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Billiard balls in wormhole spacetimes with closed timelike curves: Classical theory
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The eR'ects of self-interaction in classical physics, in the presence of closed timelike curves, are
probed by means of a simple model problem: The motion and self-collisions of a nonrelativistic,
classical billiard ball in a space endowed with a wormhole that takes the ball backward in time.
The central question asked is whether the Cauchy problem is well posed for this model problem, in
the following sense: We define the multiplicity of an initial trajectory for the ball to be the number
of self-consistent solutions of the ball s equations of motion, which begin with that trajectory. For
the Cauchy problem to be well posed, all initial trajectories must have multiplicity one. A simple
analog of the science-fiction scenario of going back in time and killing oneself is an initial trajectory
which is dangerous in this sense: When followed assuming no collisions, the trajectory takes the ball
through the wormhole and thereby back in time, and then sends the ball into collision with itself. In
contrast with one's naive expectation that dangerous trajectories might have multiplicity zero and
thereby make the Cauchy problem ill posed ("no solutions" ), it is shown that all dangerous initial
trajectories in a wide class have infinite multiplicity and thereby make the Cauchy problem ill posed
in an unexpected way: "far too many solutions. " The wide class of infinite-multiplicity, dangerous
trajectories includes all those that are nearly coplanar with the line of centers between the worm-
hole mouths, and a ball and wormhole restricted by (ball radius)(((wormhole radius)(((separation
between wormhole mouths). Two of the infinity of solutions are slight perturbations of the self-
inconsistent, collision-free motion, and all the others are strongly different from it. Not all initial
trajectories have infinite multiplicity: trajectories where the ball is initially at rest far from the
wormhole have multiplicity one, as also, probably, do those where it is almost at rest. A search
is made for initial trajectories with zero multiplicity, and none are found. The search entails con-
structing a set of highly nonlinear, coupled, algebraic equations that embody all the ball s laws of
motion, collision, and wormhole traversal, and then constructing perturbation theory and numeri-
cal solutions of the equations. A future paper (paper II) will show that, when one takes account
of the effects of quantum mechanics, the classically ill-posed Cauchy problem ("too many classical
solutions" ) becomes quantum-mechanically well posed in the sense of producing unique probability
distributions for the outcomes of all measurements.

I. INTRODUCTION AND SUMMARY

A. Motivation

This is one of a series of papers that try to sharpen
our understanding of causality by exploring whether the
standard laws. of physics can accommodate themselves, in
a reasonable manner, to closed timelike curves (CTC's).

Previous papers have provided a natural spacetime
arena for such an exploration: The arena of spacetimes
that contain classical, traversible wormholes (i.e., multi-
ply connected spatial slices). Morris, Thorne, and Yurt-
sever [1] showed that generic relative motions of the
mouths of a traversible wormhole produce CTC's that
loop through the wormhole's throat, and Frolov and
Novikov [2] showed that generic gravitational redshifts
at a wormhole's two mouths, due to generic external
gravitational fields, also produce CTC's. (It is not clear
whether the laws of physics permit the existence of such
traversible wormholes; the attempt to find out is a sep-
arate line of research [1,3—5], which we shall not discuss
here. )

A consortium [6] of researchers from Moscow, Milwau-
kee, Chicago, and Pasadena (henceforth referred to as

"the consortium") has raised the issue of whether the
Cauchy problem is well posed in spacetimes with CTC's,
and has explored many facets of the issue. This paper is
one of several that elaborate on the ideas raised by the
consortium [6].

Two examples of wormhole spacetimes with CTC's are
depicted in Fig. 1. Both of these spacetimes are flat
and Minkowski, except for the vicinity of the wormhole
throat. The wormhole is arbitrarily short, and its two
mouths move along two world tubes that are depicted as
thick lines in the figure. The mouths are so small com-
pared to their separation that one cannot see in the figure
their finite size. Proper time r at the wormhole throat
is marked off along the mouths' world tubes; points with
the same values of v. are the same event, on the throat,
as seen through the two diR'erent mouths.

In Fig. 1(a) mouth 1 remains forever at rest, while
mouth 2 accelerates away from 1 at high speed, then re-
turns and decelerates to rest. Because the motions of the
two mouths are like those of the twins in the standard
special-relativistic twin paradox, we shall refer to this
as the "twin-paradox spacetime. " The same relative ag-
ing as occurs in the twin paradox produces, here, closed
timelike curves that loop through the wormhole [1].The
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FIG. 1. Two examples of wormhole spacetimes with
closed timelike curves. (a) The "twin-paradox spacetime, "
(b) the "eternal-time-machine spacetime. "

light-cone-like hypersurface g shown in the figure is a
Cauchy horizon. Through every event to the future of
this Cauchy horizon 'R there are CTC's; nowhere in the
past of 'R are there any CTC's.

In Fig. 1(b) the two mouths are both forever at rest,
but with a time delay Tp between them that is greater
than the distance a separating them. Because there are
CTC's looping through the wormhole throughout this
spacetime, the wormhole can be used in principle as a
"time machine" for traveling arbitrarily far into the past
or the future. For this reason, it has become conventional
to call this the "eternal-time-machine spacetime. "

Many aspects of the twin-paradox spacetime and the
eternal-time-machine spacetime have been studied else-
where in the literature [1, 6, 3, 7]. Most importantly for
us, the consortium [6], and Friedman and Morris [7] have
used these spacetimes as "testbed arenas" for studying
whether the Cauchy problem is well posed in the presence
of CTC's.

As the consortium has shown [6], it is an exceedingly
delicate enterprise to pose initial data in a region of
spacetime that is threaded by CTC's (the region to the
future of the Cauchy horizon in the twin-paradox space-
time; anywhere, except past null infinity, in the eternal-
time-machine spacetime). The delicacy is caused by the
absence of well-behaved spacelike or null hypersurfaces
in such a region, on which to pose the data. Various
aspects of this delicacy are discussed by the consortium
[6] and by Yurtsever [8], and we shall not in this pa-
per attempt to elucidate them further. Rather, we shall
confine attention to the more straightforward situation
of initial data that are posed in regions to the past of
all CTC's; i.e. , data posed on a spacelike or null Cauchy
surface to the past of the Cauchy horizon '8 in the twin-
paradox spacetime, and data posed on past null infinity
in the eternal-time-machine spacetime. We shall ask (as
did the consortium [6]) whether the Cauchy problem is
well posed for such initial data, in the following sense:

If one gives the same standard initial data as one would
do in a spacetime without CTC's, then for each choice
of those data does there exist a self-consistent, global so-
lution of the standard, local evolution equations, and if
so is the self-consistent solution unique'? (The demand
for self-consistency has been discussed in depth by the
consortium [6].)

One can ask about the well posedness of the Cauchy
problem for a variety of types of evolving systems in
spacetimes with CTC's. The first step, carried out by
Friedman and Morris [7], was to study the evolution of
a classical, massless scalar field P. Friedman and Mor-
ris showed rigorously that the Cauchy problem is well
posed for such a field in the eternal-time-machine space-
time: Every arbitrary initial value of the field rP (where
r is radial distance), posed at past null infinity (limit as
T r-+ ——oo), gives rise, via the standard local evolution
equation Clg = 0, to a unique, globally self-consistent
field P throughout the eternal-time-machine spacetime.
It seems highly likely that this behavior is prototypical
in the sense that, for any zero-rest-mass, noninteracting,
classical field (e.g. , the vacuum electromagnetic field) in
any stable wormhole spacetime with CTC's, the Cauchy
problem will be well posed [1,6, 7].

It seems probable that the well pose dness of the
Cauchy problem for the field P results from the fact that
P has no self-interactions. More likely to produce peculiar
results is a system that, after traveling around a nearly
closed timelike world line, can interact with its younger
self (e.g. , a person who tries to kill his younger self). The
simplest such classical system is a single, classical particle
that carries a hard-sphere, repulsive potential and has no
internal degrees of freedom (a "billiard ball" ), and that
travels with a speed small compared to light so special-
relativistic efIects can be ignored. The purpose of this
paper is to study the Cauchy problem for such a billiard
ball in the twin-paradox and the eternal-time-machine
spacetimes.

Other papers in this series study the well posedness
of the Cauchy problem for systems that embody other
pieces of physics: A companion paper to this one (pa-
per II [9]) studies the effects of nonrelativistic quantum
mechanics on the Cauchy problem for this paper's bil-
liard ball; Novikov and Petrova [10] are currently study-
ing a classical billiard ball that has huge numbers of in-
ternal degrees of freedom and thus can behave inelasti-
cally when it collides with itself; and Novikov [ll] has
examined, semiquantitatively, a number of complicated
classical systems (e.g. , a bomb that explodes in response
to a «igger signal, sending explosive debris through a
wormhole and backward in time where it tries to trig-
ger the explosion before the explosion actually occurs).
For his complicated classical systems, Novikov shows that
it is p/ausilble that there always exists at least one self-
consistent solution, no matter how paradoxical the ini-
tial data may appear. Unfortunately, for such compli-
cated systems it seems hopeless to obtain firm results.
Accordingly, in this paper, in a quest for firmness, we
examine the simplest system we can think of that has
self-interactions: the perfectly elastic, nonrelativistic bil-
liard ball.
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B. The Cauchy problem for classical billiard balls

In this paper we pose our initial data (initial billiard
ball trajectory, by which we mean initiat path and speed),
in the region of spacetime that is devoid of CTC's: before
the Cauchy horizon for the twin-paradox spacetime [Fig.
1(a)], or at past null infinity for the eternal-time-machine
spacetime [Fig. 1(b)]. For the twin-paradox spacetime,
we confine attention for simplicity to initial trajectories
that take the ball into the vicinity of the wormhole long
after mouth 2 has returned to rest. This permits us,
throughout the calculation, to ignore the early-time, rel-
ative motion of the wormhole mouths and to treat the
twin-paradox spacetime as though it were the same as
the eternal-time-machine spacetime, i.e. , the same as Fig.
1(b).

The structure of this (common) spacetime can be
understood easily as follows [6]: Take ordinary, fiat,
Minkowski spacetime, cut out of it the world tubes of
two balls that are at rest in a chosen Lorentz coordinate
system (T, A, Y, Z), and identify the surfaces of the balls,
with a time delay Tg between them. The surfaces of the
two balls are the mouths of the wormhole, and because
they have been identified with each other, the wormhole
is vanishingly short.

We shall denote by D the separation between the cen-
ters of the two mouths as measured in the Lorentz frame
where they are at rest, by 6 the radii of the two mouths
(radius of curvature of their surfaces), by Td the time de-
lay between the two mouths, and by r the radius of the
billiard ball. Throughout this paper we shall measure
spatial distances in units of D (so the wormhole mouth
separation is unity) and times in units of T& (so the time
delay between the two mouths is unity); and we shall de-
note by B = b/D and R:—r/D the wormhole radius and
the billiard ball radius, measured in these units, and by
v the billiard ball speed, measured in these units (units
of D/Tg)

The identification we shall use for the two wormhole
mouths is one in which diametrically opposed points
(points obtained by refiection in the plane half way be-
tween the two mouths) are identical. Stated more pedes-
trianly (see Fig. 2): Adjust the Lorentz frame's spatial,
Cartesian coordinates so the line of centers between the
two mouths lies on the X axis. Then set up a right-
handed spherical polar coordinate system (8, 4) on the
right mouth with the polar axis pointed in the —X di-

FlG. 2. The identification of points on the two mouths of
the wormhole.

rection (along the line of centers, toward the left mouth)
and with 4 = 0 along the —Y' direction; and set up a
left-handed spherical polar coordinate system (0, 4) on
the left mouth with polar axis pointed in the +X direc-
tion (along the line of centers, toward the right mouth)
and with 4 = 0 along the —Y direction. Then points
on the two mouths with the same values of 8 and 4 are
identified.

