively assume that o=~w/a, and
compute the possibility of -signals. It is quite possible
that such a hypothesis is not correct. If so, the scales
quoted below will change, and the process might be visi-
ble in a different way or not visible at all. The above as-



4 HIGGS-PARTICLE PRODUCTION THROUGH VACUUM EXCITATIONS 115

sumption is made for conceptual convenience and seems
to correspond to some signals in cosmic rays.

For definiteness let us consider a cross section of the
order of microbarns, which corresponds to a value 0.02£3
for a in Eq. (35). The corresponding bubble energy versus
number of Higgs particles is plotted for A=~0.02 corre-
sponding to Higgs-boson mass of 50 GeV in Fig. 3 as
curve I. The results are not very sensitive to A except for
kinematics. We observe that the multiplicity increases al-
most linearly with bubble energy for Ep larger than 1
TeV. We note that for E greater than 2-3 TeV, there is
a reasonable number of Higgs particles. The possibility
of vacuum excitation will depend upon the fraction of the
total energy of collision that goes to Ey for local excita-
tion and bubble formation. What this fraction is and how
it depends on energy is not known. In curve II of Fig. 3
we plot the central temperature against bubble energy Ej
for Ny around and larger than 30 since thermal effects
for small Nz will not be sensible. We note that for tem-
peratures of the order of 150 GeV, which is much less
than critical temperature of 525 GeV, the number of
Higgs particles appears to be sizable, as may be seen in
Fig. 3. We note here that with the inclusion of gauge
particles and fermions 7, might become smaller than 525
GeV. In such a case, the present mechanism would show
up at a lower temperature. This is because Ny will be-
come appreciable at a lower temperature since the
Higgs-boson mass at that temperature will be less com-
pared to the present case.

50 250
11
40} T 200
- L 3
" 30 {150 ©
% / =
E] ‘ -
[3) =
z ! ¢
L >
o 20f 4100 €
E 2
=
] 1s0
0 0
0 5 10 15

Ee in TeV —>
FIG. 3. In curve I we plot Higgs-particle multiplicity Np
against bubble energy Ejp in units of TeV corresponding to mi-
crobarn size. In curve II we plot the central temperature T, up
to 250 GeV against bubble energy Ep.

The bubble energy will depend on the fraction of col-
lision energy that goes towards vacuum excitation. This
is not known. However, we note from Fig. 3 that for Ep
around 2 TeV or more, the above process could become
relevant. Curve I here gives the multiplicity for on-
mass-shell Higgs particles, which is temperature depen-
dent. Such a bubble will primarily lose energy and cool
rapidly through Higgs particles getting converted to fer-
mion pairs dynamically, thus using up bubble energy.
This production of fermions shall include the fact that
the fermion masses are proportional to the Higgs-boson
masses above. As the fermions come out, the bubble
cools and the fermions become more massive. The
characteristic feature of such a process leading to Higgs
particle decay yields, e.g., more high-Pr muon pairs and
an overall excess of muons due to heavy flavor produc-
tion. This will be larger than the expected probability for
them because of preferential heavy-flavor production for
Higgs-particle ‘“decay.” Such events shall be rare, but
could be just visible in accelerator experiments beyond
the TeV range. As stated, these will have unusually high
multiplicity and an excess of muons, which shall signify
the onset of the above mechanism. We note that the
above comments are qualitative, but shall leave visible
signatures in spite of the dynamics not being understood.

Since as per the present calculations, the accelerator
energies are inadequate, we state below some signatures
of this type in cosmic rays. For this purpose let us exam-
ine the following events which appear not to be capable
of being explained with simulation programs of known
physics.

(i) Chiron events. These events’ were observed by the
Brasil-Japan Collaboration in Chacaltaya Emulsion
Chamber experiment in chambers 19 and 21 and have the
following characteristics. The total Py is of the order of
5 GeV there. Further inside them we have ‘“miniclus-
ters” associated with as small a P as =~10-20 MeV.
These, we note, may be associated with Higgs-particle
production as above. In the present scenario, as may be
seen from Eq. (38), the high P of the order of 5 GeV will
correspond to decay of the Higgs particle. These parti-
cles will produce heavy flavors and hence the “miniclus-
ters” of 10-~20-MeV transverse momentum might indi-
cate D* production. Production of miniclusters along
with absence of 7° could thus be interpreted as signature
of Higgs-particle productions in these events.