In our study of the Cauchy problem for a billiard ball
in the above spacetime, we shall focus on the issue of the
multiplicity of solutions to the ball's equations of motion.
For each initial trajectory (initial path and speed) we de-
fine the multiplicity to be the number of self-consistent
solutions of the equations of motion that begin with that
trajectory. Not surprisingly, it will turn out that each
initial trajectory has a discrete set of solutions, and thus
has multiplicity zero or one or two or . . . . In the absence
of CTC s, all trajectories have multiplicity one, which is
just a fancy way of saying that the Cauchy problem is well
posed. From exposure to science-fiction scenarios (e.g. ,

those in which one goes back in time and kills oneself),
one might expect CTC's to give rise to initial trajectories
with zero multiplicity —a severe form of ill posedness for
the Cauchy problem. However, we have searched hard for
initial trajectories with zero multiplicity and have found
none. On the other hand, our search has not covered all
initial trajectories (see especially Sec. V), so we cannot
guarantee the nonexistence of zero-multiplicity trajecto-
ries.

The only trajectories that have any possibility for zero
multiplicity are those which, when followed assuming no
collision, produce a collision. We call such trajectories
dangerous. A trajectory can be dangerous only if it leads
the ball into the wormhole, and this can happen only if
the trajectory is nearly coplanar with the line that con-
nects the centers of the wormhole mouths —more specif-
ically, only if it is within a distance B = (mouth radius)
of being coplanar with the line of centers. For this rea-
son, in this paper we restrict attention to nearly coplanar
trajectories. The analysis of the billiard ball motion is
fairly manageable when the initial trajectory is precisely
coplanar (Secs. II, III, and IV); and the slightly noncopla-
nar case (within a distance « B of coplanar) can be
treated using perturbation theory (Sec. V). However, we
have not found a manageable way to analyze the case of
coplanarity to within a distance B.

For the slightly noncoplanar case, and for R « B «
D = 1 (ball small compared to mouths and mouths small
compared to separation of mouths), we shall derive a
rather remarkable result (Sec. IV A): All dangerons initial
trajectories have in/nike muttipli city. What a contrast
with one's naive, science-fiction-based expectation of zero
multiplicity.

Figure 3 gives insight into two of the infinite set of
solutions in the precisely coplanar case. Figure 3(a) is
the self-inconsistent solution which tells us that the ini-
tial trajectory, labeled n, is dangerous. When, as in Fig.
3(a), we assume that the ball travels freely along a with-
out sufI'ering a collision, it passes through the wormhole,
emerges along P before it went in, and hits itself so hard
that it knocks itself along o,', preventing itself from go-
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FIG. 3. Spatial diagrams showing a prototypical example of initial data that produce two self-consistent solutions to the
billiard-ball equations of motion. Each diagram shows the ball s spatial trajectory, and also shows the ball itself (young version
in black and old version in grey) at the moment of self-collision. (a) The self-inconsistent solution which arises if one assumes
the ball does not get hit before traversing the wormhole. (b) A "class-I" self-consistent solution in which the ball is speeded up
and deflected rightward slightly by a collision before entering the wormhole. (c) A "class-II" self-consistent solution in which
the ball is slowed and deflected leftward slightly by a collision before entering the wormhole.

ing through the wormhole. Figure 3(b) is what we call
a "self-consistent solution of class I" for this same ini-
tial trajectory n. The ball, while traveling toward the
wormhole on n, gets hit gently on its left rear side and
is speeded up a bit and deflected rightward a bit (along
trajectory n'); it then enters the wormhole and reemerges
before it went down (trajectory P), it tries to pass behind
its younger self, but gets hit a gentle, glancing blow by its
younger self and defiected slightly (along trajectory P').
Figure 3(c) is what we call a "self-consistent solution of
class II." While traveling toward the wormhole, the ball
(trajectory a) gets hit gently on its front right side and
is slowed a bit and defiected leftward a bit (along trajec-
tory n'), it enters the wormhole and reemerges before it
went down (trajectory P), it passes in front of its younger
self and, just before getting all the way past, it gets hit
a gentle, glancing blow by its younger self and deflected
slightly (along trajectory p'). We shall study the details
of such coplanar class-I and class-II solutions in Sec. IV
and in Appendixes A and 8—and shall do so not only
for R && B && D = 1, but also for wormholes with large
mouths and balls with large radii.

The class-I and class-II solutions are small perturba-
tions of the self-inconsistent solution, in the sense that
the ball's path is displaced by only enough (typically of
order the ball's radius R) to permit the ball to undergo
a glancing collision rather than a head-on collision. By
contrast, the other self-consistent solutions are quite dif-
ferent from the self-inconsistent one. They (or at least
the ones studied in this paper) involve a collision that oc-
curs somewhat farther from the wormhole than for class
I and class II, and correspondingly the distance the ball
travels, from its first encounter with the collision to its
second, is rather larger than in the class-I and class-II so-
lutions. This means the ball must travel farther back in
time to achieve such a solution. It does so by undergoing
several wormhole traversals. In Sec. III we shall exhibit
a self-consistent solution corresponding to each value of
the integer n = (number of wormhole traversals); and we
shall do so not only when the initial trajectory is danger-
ous, but in fact for almost all coplanar initial trajectories
with speeds vt ) D/Td = 1. Figure 9 (in Sec. III) is an
example with eight traversals.

Our analysis of these multiple-traversal solutions, by
contrast with our analysis of the class-I and class-II solu-
tions, is restricted to R && B (& D = 1. This restriction
permits us to ignore the details of the balls' relative ge-
ometry during the collision event (aside from proving, in
Sec. II, that the necessary geometry exists). By decou-
pling the details of the collision geometry from the rest
of the solution, we bring the multiple-traversal analysis
into an elegant geometric form that contrasts with the
complicated algebraic calculations used to analyze the
class-I and class-II solutions. This difference motivates
our presenting the multiple-traversal analysis (Sec. III)
before the class-I —class-II analysis (Sec. IV).

This paper restricts attention, for simplicity, to solu-
tions that entail a single self-collision. There presurn-
ably are also multiple-collision solutions, and we spec-
ulate about some possible, rather strange ones in the
paragraph containing Eq. (3.11). Such solutions can only
increase the tendency of initial trajectories to have high,
even infinite, multiplicity.

Having identified this tendency toward high multiplic-
ity, we ask ourselves in Sec. III C whether there exist
any solutions with multiplicity 1; and in Secs. IV and
V, whether there exist any with multiplicity zero. Our
search for multiplicity zero comes up empty handed;
all initial trajectories that we have examined have self-
consistent solutions. By contrast, there is at least a small
(measure-zero) class of initial trajectories with unit mul-
tiplicity: those in which the ball is initially at rest far
from the wormhole. We suspect, but have not proved,
that the (finite-measure) initial trajectories with speeds
vt « D/Tg = 1 and with impact parameters h )& D = 1
also have unit multiplicity; see Sec. III.

The above conclusions are derived for the precisely
coplanar case in Secs. II, III, and IV; and they then are all
extended to the slightly noncoplanar case in Sec. V. This
extension is accomplished by demonstrating (via pertur-
bation theory) that for each slightly noncoplanar initial
trajectory there is a one-to-one correspondence between
its self-consistent solutions and those of a. nearby, pre-
cisely coplanar initial trajectory.

This paper's principal conclusion, that the Cauchy
problem is ill posed for classical billiard balls in the
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eternal-time-machine spacetime, suggests at first sight
that the laws of physics might not be able to accommo-
date themselves in any reasonable way to CTC's. How-
ever, the laws of classical mechanics are only an approx-
imation to the more fundamental laws of quantum me-
chanics, and in paper II [9] it will be shown that quan-
tum mechanics can cure the multiple-solution ill posed-
ness (and can also cure a zero-multiplicity ill posedness,
if it occurs): For each initial quantum state of a nonrel-
ativistic billiard ball, posed before the region of CTC's,
the sum-over-histories formulation of quantum mechan-
ics predicts unique probabilities for the outcomes of all
sets of measurements that one might make in the region
of CTC's.

C. Outline of this paper

We begin our quantitative analysis of coplanar solu-
tions in Sec. II, by laying some foundations. In Sec.
IIA we derive simple "wormhole traversal" rules for the
change of a billiard ball's velocity when it goes through
the wormhole. Then in Sec. II 8 we analyze the kine-
matics of a billiard ball s self-collision when there is only
one collision event along the ball's world line. Our anal-
ysis simplifies subsequent calculations by embodying all
the kinematics (energy conservation, momentum conser-
vation, and friction-free billiard-ball contact at the col-
lision event) in one simple rule: the collision must pro-
duce either a direct "velocity exchange, " or a "mirror
exchange" of velocities.

In Sec. III, by combining the wormhole traversal rules
with velocity-exchange and mirror-exchange collisions,
and restricting attention to R « B « D = 1, we show
that multiple solutions to the billiard ball's equations of
motion are ubiquitous. More specifically, we show that a
finite measure of such (coplanar) initial trajectories pro-
duce not only multiple solutions (Sec. III A), but in fact
an infinity of solutions (infinite multiplicity; Sec. III B).
We then show that not alt initial trajectories have infinite
multiplicity; there do exist some with only one solution
(unit multiplicity; Sec. III C).

In Sec. IV we turn our attention to dangerous, copla-
nar initial trajectories. We begin in Sec. IV A by prov-
ing, as a corollary of the Sec. III B analysis, that for
R « B « 0 = 1 almost all such trajectories have infinite
multiplicity. Then we extend our search for multiplicity
zero to balls that are large enough for the geometry of
the collision to couple significantly into the rest of the so-
lution, R g B. In Appendix A and Sec. IV B we derive a
set of highly nonlinear, coupled equations governing self-
consistent solutions with such collisions. Those equations
are valid not only for R g B, but also for B g D—:I.
However, in Appendix 8 and Sec. IV C we return to the
restriction B « D and there search for solutions of the
equations. We find analytic, perturbation-theory solu-
tions of classes I and II for almost all initial trajecto-
ries; and we construct numerical solutions for some typ-
ical initial trajectories in the extreme regions where the
perturbation-theory solutions fail. Our spot checks in
these extreme regions have not turned up any initial tra-
jectories for which numerical solutions do not exist.

In Sec. V, using perturbation theory, we extend to
slightly noncoplanar initial trajectories all the coplanar
results of the previous sections.

II. FOUNDATIONS: WORMHOLE
TRAVERSALS AND SELF-COLLISIONS

In this section we give brief analyses of coplanar worm-
hole traversals and billiard-ball self-collisions —analyses
that produce simple rules for use in subsequent sections.

A. Coplanar wormhole traversals

For nearly all the wormhole traversals encountered in
this paper, the ball's trajectory is coplanar with the line
of centers of the wormhole mouths, and the ball enters
mouth 2 and exits from mouth 1, thereby traveling back-
ward in time. In this section we shall confine attention
to such traversals.

For all traversals, we shall presume that the ball is
small enough (ball radius R suKciently small compared
to mouth radius B) that we can ignore the impulsive
tidal force exerted on the ball's hard-sphere potential by
the concentrated spacetime curvature at the wormhole
throat. Just how small R must be for this depends on
one's model for the internal structure of the ball.

In this paper our model for the ball will have the fol-
lowing features. (i) We shall refuse to consider collisions
that occur while the center of the ball is on one side of
the wormhole throat and its colliding surface is on the
other; thereby we shall avoid worrying about instanta-
neous tidal deformations of the ball's hard-sphere poten-
tial during the traversal. (ii) We shall assume (for sim-
plicity and definiteness) that, even if R is as large as, say,
B/2, the ball's center moves through the wormhole in the
same manner as would an arbitrarily small ball. (iii) We
shall assume that, even for R as large as B/2, the ball
recovers from its tidal distortions and resumes its radius-
R, spherical shape arbitrarily quickly after a traversal.
These features of our model are sum. cient to permit R to
be as large as B/2. (Our choice of B/2 rather than B/4
or 9B/IO is quite arbitrary. )

Since the ball's center moves through the wormhole
in the same manner as would an arbitrarily small ball,
its motion must be on a straight line and with constant
speed, as seen by an observer at rest on the throat. Such
motion guarantees energy and momentum conservation
during the traversal, as seen by the observer. (We pre-
sume that the wormhole recoils negligibly; i.e. , we treat
the ball as a "test object" that moves through the fixed
wormhole geometry. )

Since the wormhole mouths are both at rest in the ex-
ternal space, constant speed as seen on the throat implies
that the speed of the ball, as measured in the exterior, is
unchanged by the traversal: v „t- ——v;„.

Straight-line motion, as measured on the throat, im-

plies that the ball's outgoing velocity v „t makes the
same angle 0, with the outgoing mouth's outward nor-
mal, as the ball's ingoing velocity v;„makes with the
ingoing mouth s inward normal. This in turn implies (cf.
Fig. 4) that the angle g from the mouths' line of centers
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(the X axis) to the ball's velocity vector changes during
the wormhole traversal from @ = 0+/ to @ = 8 —P. Here

P is the angular location of the traversal on the wormhole
throat as depicted in Fig. 4 (not to be confused with the
4 of Fig. 2).

These conclusions are summarized by the following
"wormhole traversal rules":

velocity exchange

(&)

/

V2

V(

mirror exchange

(b)

vout = vin ~

4'out = 4n —24

(2.1a)

(2.1b)

FIG. 5. The two solutions to the self-collision equations:
"velocity exchange" [Eq. (2.3a)j, and "mirror exchange" [Eq.
(24.)1

Here and throughout, an italic v denotes the magnitude
(speed) of the velocity v. These conservation laws can be satisfied in precisely

two ways (Fig. 5): (i) velocity exchange,

B. Coplanar self-collisiorxs I I
Vy —V9) Vg —Vl (2.3a)

In this section and throughout this paper we restrict
attention to self-consistent solutions that involve a single
self-collision. We shall denote by v~ the ball's velocity
as it enters the collision the first time, by vz its velocity
as it leaves the collision the first time, by v2 its velocity
as it enters the second time, and by v2 its velocity as it
leaves the second time. In other words, the sequence of
velocities as measured by the ball itself is vi, vi, v2, v2.

No matter how many wormhole traversals the ball may
make between its two visits to the collision event, the
"speed in equals speed out" wormhole traversal rule im-
plies that

V2 —Vy
I'i —F2 ——2R

)V2 Vl

and (ii) mirror exchange,

I = (V2)reflected in line Parallel to vr+vq
I = (Vl)reflected in line parallel to vr+vq

(2.3b)

(2.4a)

for which the relative position of the balls at the moment
of collision is

for which the relative position of the balls at the moment
of collision (the vector separation of their centers) is

/
Vi = V2 (2.2a)

V2+ V1
Fy —F2 = 2RS

[V2 + Vl
(2 4b)

and this, combined with energy conservation, implies
that

I
v2

——vy . (2.2b)

These two speed relations, together with the collision's
law of momentum conservation,

I IVi+V2 = Vy+Vg (2.2c)

are a complete set of conservation laws for the ball's ve-
locity.

where s = sign(v2 —vi). [The relative position of the balls
when they collide, Eq. (2.3b) or (2.4b), is determined by
the fact that the momentum transfer vz —vq must be
along the balls' line-of-centers direction r~ —r2, and the
centers must be separated by a distance 2R.]

In summary, all the constraints on velocity that a
self-collision must satisfy are embodied in the simple
statement that either the balls undergo velocity exchange
(2.3a), or they undergo mirror exchange (2.4a).

mouth 1 mouth 2
III. UBIQUITY OF MULTIPLE SOLUTIONS
FOR COPLANAR INITIAL TRAJECTORIES

&out

&out

FIG. 4. The "wormhole traversal rules" [Eqs. (2.1)], which
govern coplanar wormhole traversals from mouth 2 to mouth
1.

In this section we shall use the geometry of the veloc-
ity exchange, mirror exchange, and wormhole traversal
rules to show that multiple solutions to the billiard ball's
equations of motion are ubiquitous. Our discussion will
be confined to coplanar initial data. However later, in
Sec. V, we shall see that all coplanar solutions are stable
(continue to exist) when one perturbs the initial data in
an arbitrary but infinitesimal, noncoplanar way. In our
discussion, as in Sec. I, we shall refer to the number of
solutions that an initial trajectory produces as its "mul-
tiplicity. "

We begin in Sec. IIIA by showing that all coplanar
initial trajectories that are aimed between the wormhole
mouths have multiplicity at least two. One solution is
unperturbed straight-line motion, and a second is com-
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A. Multiplicity larger than 1 is generic

Consider a ball whose initial path is coplanar with
the mouths' line of centers and is directed between the
mouths, and whose initial speed is arbitrary but nonzero.
An obvious solution to the ball's equation of motion is
collision-free, wormhole-traversal-free, straight-line mo-
tion [Fig. 6(a)]. A second solution is shown, for the case
of an arbitrarily small ball, in Fig. 6(b). The ball is hit
as it crosses the mouths' line of centers and gets knocked
radially into mouth 2. Regardless of the ball's initial
speed v~, it is hit with just the right impulse to give it
a speed vi ——(D —2B)/Tg = 1 —2B. It travels through
the wormhole and returns to its impact point at just the
right moment to hit itself and be deflected back onto its

mouth
, IIII II(,

uth 2
V2

I
V1

V2

V1

FIG. 6. Solutions to the equations of motion for a copla-
nar initial trajectory that is directed between the wormhole
mouths. The ball's speed is arbitrary. (a) The trivial so-
lution. (b) A solution with one wormhole traversal and a
velocity-exchange collision. (c) Modification of solution (b)
when the radius of the ball is not negligible.

posed of a wormhole traversal and a velocity-exchange
collision. Then in Sec. III B we show that there is a
wide variety of coplanar initial trajectories (a set of finite
measure) with infinite multiplicities. Each of the solu-
tions we exhibit, for these initial trajectories, has a single
mirror-exchange collision, together with some number n
of wormhole traversals; n ranges over positive integers up
to infinity. Finally, in Sec. III C, we show that a ball ini-
tially at rest far from the wormhole has only one solution
to its equations of motion: the trivial solution where it
remains forever at rest. We also argue, but do not prove
firmly, that there is only a single solution for any ball
with (i) an initial speed that is sufFiciently slow but not
zero, and (ii) an initial path of motion that, if extended
forever, remains far from the wormhole.

original trajectory. Since the wormhole traversal rules
(2.1) are trivially obeyed, and the ball has obviously un-
dergone a velocity-exchange collision, all the equations of
motion are satisfied.

If the ball's radius is not arbitrarily small, both so-
lutions, (a) and (b), still exist. However, the details of
solution (b) are modified slightly, as shown in (c). The
collision still entails a precise velocity exchange, and the
wormhole traversal rule is still satisfied (but not quite so
trivially as before). However, there is now an offset of
the various pieces of the ball's path (solid lines) relative
to the previous path (dotted lines).

It is not hard to convince oneself that, when the ball
is given a finite but small size R (( B, all the solutions
described in the remainder of Sec. III remain valid with
tiny modifications similar to those in Fig. 6(c). However,
for ease of presentation we henceforth in Sec. III shall
keep the ball's size infinitesimal.

B. Infinite multiplicity is generic

As a first step in demonstrating that infinite multiplic-
ity is generic (i.e. , that all the initial trajectories in a
set of finite measure have infinite multiplicity), consider
the highly symmetric initial trajectory shown in Fig. 7.
The ball's initial speed is arbitrary, and its initial path
is coplanar with and perpendicular to the line of centers
and is directed half way between the two mouths. Fig-
ures 7(a)—7(d) are four self-consistent solutions for this
initial trajectory, and they obviously are generalizable to
produce an infinite set of solutions. Yet another solution
is that of Fig. 6(b), which involves velocity exchange by
contrast with the mirror exchange of Fig. 7.

The solution shown in Fig. 7(b) was pointed out to
us by Forward [12] (and it motivated our discovery of
the infinite multiplicity of solutions). In this solution
the ball experiences a mirror-exchange collision, which
knocks it radially into mouth 2. It then emerges radi-
ally from mouth 1, earlier in external time by precisely
the right amount Tg ——1 to enable it to return to the
collision event. The wormhole-traversal rules (2.1) are
trivially satisfied (g;„= P& @»t ———P; vi ——vq), and
the mirror-exchange rule is satisfied with the mirror line
parallel to the line of centers (horizontal dashed line).
Since the mirror line must be along vi + v~, the speed
vq must be v2 ——vi/sing (where g, as shown in the
figure, is the g;„of the wormhole-traversal rule). The
total distance traveled by the ball between collisions (in
the limit, for simplicity, that B « 1) is 1/ cos@, so the
total time lapse as measured by the ball between colli-
sions is (1/cos @)(1/vq) = tan @/vi. This ball-measured
time lapse must be equal to the amount of backward time
travel, T~ ——1, during the ball's wormhole traversal, in
order that the ball return to the collision event. Corre-
spondingly, the value of @ must be given by

tan@ = vi .

Notice that there is no constraint whatsoever on the
initial speed vi. All the equations of motion are satisfied
in Fig. 7(b), when @ has the value (3.1), regardless of
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mouth 1 mouth 2

V2

)&V)

(b)

how large or how small vi might be.
In the limit as v~ goes to zero, the ball is initially at

rest on the mouths' line of centers; it gets hit and knocked
radially into mouth 2 at speed vp ——1; it travels backward
in external time by Tg ——1 while traversing the wormhole;
and it then emerges radially from mouth 1, travels to the
collision event, hits itself, and comes to rest. Note that
this solution is really a continuous infinity of solutions:
the time T of the collision is completely arbitrary.

The solution in Fig. 7(c) involves two wormhole traver-
sals. As measured by the ball, using its own local time,
the sequence of events is the following: (i) initial path
n, (ii) mirror-exchange collision, (iii) path P from colli-
sion to mouth 2, (iv) first wormhole traversal, (v) path y
from mouth 1 to mouth 2, (vi) second wormhole traver-
sal, (vii) path 6 from mouth 1 to collision event, (viii)
path s (opposite to initial path).

As seen by external observers, the sequence is quite dif-
ferent. It is straightfoward to verify, by the same method
as was used in solution (b), that in the limit B (( 1 the
angle g is given by

sin @+tan g = 2vi, (3.2)

and that the sequence of events is as follows. (i) At time
T = —1/(1+ cosg) before the collision, the ball emerges
from mouth 1 and starts traveling along b toward the col-
lision event, while (in its younger incarnation) it is also
traveling up n. (ii) At time T = —cos g/(1+ cos g), the
ball emerges from mouth 1 and starts traveling along p
toward mouth 2; there are now three incarnations of the
ball present. (iii) At time T = 0, the collision between in-
carnations n and 6 occurs, knocking incarnation o, along
P and incarnation b along s; the third incarnation is still
traveling along y. (iv) At T = cos g/(1+ cos @), the ball
on 7 enters mouth 2 and disappears, leaving just two
balls: one on s, the other on P. At T = 1/(1+ cos@),
the ball on P enters mouth 2 and disappears, leaving just
one ball, traveling along the Anal trajectory c.

Figure 7(d) involves three wormhole traversals. The
sequence of paths as measured by the ball is in Greek al-
phabetical order. It is left as an exercise for the reader to
compute the angle @ in the limit B &( 1 and compute the
detailed timings of events as seen by external observers.
The reader should also be able to verify (perhaps with
the aid of Fig. 9 below and the associated discussion)
that the wormhole-traversal rules and mirror-exchange
rules are satisfied.

The generalization of the solutions of Fig. 7 to an ar-
bitrarily high number of wormhole traversals should be
obvious. We shall examine, in Fig. 9 below, the details
of the sequence of wormhole traversals involved in that
generalization.

The generalization of these mirror-exchange solutions
to arbitrary coplanar initial trajectories is not quite so
easy as in the velocity-exchange case of Fig. 6. The
method of generalization, for a one-traversal solution, is
shown in Fig. 8. The steps in the method are as follows:
(i) Specify the initial path n, but not the initial speed vi,
the initial speed will be calculated as the last step in the
method. Specify, instead of the initial speed, the location
P along the initial trajectory o. at which the collision oc-
curs. (ii) By trial and error find a path that takes the

mo outh 2

/

V2
(c)

)(
Vi

I
V2

Jl

Vi

(d)

FIG. 7. A specific example of an initial trajectory with
an infinite number of solutions (infinite multiplicity). (a) The
trivial solution. (b) Solution with one mirror-exchange col-
lision and one wormhole traversal. (c) Solution with one
mirror-exchange collision and two wormhole traversals. (d)
Solution with one mirror-exchange collision and three worm-
hole traversals. Solution (b) was pointed out to us by Forward
[12] and motivated our discovery of solutions (c) and (d) and
their generalizations.