One more observation in this context may be relevant.
The total transverse momentum of the chirons will corre-
spond to the mass of the Higgs particle when it decays.
Higgs particles could decay during the process of cooling
of the bubble even before zero temperature is reached.
Thus the present identification of chiron events where
large P, comes from the decay of Higgs particles to
heavy-fermion pairs does not determine its mass.

(ii) Halo events. Halo events in cosmic rays are some
events with excessive multiplicity where the particle
number could not be counted. As is clear from the Eg
versus N plots, the multiplicity of Higgs particles rises
almost linearly with the bubble energy. Hence, for ener-
gies beyond the threshold for the present process, the
multiplicity will increase linearly with energy which is



116 A. MISHRA, H. MISHRA, S. P. MISRA, AND S. N. NAYAK 44

much faster than what can be expected from ordinary
physics. Hence the halo events'® may indicate the onset
of new physics through an unusual rise in the multiplicity
resulting from excitation of vacuum. Further, the multi-
ple cores'® in halos just look like multiple bubble forma-
tion.

(iii) Cygnus X-3, Hercules X-1 signals. These are sig-
nals from extremely high-energy air showers originating
from the directions of Cygnus X-3 and of Hercules X-1
which have a high muon content,!! thus indicating ha-
dronic interactions. It is then presumed that a neutral
stable hadronic particle, e.g., cygnets, quark nuggets, etc.
should be coming from Cygnus X-3 and Hercules X-1.12
Instead, we propose that local vacuum excitations with
Higgs-particle production as above could give rise to the
excess muon signals through preferential heavy-flavor
production.'*

V1. CONCLUSIONS

The present mechanism of Higgs-particle production
consists of three parts: (a) The bubble will get formed; (b)
the temperature-dependent vacuum will have a
quantum-mechanical description with production of off-
mass-shell Higgs particles, and (c) the dissipation of the
bubble takes place through particle production via con-
version of Higgs particles to fermion pairs. In the
present note we have concentrated on (b), i.e., the
description of temperature-dependent local excitation of
the vacuum. It is possible to obtain a signal for the pro-
cess because of preferential heavy-flavor production dur-
ing the dissipation of the bubble. Processes (a) and (c) are
not only nonperturbative but also time dependent, and an
understanding of the same is a nontrivial sl:ep.7 However,
heavy-flavor production for (c) leaves a trail which can be
always seen if we can look for this.

A comment regarding thermalization may be relevant.
Production of a “coherent bubble” as in Eq. (7) may not
be instantaneous corresponding to a new value &(f).
However, time scales for local thermalization of a vacu-
um is not known and will be associated with bubble for-
mation.” Once the existence of the process is confirmed
with more observations, the time scales involved for this
process for thermalization and the response of vacuum
regarding thermal and transport properties for the same
as a medium, need to be investigated and understood.

We note that with conventional consideration of field
theory with high-temperature approximation, a careful
and complete calculation has been done by Ferrer, de la
Incera, and Shabad,!® where three possible phases have
been identified, including one with W condensates. Our
calculations are complementary in the sense that the
high-temperature limit is not taken and that experimental
signatures at temperatures less than critical temperature
could be observed. We may further observe that a recent
analysis by Goldberg with scalars only shows the instabil-
ity of the perturbative tree-level calculations regarding
cross sections at ultrahigh energies.'® In this context or
otherwise, the nonperturbative techniques developed here
may be more relevant and we may look for signatures of
heavy-flavor production or unusual rise in multiplicity.

Thus, to sum up, the characteristic features of Higgs-
particle production through vacuum excitation would be
(i) relatively high Py for Higgs-particle decay, (ii) prefer-
ential production of heavy flavors, and (iii) an unusual
rise in multiplicity with energy as a result of this mecha-
nism. We find that the observations of chirons and halo
events as well as the hardonic signal associated with the
direction of Cygnus X-3 and Hercules X-1 could indicate
the onset of the present mechanism, and observation of
the same in accelerators may be possible not too far in
the future. It is significant to note that even though
Salam-Weinberg phase transition takes place around a
temperature of more than 500 GeV, the effects of local
heating of a vacuum could be seen for temperatures as
low as 150-200 GeV with the corresponding bubble ener-
gy being a few TeV.