FIG. 8. Trial-and-error method of generating a one-
traversal, mirror-exchange solution for an arbitrary, coplanar
initial trajectory.
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ball from point P to mouth 2, then through the wormhole
in accord with the wormhole-traversal rule, then back to
point P. That the trial and error will produce precisely
one path of the desired type is demonstrated by the se-
quence of trials P, p, 6, . . . , c. The wormhole traversal
rule (2.1b) guarantees that the modest displacements of
the path into mouth 2, in going from P to y to. . . to i, ,
will produce the large swing of the path around mouth 1
that is shown in Fig. 8. This large swing, in fact, is an ob-
vious consequence of the "diverging-lens" property of any
wormhole mouth [13,I]. And this monotonic, "diverging-
lens swing" will obviously produce precisely one path of
the desired form: path b in Fig. 8. (iii) From the collision-
to-collision travel distance along path b and the backward
time travel Tg ——1 of the wormhole traversal, compute
the speed v2 —vi with which 6 must be traversed. This,
together with the path b, gives the velocities v2 and v&.
(iv) From the fact that these v2 and vi must be the re-
Qection of each other in the mirror line, infer the mirror
line's orientation. (v) From the fact that the mirror line
must be parallel to vi + v2, and from the known value
of vq and direction of vi (along n), compu/e the ball's
initial speed vi. (vi) From the initial speed and direction
infer the initial velocity vi. (vii) Refiect this vi in the
mirror line to get v2. All details of the solution are now
known, and all the ball's equations of motion have been
satisfied.

This same method can be used to produce solutions
with one mirror-exchange collision and an arbitrary num-
ber of wormhole traversals:

For simplicity, restrict attention to a ball with radius
R and a wormhole with mouth separation D = 1 and
mouth radius B satisfying

that occur far from the wormhole, i.e., at

I && 1 and I && h, (3.5)

where I. is the distance, along the initial trajectory, from
the collision to the point of closest approach to mouth
2; cf. Fig. 9(a). As was the case in Fig. 7, for a fixed
incoming trajectory, the location I of the collision will
turn out to depend on the number n of wormhole traver-
sals, and in the limit n ~ oo, I will become arbitrarily
large. In the discussion associated with Fig. 8, we re-
garded the initial path and I as fixed, and solved for the
initial speed v~. Here we shall regard the initial path and
speed (i.e. , @~, h, and vi) as fixed and shall solve for I
in terms of @~, Ii, vi, and n.

Because L » 1, the velocity vi with which the ball

R« B«1. (3.3)

vi)1, g~)B. (3 4)

There typically will be solutions (e.g. , the class-I and
class-II solutions of Fig. 3) in which the collision occurs in
the vicinity of the wormhole. However, in this section, in
order to demonstrate the existence of infinite numbers of
solutions, we can and shall restrict attention to collisions

Consider an arbitrary coplanar initial trajectory, as
shown in Fig. 9(a). It is characterized by the ball's ini-
tial speed vi, the angle @~ that its initial velocity makes
with the mouths' line of centers, and its initial impact
parameter h with respect to the center of mouth 2. (The
subscript A is used on g~ because, in the limit that the
collision point is infinitely far from the wormhole, the
angle go, at which the ball first hits mouth 2, asymp-
totically approaches @~, cf. Eq. (3.10) below: g~ is the
asymptotic value of @o.) By suitable choices of these pa-
rameters in the range 0 & vi & oc, 0 & @~ & m, and
—oo ( h ( oo, we can describe all possible coplanar ini-
tial trajectories. (Trajectories with —s & @A & 0 are
obtained from those with 0 & @z & s by reHection in
the line of centers. ) As we shall see, to obtain an infinite
number of solutions, each with a single mirror-exchange
collision and all with the same initial trajectory, we need
only place two constraints on the initial trajectory:

FIG. 9. A solution to the equations of motion for R &(
B && 1, with an arbitrary number n of wormhole traversals.
The figure is drawn for n = 8. The initial trajectory, charac-
terized by vi, @z, and h, is arbitrary except that vi ) 1 and
@~ ) B (a) The larg. e-scale geometry of the solution. (b)
The sequence of wormhole traversals as the ball works its way
up toward the line of centers. (c) The sequence of traversals
as the ball works its way back down from the line of centers.
The angles tP2A,. and $2q~i are given by the diverging-lens map
(3.6).
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heads toward the wormhole and the velocity vq with
which it returns are very nearly antiparallel. Since these
velocities must be the rejections of each other, the mir-
ror line (which is along vi + v2) must be very nearly
orthogonal to v2, and correspondingly, the speeds must
be related by

vq = vi ——vi cos(h/L) = vi [1 —
2 (h/L) ], (3.6)

where we ignore corrections of higher order in h/L. In
its sequence of n wormhole traversals, the ball goes back-
ward in time by b.T = —nTg = n —Cor. respondingly, in
order to return to the collision point at the moment of
collision, it must travel a total distance nv2. The total
distance traveled, for large L and n, is easily seen from
the diagram to be 2L + n (aside from unimportant frac-
tional corrections of order h /L ). By equating these
distances to each other and using the value (3.6) for the
speed v2, we obtain the relation

2L

vi —1 —~i (h/L)~vi
(3.7)

343vi/2 „
(vi —l)sl2 (3.8)

As the initial speed vi decreases toward unity (with h
fixed), the minimum number of traversals n;„ increases
toward inanity.

To recapitulate, for every choice of initial conditions in
the range vi ) 1 and g~ ) B, there is an infinite num-
ber of solutions (labeled by n) to (i) the laws of energy
and momentum conservation in the billiard-ball collision
[embodied in Eq. (3.6) which produces mirror-exchange],
and (ii) the condition that the ball return to its collision
point at the same time T as it left it [Eq. (3.7)]. We can
be sure that each n ) n;„gives a full solution to the
equations of motion as soon as we have verified one more
thing: that there is a path leading from the collision point
of Fig. 9(a), to mouth 2, then through the wormhole n
times [and obeying the rules (2.1) at each traversal], then
out of mouth 1 and back to the collision point. We shall
now demonstrate that this is so.

We shall label the wormhole traversals by odd integers

This is' the promised relation which determines the loca-
tion L of the collision in terms of the initial trajectory
(characterized here by h and vi) and the number n of
wormhole traversals.

Notice that this relation cannot be satisfied, for arbi-
trarily large n and positive L, unless vq & 1. This is the
origin of the first of constraints (3.4) on our initial tra-
jectory. The second of those constraints, @~ & B, is re-
quired to ensure that, for arbitrarily large L and n [which
means for tj~ gp 2/i in Fig. 9(b), see discussion be-
low], the ball can reach mouth 2 on its after-collision
inward trajectory, without first running into mouth 1.

For a wide class of initial trajectories, there is a lower
bound on the number n of wormhole traversals that can
produce a self-consistent solution. In the regime of our
analysis (n )) 1, L )) 1, L )) h) this lower bound shows
up as the fact that n viewed as a function of L with fixed
vi and h [Eq. (3.7)] has a minimum:

1, 3, 5, . . . , 2n —1, and shall label the path up to mouth
2, the paths between traversals, and the path back to the
collision point by even integers 0, 2, 4, . . . , 2n. Figure 9
is drawn for n = 8, 2n = 16. The location of traversal
2k —1 is described by its angle P2y i on the wormhole
mouths relative to the line of centers, and the direction
of path 2k is described by the angle g2q from the line of
centers to the path's velocity direction. The wormhole
traversal rule (2.1b), in this notation, reads

@2y+g —@2y = —2ggi+i for 0 & k & n —1; (3.9a)

and the expression for the slope of path 2k in terms of the
locations of its end points reads (for B « 1 so ~$2i ~

&& 1)

2k
sin Pqi+i —sin Pqi i ——— for 1 & k & n —1 .B

(3.9b)

0p = @~+h/L (3.10)

[cf. Fig. 9(a)], and we are to adjust the location Pi of the
ingoing path so as to produce n wormhole traversals fol-
lowed by an outgoing path with direction g2„——gp —n.
The diverging-lens behavior of the wormhole guarantees
that Pi can be so adjusted: By elementary geometric op-
tics it should be clear that the correct route must work
its way up toward the mouths' line of centers in the man-
ner of Fig. 9(b) during the first half of its trip, and must
then work its way back down in the manner of Fig. 9(c)
during the second half. In order to do this successfully,
the paths on the upward route must have @qy+2 « $2i
and, correspondingly [cf. Eq. (3.9a)], $2i+i 2$2i —or,
as one sees from a more precise study of the map (3.9a)
and (3.9b), $2i+i ——2$2y[1 + O(B)], where O(B) de-
notes a k-dependent quantity of order B. In particular
(choosing k = 0), Pi must be equal to 2gp[1+ O(B)].

We can understand qualitatively (but not quantita-
tively), with the aid of Fig. 8, how the pattern of paths
in the vicinity of the hole changes as the trial-and-error
value of Pi is gradually decreased toward and then past
the fixed z~@p. Initially, for Pi —x/2, there is just one
wormhole traversal and the outgoing path at mouth 1
has the form P of Fig. 8. As Pi is decreased, the out-
going path at mouth 1 swings from p to 7, which is the
desired path in our present trial-and-error search [point
P very far down path p as in Fig. 9(a)]. We thereby
obtain a solution with one wormhole traversal. As Pi
is further decreased, the output path at mouth 1 swings
through 6 and e and up to g. Suddenly at ( the output
path plunges down mouth 2 and emerges from mouth 1

For all except the first and last traversals, the angle P
is small compared to unity. Therefore, in (3.9b) the
sing2iyi can be approximated by $2iyi, except for sin/i
and sin P~„

Equations (3.9a) and (3.9b) constitute a map from the
direction @p of the ingoing path to the direction @2„of
the outgoing path. This map embodies all the equations-
of-motion constraints on the trial-and-error search for the
desired ingoing path. In this map we are to take gp as
fixed by our chosen location for the collision
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along P. A further decrease of Pi swings the output path
around to y, the desired position. We now have a solution
with two wormhole traversals. By continuing to decrease
the trial-and-error Pi toward 2@0, we cause the output
path to swing again from p to (, there enter the wormhole
a second time and emerge on P, then swing down to y,
producing a solution with three traversals, then continue
its swing to produce solutions with four traversals, five
traversals, six traversals, . . . . Ultimately, as Pi decreases
through the singular limit point of an infinite number of
traversals [Pi ——a certain value Pi~, ;i —&go+ O(JOB)],
the output path fiips over to path g, which passes just
above mouth 2; and further decreases of Pi cause it to
swing through a pattern g, 0, a, reduction of traversals
by 1; then g, 0, i, reduction by 1; . . . until the number
of traversals is reduced to zero. During this reduction
sequence we get no acceptable solutions because the out-
put path is not swinging through the required position

This completes our demonstration that for each copla-
nar initial trajectory with vi & 1 and g~ & B (and for
a ball and wormhole satisfying R « B « 1), there ex-
ists an infinite number of solutions of the billiard-ball
equations of motion, one corresponding to each value
n ) n~j„of the number of wormhole traversals. To
construct the solution with n traversals one can (i) spec-
ify the initial trajectory (the parameters g~, h, vi), (ii)
then compute the location L of the collision from Eq.
(3.7), and (iii) then find the location Pi at which the ball
first enters mouth 2 by the above geometrical trial-and-
error method. (Readers who seek higher rigor than we
do might worry that our analysis has examined only the
leading-order effects in the small parameters B, R/B,
I/I, and h/I and has not proved rigorously that higher-
order corrections are negligible. We are not worried. )

C. Initial trajectories with only one solution

In this section we turn attention from initial trajecto-
ries with infinite multiplicity (an infinite number of so-
lutions), to the issue of whether there exist trajectories
with only one solution: collision-free motion. As in the
last section, we shall restrict attention to initial trajecto-
ries that are coplanar with the wormhole's line of centers
and shall describe them by the parameters vi, h, and g~
of Fig. 9(a).

We learned in the last section that for speeds vq ) 1 the
multiplicity is almost always infinite. This suggests that
we should seek unit multiplicity in the regime v~ (& 1.
Moreover, it seems intuitively clear that a good strategy
for avoiding collisions is to keep the initial trajectory far
from the wormhole, i.e. , to choose h )) l.

That h )) 1 and v~ (( 1 are indeed likely to produce
unit multiplicity we can see from the following: If there
were a solution with one or more collisions, the first col-
lision encountered by the ball presumably would have to
be of the type depicted in Fig. 9(a): the old incarnation
of the ball Ries out from near the wormhole and knocks
the young incarnation inward, toward it, and then the old
incarnation flies away never to collide again. Such a colli-

sion can only be of the mirror-exchange type and not the
velocity-exchange type. Moreover, even if the ball en-
counters many additional collisions near the wormhole,
energy conservation in the entire sequence of collisions
implies that vq

—vi in the ball's first, distant collision;
and this, together with the argument preceding Eq. (3.6),
implies that

In other words, after its first collision, the ball heads
toward the wormhole with a speed 5i ——v2 very small
compared to D/Tg ——1, and after it has finished all its
near-wormhole activity, it heads back out toward its first
collision with the same tiny speed. This implies, in turn,
that the ball must travel backward in time, via wormhole
traversals, by a huge amount, AT & 2h/vq & 2h/vi ))
2h )) 1. Since each traversal produces a backward time
travel of only Td ——1, and there is a forward time travel
of at least D/v = I/v between traversals, the only way
the ball can achieve such an evolution is by a peculiar
sequence of multiple collisions near the wormhole that
build up speeds v & 1, temporarily, followed (from the
ball's viewpoint) by multiple wormhole traversals into the
past at these high speeds, and then followed (from the
ball's viewpoint) by collisions that reduce the ball back
to v2 && 1 and send it back out toward its first collision
event. We have searched cursorily for such peculiar solu-
tions, without success, and we suspect they do not exist.
However, we have no proof.

On the other hand, in the limit that the ball's initial
velocity is precisely zero, and the ball's initial location is
far from the wormhole mouths, it is easy to prove (with
one caveat; see below) that there is only one solution, the
trivial one where the ball remains always at rest. The
proof makes use of a sequence of nested convex surfaces
that enclose the wormhole mouths, which for concrete-
ness we take to be ellipsoids of revolution (Fig. 10). The
ellipsoids are labeled by a generalized radius r which in-
creases outward. We require that the ball initially reside
at a radius t o larger than that, r~j„of the ellipsoid which
barely encloses both wormhole mouths.

Now, suppose that there were a solution to the equa-
tions of motion other than the one in which the ball re-

min

FIG. 10. Nested ellipsoids of revolution surrounding the
wormhole, which are used to prove that a ball initially at rest
sufficiently far from the wormhole must always remain at rest.
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mains at rest. In this solution, the ball would have to
undergo one or more self-collisions. There are two pos-
sibilities: (i) As seen by the ball there is an infinite se-
quence of self-collisions that goes on and on forever. We
have not been able to rule out such a solution rigorously,
but it seems exceedingly unlikely that one could exist.
(ii) As seen by the ball there is a last collision. We re-
strict ourselves to this case.

After completing all its collisions, in order to conserve
energy (cf. Fig. 5 of Ref. [6]), the ball would have to
return to rest. I et r ~„be the largest radius the ball
reaches while it is in motion. Since i~ „& pp & r~,„,
this largest radius must lie outside the wormhole, and
there thus must be a collision at this rm», for otherwise
the moving ball would be at larger radii momentarily
before or after it is at r~ „. However, the object that
the ball collides with, as it rises to r ~ and then gets
dellected back downward, can only be the ball itself (since
there exist no objects in this problem except the ball and
the wormhole), on a path that is coming downward from
radii r & r~~ We t.hus reach a contradiction; r~,„ is
not the ball's maxium radius. Therefore, there exist no
solutions except the trivial one.

Note that this proof fails if the ball is initially at rest
inside radius rm;„, since the maximum radius then can lie
at the wormhole mouth, and the wormhole rather than
a collision can be responsible for deAecting the ball back
inward toward smaller radii. A specific example of a non-
trivial solution of this type is the one where the ball is
initially at rest on the mouths' line of centers, gets hit
and knocked into mouth 2, emerges earlier from mouth
1, hits itself and returns to rest; cf. the second paragraph
after Eq. (3.1).

IV. SEARCH FOR COPLANAR INITIAL
TRAJECTORIES WITH NO

SELF-CONSISTENT SOLUTIONS

We now turn attention to the issue of whether
there exist coplanar initial trajectories with vanishing
multiplicity —i.e. , initial trajectories that have no self-
consistent solutions whatsoever. If there are such initial
trajectories, they must be of the "dangerous" type, i.e.
they must be trajectories that, when followed assuming
no self-collision, produce a self-collision; cf. the discussion
in Sec. IB.

Our search for zero multiplicity among the dangerous
trajectories will be carried out in three pieces. In sub-
section A we shall consider the restrictive case of a ball
and wormhole satisfying R « B « 1, and shall show
that in this case all (coplanar) dangerous initial trajec-
tories have infinite multiplicity. In Sec. IVB and Ap-
pendix A, we shall completely relax these restrictions,
and require only that B ( 2 so the wormhole mouths
do not overlap each other, and R/B & z so the ball can
pass through the wormhole and we can ignore the eA'ects
of tidal forces on the ball during and after its traver-
sal (cf. Sec. II A). For this case we shall derive a pair of
coupled, highly nonlinear algebraic equations that gov-
ern self-consistent solutions. These equations have solu-
tions in all regimes we have examined (the multiplicity

is nonzero), but their high nonlinearity has prevented us
from proving definitively that there always is a solution.
In Sec. IV C and Appendix B we shall examine the inter-
rnediate case R/B & z but B (( 1. In this case we shall
show that for a wide range of dangerous initial trajecto-
ries there is always at least one self-consistent solution,
and we shall argue that this is probably so for all ini-
tial trajectories, i.e., the multiplicity is probably always
nonzero.

To summarize, our search will turn up no evidence at
all for initial trajectories with zero multiplicty.

As a by-product of our search, we shall obtain a de-
tailed understanding of the class-I and class-II solutions
depicted in Fig. 3, above.

vy&1. (4.1b)

Since each dangerous initial trajectory satisfies condi-
tions (4.1a) and (4.lb), all dangerous initial trajectories
are in the class for which we proved infinite multiplicity
in Sec. III B; cf. Eq. (3.4).

B. B&-', andR/B&-',

Turn next to a wormhole whose size is constrained only
by B & 2 (mouths do not overlap) and R/B & 2 (tidal
forces ignorable during traversal; cf. Sec. IIA).

As in the extreme case of R « B « 1, so also here, all
dangerous initial trajectories must extend directly from
infinity to mouth 2, so as to initiate their backward time
travel. This makes it advantageous to label the initial
trajectories by a diAerent triplet of parameters than those
of Fig. 9(a) above. The previous parameters were the

A. Ball and wormhole with R && B && 1
f

When R (( B (( 1, we can infer from the analysis given
in Sec. IIIB above that all dangerous initial trajectories
have infinite multiplicity. The argument goes as follows.

Each dangerous initial trajectory, if followed assum-
ing no self-collision, must travel backward in time by a
mouth-2 to mouth-1 wormhole traversal so as to produce
a self-collision. This means that it must hit mouth 2 upon
nearing the wormhole, and not be blocked from doing so
by mouth 1, which in turn means that the angle g~ in
Fig. 9(a) must be larger than B:

(4.1a)

[cf. Eq. (4.7) below with g~ ——0+ g]. Moreover, it is
easy to see that, if n is the total number of mouth-2 to
mouth-1 wormhole traversals that the (self-inconsistent)
trajectory undergoes before hitting itself, then the to-
tal distance it travels from its first encounter with the
event of self-inconsistent collision to its second encounter
is KI & nD = n. Since the wormhole traversals produce
a backward time travel of LT = —nTg ———n, the de-
mand that there be zero external time lapse between the
first and second encounters, Al/vi + AT = 0, implies
that the ball's initial speed is
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initial speed vi of the ball's center, its impact parameter
h, and its angle g~ relative to the wormhole mouths' line
of centers. Our new parameters are vi and the two angles
8, P shown in Fig. 11. The two sets of parameters are
related by h = B—sin 8, g~ —0+ P.

In order to make progress in the search for self-
consistent solutions in this weakly constrained case of
possibly large 8 and R/8, we have confined our search to
self-consistent solutions (i) with just one collision, which

(ii) is of the mirror-exchange type, and (iii) in which the
ball first encounters the collision event before any worrn-

hole traversal and then encounters it again after only one

traversal. We shall characterize such a self-consistent so-
lution by (among others) the two angles a and P shown in
Fig. 11;P is the ball's deflection angle when it first passes
through the collision event, and o, is the angle between
the two incoming balls (old incarnation and new incarna-
tion) at the collision event. In Appendix A we show that,
corresponding to each nonspurious solution (a, P) of the
following two equations, there exists a self-consistent so-
lution of the full equations of motion for the billiard ball;
and we give in Appendix A equations for computing all
features of that solution. The two equations for a and P
are

B sin o, sin
t
' a —p'~

sin 8 —sin
~
8+ P—

2 r

a —p ~ ~ a —p'i a+p+ sin p sin
2

sin(8+ P) —8 sin 8+ sin
~
8+ P+ ~

= (vi + d) sin sin asinP, (4.2)

('a+ pBsin
~

—8 —P ~

(sin a+ sin P) + Bsin 8sin(a —P) —sin Psin(a —8 —P) = —dsina sin P, (4.3)

where

sin[zi(a+ p)]
sin 0,'

(4.4a)

d = 2sR/(1+ p + 2p cos a) ~, s = sign(d); (4.4b)

and if one is interested in the ball s speed between colli-
sions, it is given by

(4 5)

The parameter d is shown in Fig. 11; it is the distance
that the ball's younger incarnation must travel past the
point of intersection of the two incoming trajectories, to
reach the collision event. One can choose its sign s ar-
bitrarily in a search for solutions. If s = +1 (the case
shown in Fig. 11), the ball's older incarnation passes be-
hind the younger, the younger is defIected to the right
(p ) 0), and we call the collision "class I" [cf. Fig. 3(b)].
If s = —1, the older incarnation passes in front of the
younger, the younger is deflected to the left (p ( 0), and
we call the collision "class II" [cf. Fig. 3(c)]

Equations (4.2) and (4.3) for a and P have the fol-
lowing set of spurious solutions that were introduced by
manipulations carried out in Appendix A:

(a, P) = (0, 0), (z, 0), (0, z.), (x, ~), (2P, 0), (4.6a)

any solution with p & 0, (4 6b)

any solution with sign(P) g sign(d):—s . (4.6c)

FIG. 11. Geometry of a self-consistent solution with one
wormhole traversal and one billiard-ball collision. More de-
tails of this geometry are depicted in Figs. 17 and 18 of Ap-
pendix. A. By convention all angles and distances (e.g. , o, P,
and d) are positive when their orientations are as shown here.