ACKNOWLEDGMENTS

One of the authors (S.P.M.) is grateful to M. V. S. Rao,
B. V. Sreekantan and P. V. Ramanamurthy for bringing
to his attention the unusual events from cosmic rays, and
to G. Alterelli, N. G. Despande, V. P. Goutam, and D. P.
Roy for discussions. A. M. would like to thank the
Council of Scientific and Industrial Research, Govern-
ment of India for financial support.

APPENDIX

We here summarize briefly the salient features of
thermofield dynamics as used here.

In statistical mechanics, the thermal average of an
operator Ois given as, with f=1/kT,

~\ _ Tr(e PHD)
<0)/3_ Tr(e ~BH)

where the trace is taken over a complete basis of states.
First we note that, in the zero-temperature limit, the
above reduces to ground-state expectation value for the
operator O. This is easily seen as

, (A1)

(01010Ye "o+ (1|0[1)e P14 - -
ewBEO-{—ewBE’—i— cee

lim (0 )z= lim
B— oo B—

. {0|610)+(1]0]1)e HaTO 4 ...
= lim “Ble,—e)
B—> o0 1+e 1 0 + ..
=(0|0|0) , (A2)

where |0) corresponds to the state with the lowest ener-
gy. In thermo field method, one essentially generalizes
(A2) to the case of finite temperature and defines a
thermal vacuum such that the statistical average reduces
to an expectation value with respect to the thermal vacu-
um. Thus we want that for some |0(3)) the relationship

—BHA A
Tr(e 0)E<O(ﬁ)I0'O(ﬁ)> ,

<0 >/3: Tr(e_BH)

(A3)
where |0(f3)) is defined as the thermal vacuum. This can
be done if one doubles the degrees of freedom, i.e., corre-
sponding to every physical operator A4, a “tilde” operator
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A is introduced. For example, we generalize the free bo-
son Hamiltonian as?

Hy= [dkok)a(k)a(k)—ak)ak)] . (A4)
In the above, @(k) are the new operators named as
“thermal modes.” They are associated with negative en-
ergy, with conventional quantization, but do not have
any physical significance in the sense of observation of
these modes. In a zero-temperature vacuum, these modes
are absent, so that conventional field theory holds. At
finite temperature the ground state is replaced by |0(83)),

|0(B)) =U(B)|vac)
=exp | [ 6(k,B)a (K)'a(~k)' ~H.c.1dk |lvac),

(AS)

where @(—k)' in the above corresponds to the extra Hil-
bert space. It is now convenient to define a thermal basis

atkop) =U upp)! (A6)
a—k,p)" | TUP gt VB
which amounts to the Bogoliubov transformation
a(k,B) | | cosh6(k,B) —sinhO(k,B) a(k)
a(—k,B)" | |—sinhO(k,B) coshO(k,B) | |a(—k)'
(A7)

a(k,B) and a@(k,B) are the annihilation and creation
operators at temperature B=1/KT corresponding to the
thermal  vacuum  such  that  a(k,3)|0(8))=0
=a(k,B)[0(8)). We next take the function O6(k,B) in
(A5) such that, for bosons,

(o(B)la(z)'a(2)|0(8)) =(2m) 2 [ dk sinh?6(k,B)

_ dk
_ 3 .
=(2m) f eBokBY 71 °

i.e., the expectation value of the number operator repro-
duces the Bose distribution. This determines 8(k,3) to be
given by

(AB)

1

s 12 =
sinh”“0(k,B)= eBokB)_ 17

(A9)
so that when statistics are known, the corresponding Bo-
goliubov transformation relating the zero-temperature
ground state with the thermal ground state of the extend-
ed Hilbert space is known. The ground state or the
thermal vacuum obviously contains particles with ap-
propriate distributions as in Eq. (A8). A self-consistent
determination of mass in Eq. (A9) shall be sometimes
needed if we wish to include the effect of interactions
through a masslike parameter in taking
o(k,B)=(k?>+m(B)?)"/2. In the present paper we do
this.

The methodology enables us to replace mixed states of
statistical mechanics by pure states in an extended Hil-
bert space while generating correct distribution func-
tions. The extra thermal modes enable us to do this.
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