Equations (4.2) and (4.3) for a and P are so horri-
bly nonlinear that we can say only one thing definitive
and universal about their solutions: since there are two
equations for two unknowns, the solutions must form a
discrete set. It is far from obvious, just looking at the
equations, whether there exist values of the wormhole
and ball radii B, R and initial-trajectory parameters v~,
0, P that produce zero solutions. Numerical exploration,
and the analytic considerations of the next section, have
not turned up any such zero-multiplicity trajectories.
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C. B (( 1 and R/B &—

To make further progress in our search for dangerous
initial trajectories with no self-consistent solutions, we
shall retain R/B & &, but shall specialize to a worm-
hole with mouth radii small compared to their separation,
B « D = 1. (Note that these relations imply R « 1.)
We shall also limit ourselves to a large but not com-
plete set of dangerous initial trajectories: those whose
self-inconsistent solutions have the same form as the self-
consistent solutions analyzed in the last section: the ball
comes in from infinity, passes through (and ignores) its
collision event, traverses the wormhole just once, and
then hits its collision event a second (self-inconsistent)
time. The parameters of such initial trajectories lie in
the range

B/2 & 4' & +/2~ B 4' & 0 & 4'~ vlmin & vi & vimax

(4.7)

where

(4.9)

In Appendix 8 we search in this range by expanding
Eqs. (4.2) and (4.3) for n, P in powers of s and P. In
order to obtain real solutions, rather than just the spuri-
ous solutions of Eq. (4.6a), the equations are expanded to
quadratic order, and they then are combined to yield one
quadratic and one linear equation, Eqs. (B2) and (B12)
[in which Ai is as defined in Eq. (4.10) below]. These
equations have simple analytic solutions throughout the
regime (4.7) of dangerous initial trajectories (through-
out the interior of Fig. 12's dangerous triangle), except
near the triangle's left corner and near its lower left edge.

m/2

(1 —2B cos P) ~
vlmax cos P cos P

(4.8)

The 0, P part of this dangerous region is the interior of
the thick-lined triangle of Fig. 12. We shall call this the
"dangerous triangle. " The constraint 0 ) B —P (lower
left edge of dangerous triangle) is required so the ball
will avoid entering mouth 1 before it reaches mouth 2;
parameters (0, P) near this edge correspond to incoming
trajectories that skim past mouth 1, go down mouth 2,
emerge from mouth 1, and then collide self-inconsistently
near mouth 1. The constraint P & x/2 (right edge of
dangerous triangle) is required so the ball s path will in-
tersect itself after passing through the wormhole; near
this edge the outgoing path emerges from the wormhole
nearly antiparallel to the ingoing path, thereby produc-
ing a self-inconsistent collision far from the wormhole.
The constraint 8 & P (upper left edge of dangerous tri-
angle) is required to make the collision occur before the
ball enters mouth 2 a second time; for (0, P) near this
edge, the self-inconsistent collision occurs close to mouth
2. The constraint (4.8) on vi (not depicted in the figure)
guarantees that the ball returns to the collision region at
the right time to produce a self-inconsistent collision.

In Appendix 8 we carry out a search for self-consistent
solutions throughout this range of dangerous initial tra-
jectories. The strategy of the search is based on the phys-
ical idea that, because R & B/2 « 1, the ball travels a
distance huge compared to its size R between its first and
second encounters with the collision. This means that a
very tiny deflection, ~P~ R && 1, can significantly al-
ter the geometry of the collision, and possibly change it
from the self-inconsistent form of Fig. 3(a) to the class-I
or class-II self-consistent form of Figs. 3(b) and 3(c). A
tiny value of ~P~ goes hand in hand with a tiny change
of n from its self-inconsistent-solution value 2P (which is
dictated by the wormhole traversal rule shown in Fig. 4).
This motivates us to search for solutions in the parameter
range

O
2
O

O

Solutions -- .m/2

O

(0~~

O

O

O

(D

FIG. 12. Parameter space for the ball's initial trajectory
when 8 « 1, R/B & —.The interior of the thick-lined trian-
gle is the region of dangerous initial trajectories that produce
a self-inconsistent collision after one wormhole traversal [Eq.
(4.7)]. We call this the "dangerous triangle. " Equations (4.2)
and (4.3) govern solutions throughout this dangerous trian-
gle. Simple analytic solutions of these equations are given,
in the indicated shaded regions of the dangerous triangle, by
the indicated equations. Analytic solutions cannot be derived
by the techniques of Appendix 8 for the white regions of the
triangle (left corner and lower left edge), but numerical solu-
tions have been found in spot checks throughout that white
region. Figure 14 below shows, as an example, a solution
(part analytic, part numerical) all along the upper left edge
of the dangerous triangle, including the left corner.
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Vj —Vjmin + ~j(vjmax vjmin) (4.10)

v2 —vjmin + ~2(vjmax vjmin) (4.11)

Note that the dangerous initial trajectories have 0
A j & 1. In the central region of the triangle (P —0» B,
P + 0 —B» R, and xj2 —P» B) there are two simple
solutions to the quadratic and linear equations (82) and
(812): one of class I, the other of class II. The class-I
solution (s = +1) is

Near this corner and edge, tiny changes of the incoming
trajectory produce huge changes in the location of the
self-inconsistent solution; and correspondingly, it turns
out that self-consistent solutions there typically have a
large value of e. This causes the power-series expansion
of Appendix B to break down. However, near this corner
and edge one can go back to the exact, nonlinear equa-
tions (4.2) and (4.3), and find solutions numerically. At
all points near the left corner and lower left edge where
we have tried, we found numerical solutions. Thus, it
seems likely that solutions exist everywhere in the dan-
gerous triangle.

The simple analytic solutions in the horizontally
shaded central part of the triangle (i.e. , for collisions not
close to either mouth; cf. Fig. 12) are interesting and in-
structive. In describing these simple solutions we shall
give formulas not only for P and s (a surrogate for the
angle n), but also for the ball's speed vq between col-
lisions. Other parameters describing the solutions can
be inferred from the equations in Appendix A. To sim-
plify notation in the solutions, we shall characterize the
initial speed v~ and the speed between collisions v2 by
parameters Ai and A2 defined by

and (4.6c). Similarly, the class-II solution is valid for
—R &( Aj & 0, as well as for 0 & Aj & 1, but for
Aj ) 1 it predicts opposite signs for P and s and thus
is spurious. At the point Aq

——0 or 1 where one of the
solutions stops (becomes spurious), it actually joins onto
(converts over into) a valid, collision-free solution in a
manner depicted in Fig. 13.

These simple solutions for the interior region of the
dangerous triangle (Fig. 12) break down near the trian-
gle's upper left and lower left edges. There, in solving the
coupled linear and quadratic equations (82) and (812),
one must keep nonlinear terms. It is straightforward to
do so, and thereby obtain solutions valid near the upper
left edge, but not near the left corner or lower left edge.
In Appendix B we analyze the region near the upper left
edge (collisions that occur near mouth 2): 0 & P —0 & B,

» B B.y combining Eqs. (82) and (812), we ob-
tain a quadratic equation [Eq. (829)], with rather sim-
ple coeFicients, for the incoming ball's deQection angle
P. Some of the solutions to this quadratic equation are
spurious (wrong sign of P for a chosen sign of s). In
Appendix B it is shown that, throughout our chosen re-
gion (0 & P —0 & B, P» B), there is a nonspurious
class-I (s = +1) solution, Eq. (832), but in some parts
of that region there is no nonspurious class-II solution.
We suspect, but have not proved, that the missing class-
II solution actually exists, but the ball first encounters
its collision shortly after passing through the wormhole,
rather than before, and therefore this solution is beyond
the domain of validity of our analysis.

On the upper left edge of the dangerous triangle (at
P = 0), the class-I solution (832) has the form depicted
in Fig. 14. This figure is drawn for A& ——&, B = 10

8 sin P
cos 0(tan~ P —tan~ 0)

(4.12a)

8cosg
sin(0 + P)

(4.12b)
egular solution
ithout collision

&2 =
I I+
t' 2cosg

tan —tan 0
(4.12c)

The class-II solution (s = —1) is

BR (1 —A j),cos 8(tan2 P —tan~ 0)
(4.13a) Regular solution

without collision

8cosg
(1 —Aj)R, (4.13b)

~-~. =-
~
~+, , n)(~ —~i)

2cosg
tan~ P —tan 0

(4.13c)

These solutions, which when viewed as functions of A~

(i.e. , of vj) are linear, actually extend out of the region
0 & A~ & 1 of dangerous initial trajectories: The class-
I solution is valid for R && Ai & 1, as well as for
0 & Aq & 1, but it is spurious for Aq & 0 since there
it predicts opposite signs for P and s; cf. Eqs. (4.12a)

FIG. 13. Billiard-ball speeds for the two self-consistent
solutions (4.12) and (4.13) in the central region of Fig. 12's
dangerous triangle. (This central region represents collisions
that occur neither very close to a wormhole mouth nor at huge
distances from the wormhole. ) The parameters plotted, Aj
and A2, are proportional to the speeds vj and v2 [Eqs. (4.10)
and (4.11)j, and the dangerous range of incoming speeds is
0 ( Aq & l. At each edge of the dangerous range, one of the
solutions joins continuously onto a collision-free solution, and
the other continues to exist as a solution with collision.
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and R = 10 5 (though the solution is valid also when R
is close to B). Notice the sharp change in the deflection
angle as one passes from P & x/4 to P & x/4, and from

P ) v B = O. l to P & ~B = O. l: At P & ~/4, the
deflection angle P is of order R = 10 5 [This is rather
larger than in the central region of the triangle, where it
is of order BR; cf. Eqs. (4.12a) and (4.13a)]. At ~B &
p & vr/4, p is of order B = 10 . As g decreases toward
zero (as one moves toward the left corner of the dangerous
triangle), s grows large and the power series expansion
of Appendix 8 begins to break down. We have solved
numerically the full, nonlinear equations (4.2) and (4.3)
for n and P in this corner region and have verified that
a solution continues to exist right up to the corner.

The analytic solution (B32) takes on especially simple
forms for a very small ball (R tan2 P « B), very near the
upper left edge of the dangerous triangle (~P —0~ tan
1), and away from the regions of rapidly changing P: At
P )) ~B and vr/4 —P )) B the solution becomes

cos 2P cos2 PP = singcos2$B, c = . B;
sin P

(4.14)

and at P—x/4 )) B (but vr/2 —P )) gR/B and vr/2 —P ))
~P

—0(i~2), it becomes

4 sin PP=t= — RAi .
cos 2P

(4»)

These approximations to the solution are plotted as
dashed lines in Fig. 14.

To recapitulate, self-consistent analytic solutions with
~p~ && 1 and ~s( && 1 exist throughout the dangerous re-
gion of Fig. 12, except its left corner and lower left edge;
and we have found numerical solutions in spot checks of

i0 2

i04—

So'
0 0.1 0.25

-e
x/2

FIG. 14. A combination numerical and analytic solution
for the ball's deRection angle P as a function of P, along the
upper edge 8 = P of Fig. 12's dangerous triangle. This is
the class-I solution (P & 0); the ball and wormhole radii are
R = 10 and B = 10; and the incoming speed is at the
center of the dangerous range, vi ——

2 (vi ~» + vi ~;„) [Ai ——
2

',

cf. Eq. (4.10)].

that corner and edge. We find no evidence, when B « 1
and R/B & z, for initial trajectories with zero multiplic-
ity.

V. NONCOPLANAR TRA JECTORIES

In this section we shall extend most of the coplanar
results of Secs. III and IV to initial trajectories that are
slightly noncoplanar. Thereby we shall accumulate evi-
dence which suggests, but does not really prove, that all
noncoplanar initial trajectories have multiplicity larger
than zero (i.e. , have self-consistent solutions to the equa-
tions of motion). Throughout our discussion we shall
confine attention to a wormhole with B « l. [This same
restriction was imposed throughout Sec. III and in all of
Sec. IV except in the fully nonlinear equations of motion
(4.2) and (4.3).]

As a first step, we shall ask ourselves how nearly copla-
nar a trajectory must be in order to be dangerous, i.e. , in
order to produce a self-inconsistent collision, if followed
assuming no collision.

Gonsider an arbitrary initial trajectory. Define the
wormhole's "equatorial plane" to be the unique plane
that is parallel to this initial trajectory and contains the
wormhole's line of centers. At any point along the ball's
trajectory, denote by z the height of the ball's center
above the equatorial plane, denote by / the distance the
ball has traveled (from some arbitrary origin) parallel
to the equatorial plane, and denote by z' = dz/dt the
inclination of its trajectory to the equatorial plane. Our
definition of equatorial plane guarantees that initially the
trajectory has z = const = z~ and z' = 0. However, z'
will be made nonzero by the first collision or wormhole
traversal the ball encounters.

Now, follow the ball's initial trajectory assuming no
collisions. In order for the trajectory to be dangerous,
it must traverse the wormhole. The wormhole traversal
will convert the trajectory's inclination from z& ——0 to
z2 ——cos0tan[2arcsin(zi/B)]; cf. Fig. 15(a). Iiere 0 is
the angle at which the trajectory's equatorial projection
intersects the equatorial normal to the wormhole mouth
(as in Fig. 11 above). If it travels a subsequent distance
4/ = L2 parallel to the equatorial plane and then collides
with itself (inconsistently), the height of its center at the
collision will be z2 —zi + I q cos 0 tan[2arcsin(zi/B)]. To
guarantee a collision, we must have ~z2 —zi

~
& 2R. Thus,

the initial trajectory will be dangerous only if

zi & B sin[2 arctan(2R/12 cos 0)] . (5.1)
For typical dangerous initial trajectories, I p cos 0 will be
of order unity, and thus much larger than B, which in
turn is a little larger than R; so the danger criterion
(5.1) reduces to zi & RB This means tha. t the danger-
ous initial trajectories diA'er from coplanarity by no more
than a fraction B « 1 of the ball's radius R.

We have not found a good way to analyze dangerous
initial trajectories near the boundary of the region (5.1).
However, for zi « B sin[~ arctan(2R/12 cos 0)], the ball's
motions parallel to the equatorial plane (its "in-plane mo-
tions") decouple from its motions perpendicular to the
equatorial plane (its "out-of-plane motions"), and this
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mouth 2

q =sin (z~/p)

(a)

8
~o+

yO+

~+Zg1p

mouth 2
Z2

z& „t/cose
FIG. 16. Back action of a billiard ball's out-of plane mo-

tion on its in-plane motion.

FIG. 15. Change in a noncoplanar trajectory s inclination
z' when it traverses the wormhole from mouth 2 to mouth 1:
(a) for a ball that does not collide before the traversal; (b)
for a ball that collides and is vertically deffected before the
traversal. (The change of inclination is a manifestation of the
wormhole's "diverging-lens" eR'ect. ) The left and right halves
of these two-dimensional diagrams are the projection of the
ball's trajectory onto a plane that (i) is orthogonal to the
equatorial plane (i.e., is vertical), and (ii) passes through the
mouth's center and through the intersection of the trajectory
with the mouth. The angle between the trajectory and this
projection plane is 8, and correspondingly, horizontal distance
along the projected trajectory is l cos8.

permits us easily to extend to such trajectories most of
the results of Secs. III and IV. We shall demonstrate this
explicitly for self-consistent solutions that have just one
wormhole traversal and one collision, and then shall ar-
gue that it is true also (though with a change in the al-
lowed range of zq) for all other self-consistent solutions.

Consider, then, a self-consistent solution in which the
ball gets hit by itself, travels down mouth 2 and out of
mouth 1, and then hits itself. We shall seek conditions
on the degree of noncoplanarity that permit the in-plane
motions to decouple from the out-of-plane motions.

Denote by z~ and z2 the out-of-plane displacements of
the ball's younger and older incarnations at the moment
of collision. Because the balls are round, the in-plane
locations of the balls' centers are influenced by the out-
of-plane displacements by amounts

A/- R(1 —cos@) = Rg /2 = 2R[(zg —zr)/2R]

(5 2)

where @ is the angle shown in Fig. 16. Similarly, if the
ball's center passes through the wormhole mouths at a
height zmouth, that height will influence the ball s in-
plane motion in the same manner as would a decrease

z2
mouth (5.3)B 2B2

in the wormhole's radius. The back action of the out-
of-plane motion on the in-plane motion will be negligible

in the collision and traversal if Al « R in (5.2) and
bB/B « 1 in (5.3), i.e. , if

~z2 —zt
~

&& R and zmo„th && B . (5.4)

We now ask what, values of zq lead to self-consistent solu-
tions that satisfy this decoupling condition. [To keep for-
mulas simple, we shall write them in approximate forms
valid for the regime (5.4).]

In the collision, the z component of momentum trans-
fer to ball 1 is

Z] ZQ
&Ps =

2~ &Pi, (5.5)

where p~
——mv~ is the momentum in the plane. After

traveling a distance Lq from the collision point, the ball
arrives at mouth 2 with height

I
zmouth ——z~ + z& „tLy C& B . (5 7)

The wormhole's diverging-lens eAect causes the ball to
emerge from its traversal with inclination [Fig. 15(b)]

2zmouth cos 0
z2 —zlout + (5.8)

The height z2 that the ball reaches after traveling through
the wormhole and returning to the collision point is

I r
Z2 = Zmouth + Z~L2 (5.9)

Combining Eqs. (5.6), (5.7), (5.8), and (5.9), we obtain

(2I 2 cos 8/B) zi
1+ (kP/2R)(Li + I2 + 2I rLq cos 0/B) '

(5.10a)

and correspondingly

where Ap& = kmvqP (with k typically of order unity) is
the momentum transfer in the plane, m is the mass of
the ball, vq is the ball's speed before the collision, and P
is the deflection angle in the plane. This z-momentum
transfer changes the inclination of the ball's trajectory
from z&,„——0 to

zy —zg Lp) zg —z2

2RPl
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[1+(kp/2R)(Li + L2)]'i
1+ (kP/2R)(Li + L2+ 2LiI2 cos0/B)

(5.10b)

z& « BR. (5.12)

Unfortunately (and not surprisingly), this decoupled
range is a small portion of the full range of dangerous ini-
tial trajectories zi & Bsin[zarctan(2R/L2 cos0)] RB.
Thus, we can say nothing about the existence of solutions
over the full range. However, in the decoupled range we
can infer the following from the above analysis. (i) The
in-plane motion is aA'ected negligibly by the out-of-plane
motion. (ii) If there exists a solution to the equations
of motion for the in-plane motion, then there is also a
solution for the out-of-plane motion, and it is described
by the above equations. (iii) The in-plane motion is de-
scribed by the same equations as for coplanar initial tra-
jectories. (iv) Therefore, to each solution for any slightly
AODcOPIQBQT lDlllQl STQ3cctDPg SAOPt.' coTTc8PODds Q sohl-
tion for the corresponding eoplanar trajectory, and con
versely. 7Ve have derived this conclusion only for the
case of solutions with a single collision and single worm-
hole traversal. However, it should be clear that the same
method can be used to derive the same final conclusion
for all self-consistent nearly coplanar solutions, regard-
less of the number of collisions and traversals. There
mill be a change in the precise criteria for decoupling
of the in-plane motions from the out-of-plane motions,
but there will always be some out-of-plane neighborhood
of coplanar initial trajectories for which the conclusion
holds true.

This implies that the results of Secs EEI and Ev for
coplanar trajectories are also valid for slightly noncopla-
nar trajectories. Specifically: (i) When R &( B (& 1 all
initial trajectories have multiplicities greater than zero
(i.e. , have self-consistent solutions), and all dangerous
initial trajectories have infinite multiplicity. (ii) When B
is allowed to be of order unity (but no larger than z), and
R/B is constrained only to be small enough to neglect
tidal forces, the extensive set of dangerous initial trajec-
tories investigated in Sec. IV and Appendix 8 all have
self-consistent solutions even when they are perturbed
slightly in a noncoplanar way.

To recapitulate, these conclusions hold only for a
neighborhood of coplanarity (typically zi (& BR) that
is much smaller than the full range of dangerous initial
trajectories (typically zi & BR) However, t. hese conclu-
sions make us suspect that even when zi BR, all initial
trajectories will have at least one self-consistent solution.

Note that, whatever may be the values of the pa-
rameters I,i, L2, 0, and P, there always is a height zi
that makes zq —zi and zmo„th small enough to satisfy
the decoupling criteria (5.4). For the typical case of
P —0 )) B, the distances of the callision fram the mouths
are I.~ Lg 1 and the in-plane deflection angle in the
collision is P BR [Eq. (4.12a)], sa

zl zl /B and zmouth zl

and both decoupling criteria (5.4) are satisfied if

VI. CONCLUSIONS

We have found that the Cauchy problem for a billiard
ball in a wormhole spacetime with closed timelike curves
is ill posed in the sense that large, generic classes of initial
trajectories have multiple, and even infinite numbers of
self-consistent solutions to the equations of motion. On
the ather hand, we have seen no evidence for a stronger
type of ill posedness: generic initial trajectories with no
self-consistent solutians. In paper II [9] it will be shown
that a sum-over-histories version of quantum mechanics
restores well posedness to the Cauchy problem: Quan-
tum mechanics predicts definite probabilities for a nearly
classical billiard ball to follow this, that, or another of its
classical solutions.

These results give a first glimpse of the behavior of
interacting systems in wormhole spacetimes with closed
timelike curves. It will be interesting to study more re-
alistic, albeit more complex, classical and quantum sys-
tems, as some researchers are currently doing [10]. How-
ever, our results suggest that in general there might be
no deep convict between the existence of closed timelike
curves and the standard laws of physics.
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APPENDIX A:
DERIVATIDN DF EQUATIDNS FDR

COPLANAR SELF-CONSISTENT SOLUTIONS

En this appendix we derive a complete set of equa-
tions that govern self-consistent, coplanar solutions with
B & 2, R/B small enough to neglect tidal forces, and a
single collision that the ball first encounters before any
wormhole traversals and encounters the second time af-
ter just one traversal. The bottom line of our derivation
will be a proof that, to each nonspurious solution of Eqs.
(4.2) and (4.3) there corresponds a solution of the com-
plete equations of motion.

Our derivation involves the geometric parameters de-
picted in Fig. 17, which is a more detailed version of Fig.
11. The first phase of our derivation is to construct a
full set of equations of motion. The equations in our
full set will be numbered; other equations along the way
will be unnumbered. The full set consists of (i) three
"main equations, " which can be thought of as coupled
equations for three unknowns, n, P, and v2, in terms of
the wormhole and ball radii B, R and the parameters
vi, 0, P of the ball s initial trajectory, and (ii) a set of
auxiliary equations, which express various geometric pa-
rameters appearing in the main equations in terms of the
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2 cos ~ (n —P), thereby obtaining2

(A1)

vi + v2
rg(T) = vgT, r2(T) = vgT —2sR

2.4b~. These two trajectories intersect spatially

and 2 are e i
T and r2 Tq), we obtainthe above expressions for rq(Tq an r2

v] v1+v2—dg+ d: 28R
V2

V2sln 2 A — = V] Sin 2 Cl+

This is our first main equation.
Lettinrn next, to the geometry of the collision. e ing

the collision occur at time = an i
d' tes we can write the incoming ra-able origin o coor ina es, w

jectories as

Full eometry of a self-consistennt solution with
b ll' d-ball collision. This isone wormhole traveersal and one i iar — a

d ls shown. Bybut with many more etai s s othe same as Fig. 11, bu wi
e. . n, P, d, and d2) aret' n all angles and distances (e.g. , n. . . anconvention, a
as shown here.positive w enh their orientations are as s ow

s n v2 and the knowns B, R, vj, 0, P.
be in b constructing tne cree m

'

bod the laws of mirror ex-They arare based on and em o y e a
tion of momentum ande which uarantee conserva ion o

e f h b lls relative to each other
re a ive

' '
s at the moment of colli-

the eometry of t e a s re
relative to their trajectories a ie

at the same external time T as it e i .collision a e
t for the wormhole traver-e all the laws of motion except or e ware a

The laws of mirror exchange 2. a can e r

x (v + v2): —v2 x (v] + vg)V1 = V2) Vi X yvi

I I
( +v ):—vy x (vy+v2)v2 = V1, V2 X yv1

e re uirement that we reje
' ct the s uri-(together with the requ'

1 — 2) 2
v' in terms of v1 an v2, an w'these determine v1 in

sis. The secon pair e erd
'

d t mine v',crucial to our analysis.
d shall ig-st and thus we can an

saba

which is of no interes,
. The first relation V1

——v2 we s a au
itho t iti itcally use throughout the analysis wi ou

ll ' appear we shall always writedown. i.e., nownere wi v1 a
v2 in its p ace. el The second relation v& x (vq + v2) =

which then becomes our sole embod-
iment of mirror exchange and hence o energy an mo-
mentum conservation, we rewri e

't in terms of the speeds
and angles shown in Fig. 17:

roducts of this equation witB forming the scalar pro uc s
onal

and with v2 —v& (vg vy vy l.e. , e c
of v2 orthogonal to v1, we o ain
lations: i ourr second main equation

IdI/vg = 2R/Ivx + vsI
2 1/2= 2R/(v& + v2 + 2vq v2 cos n)

(ii) the relation

d2/vg —d/vg )

(A2)

~ ~

ned as the sign of v2 —v1',
cf Eq. (2.4b).] These signs are also the same as that o

sign(P) = sign(d) = s

relation embodied in the text s q.E . 46c, as one

d t tes that the momentum transferred to a
alon the line of centers from ba o

s " oints in the same
'on as" j. Combining this with Eq.

+ 1.T th ross product with

law that the total time lapse be-Consider, next;, the aw a e
all's erst and second encounters wit e co i-

total time lapse is given y e
istances a' and c —d2 both at speed v2, msnms e i

n' l h ll use below to eliminate d from our third
dmain equat' and (iii) the signs of d and

sign(dq) = sign(d) = s .

v2 sin(o —p) = vy(sul o + sl& p)

e this e uation from its spurious solution
—p =

~
v' = —v2, we ivi e o sio, —p = m ~i.e. , v1

Q c —d2+
V2 V2

o eliminate d2, we obtainUsing the preceding equation to e i
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our third main equation:

a'+ c
1+ d/vi

(A3)

which, by a well-known trigonometric formula, implies
Eq. (A6).

Summing up the interior angles of the triangle TQQ",
we find

sic(ii y P) ( sic(sl/2) costs)

sin (@/2) cos 7s
sin pg

(A4)

The auxiliary equations, which embody the laws of
straight-line motion between collisions and wormhole
traversal, and also embody the wormhole traversal rules,
are

and

li ——2B sin(g/2) —.
sin(P+ g —0')

which, when Eq. (A8) is used, yields Eq. (A12). Figure
18 expands on some details of Fig. 17. Applying the sine
theorem to the triangle Q"SS', we find

y + 2B
'

(@/2)
sin o. sin 72 )

(A5)

lq —2B sin(tP/2)
sin(P + @ —0')

For the triangle TQQ" the sine theorem implies

B
a = . [sin(0 —P) —sin 0'],

sin (A6)
c+ I2 —(1 —2B cos P+ li) .

sin m —o,

cos [(0+P + 0')/2]
cos [(0 —P + 0')/2]

0 =0 —P —0'

7i ——
~i (0 —30' —P),

72 —0+ P —20' —P,

(A7)

(A8)

(AQ)

(A10)

a+ d = (1 —2B cos P+ li)
sin 7c —0,'

where we have used the relation SQ = 1 —2B cosP. If,
in the last two equations, we eliminate li, l2, q, and g
by using the relations found so far, we obtain Eqs. (A4)
and (A5) with the auxiliary definitions (A6)—(A11). This
completes our derivation of the auxiliary equations (A4)—
(A12).

The next phase of our analysis is a derivation of the

7. = ,'(0-0' P)—+4, - (All)

0 =y+0 +P, (A12)

These auxiliary equations can be derived as follows:
It should be clear from Fig. 17 that PQ = a and PQ' =

a', and that Q and Q' form an isosceles triangle with
the center of the right-hand wormhole mouth. Hence,
QQ' = 2B sin(@/2) and g = (n —@)/2. The interior
angles of the triangle PQQ' must add up to m:

p + (~ —rl —0) + (x —)7+ 0') = ~ .

When il is reexpressed in terms of g, this immediately be-
comes Eq. (A8). Furthermore, applying the sine theorem
to the triangle PQQ' yields (i) the relation

a a'

sin(x —)7 + 0') sin(x —g —0)

which implies Eq. (A7); and (ii)

sin(s' —)7 + 0')

which implies

2B sin(@/2)
sin p

2 sin[(0 —P —0')/2] cos[(0 —P + 0')/2] = —sin P, FIG. 18. Some details of Fig. 17 near the wormhole's left
mouth (mouth 1).
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P: 'U2

and reexpress Eq. (Al) as

sin[~i (n + P)]

(A13)

(A14)

Now, using Eq. (A2) d can be expressed in terms of p
and 0,' as

text's equations (4.2) and (4.3) for the angles n and P.
These coupled equations follow from our main and aux-
iliary equations in the following manner: First we de6ne

The last phase of our anal.ysis is to explain why, to ev-
ery nonspurious solution of Eqs. (4.2) and (4.3) for n and
P, there exists a full solution of the billiard ball's equa-
tions of motion. The reason is that (i) the main and aux-
iliary equations (Al)—(A12) embody all the equations
of motion (as well as a lot of geometrical constructions);
and (ii) by regarding the auxiliary equations (A4)—(A12)
and the third main equation (A3) as definitions of other
variables in terms of a, P, B, R, vi, 0, P, and by insert-
ing a nonspurious solution of (4.2) and (4.3) into these
equations, we automatically produce a solution of the
remaining two main equations (A2) and (Al).

d = 2sR/(1+ p + 2pcos n) i (A15)

From Eqs. (A9)—(All) it can be seen that p2
—pi + ys,

and from (A10) and (A12) that n = 0 + P + yq. Using
these in Eq. (A4), one can show that

c sin n = sin(0 + P)(l —2B cos P)
2B sin(g/—2) cos(0 + P + ys) . (A17)

Next, using (A12) in (AS)—(All), we obtain all the aux-
iliary angles in terms of n and P:

@ = —4+ ~(~ —P), Vi = —0 ——,'4+ 4~+ 4P,
(A18)

where s = sign(d). By combining Eqs. (A7), (A6), and
(A12), it can be shown that

a' sin P = B[sin 0 —sin(P + 0')]
( n —P)= B sin 0 —sin

~
0+ P —

~
. (A16)

APPENDIX 8:
SELF-CONSISTENT SOLUTIONS FOR B &g 1

In this appendix we derive the properties of self-
consistent solutions quoted in Sec. IV C, for a wormhole
and ball with B « 1 and R/B & z. We restrict atten-
tion to dangerous initial trajectories in the range (4.7)
[interior of the dangerous triangle depicted in Fig. 12],
and restrict our search to self-consistent solutions with
a single collision of the type shown in Fig. 17 and with

(P( « 1 and (s~ && 1, where s—:n —2P; cf. Eqs. (4 9).
We begin our derivation in Appendix 8 1 by expanding

the highly nonlinear, coupled equations (4.2), (4.3) in
powers of P and s to the leading orders that produce
nonspurious solutions. Then in Appendix B 2 we derive
explicit solutions to those approximate equations for the
central region of the dangerous triangle, and in Appendix
B 3 for the upper-edge region of the triangle.

Using these expressions and some trigonometric manip-
ulations, Eq. (A17) can be simplified further, giving

c sin n = sin(0 + P)
n —PBsin

~
0+ P—+

2
+ sin 0 . (A19)

Finally, eliminating vq between (A13) and (A3), and
replacing p, a', and c from (A14), (A16), and (A19), we
obtain the first of our equations for n and P: Eq. (4.2);
and we obtain the second, Eq. (4.3) by eliminating a
between (A5) and (A6), using the values (A18) and (A12)
of the auxiliary angles, and performing some algebraic
manipulations.

Notice that, in the process of deriving our two
equations (4.2) and (4.3), we multiplied them by
sin n sin P sin[(n —P)/2] [Eq. (4.2)], and by sin n sin P [Eq.
(4.3)]. This introduced the first four spurious solutions
of Eq. (4.6a). The fifth spurious solution in (4.6a) is the
self-inconsistent solution. Since v2 and vi are both posi-
tive by definition, p = v2/vi must also be positive, so any
solution for n and P which produces a negative p via Eq.
(A14), or equivalently via (4.4a), must be spurious. This
accounts for Eq. (4.6b). Finally, as was discussed follow-
ing Eq. (A2), the collision geometry rules out as spurious
any solutions with sign(P) g sign(d), which accounts for
Eq. (4.6c).

1. Approximate equations

Ms+ Ns + PiP+ QiP + SiPs = 0,

Ms+ Ns + P2P+ Q2P'+ S~Ps = 0,

(B1)

(B2)

for which the coeKcients M and N of c and c are iden-
tically the same in the two equations. The expressions
for all the expansion coeKcients are

M = &Bsi 2$nc 0o,s

N = -B(cos 2P cos 0 + 4 sin 2P sin 0), (84)

Pi ——sin(P —0) —2 (4A i + s —2)R sin P

+ B s sin(2$ —0) —4i sin(2$ + 0) —sin 0

(»)

In this section we derive the approximate equations
for P and s by power-series expansions of Eqs. (4.2) and
(4.3). To facilitate the expansion of Eq. (4.2), we first
divide it by sin(n/2) (a factor that appears in each term
in the limit of vanishing P). When we then expand, the
resulting equations are homogeneous in P and s and at
linear order admit only spurious solutions, so we move
on to quadratic order. Up through quadratic order the
expanded equations take the forms
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Qi ——cos Peas 0 —
z cat/sin(/+0)

—2(2Ai —l)Rcasg+ B[2(9cos P —1) cos0

+ 4i sin 0 cot P(7 cos P —3)], (8

grows large, invalidating the power-series expansion that
underlies our quadratic and linear equations (82) and
(812), and thus the methods of this appendix are not
usable there.

Si ——cos 2P cos 0/ cos P
+ R[2(2Ai —1)/ cos P + (4 —8A i —s) cos P]

+ B[cos 0(& cos P —1) + 4 sin 2P sin 0],

P~ ——sin(P —0) + 2sR sin P
+ B(—2sin8cos P+ 2 sin2gcos0), (88)

Q2 — sR co—s P + B(z cos 0 —s sin 2P sin 0), (89)

2. Solutions in the central region

We specialize, now, to the central region of the danger-
ous triangle, P —0 )& B, P+0 —B &) R; and we retain our
previous assumptions, B (& 1, R/B ( 2. In one of our
manipulations we shall require an additional constraint:
s « P —0. Since P —0 » B and s has already been
assumed small, this additional constraint is not severe.

These constraints on the parameters imply that in (82)
the terms in z~, P~, and Pc can be neglected compared
to the first-order terms. The result is the linear relation

S2 ———cos(P —0) + sR cos P

+ B(cas 0 cos P + 4 sin 0 sin 2P) . (810)
sin 2P cos 0

2 sin(P —0)
(816)

1
[(1—2B cos P) cos 0 + 2R(2Ai —1)] .

cos P
(811)

Here the notation is that of Sec. IV and Appendix A,
including the use of A~ as a surrogate for the ball's initial
speed vi, cf. Eqs. (4.10) and (4.8) which imply

Inserting this relation into our linear equation (812), we
find that s is (very nearly) independent of B:

8cosg
c = . (Ai —o.)R,

with
By subtracting Eq. (82) from Eq. (Bl) and dividing

by P, we obtain the linear equation

QP +Ss+P = 0,
ID

if a=+1,o:——' 1 —s) =
2 1 lf 8= —1

Inserting this back into Eq. (816), we obtain

(818)

where

S = cos 0/ cos P —cos(P + 0)
+R[2(1 —2Ai) cos 2P/ cos P —2s cos P]
+B( cos 0+ z cos 0—cos P —sin 2P sin 0), (814)

P = —4R sin P(2Ai + s —1) .

Q = —cos P cos 0 —i cot P sin(P + 0)
—(4Ai —8 —2)Rcas P
+ B( cos 0 + 9—cos2 P cos 0 + cos P cot P sin 0),

(813)

4 sin 2P cos P cos 0

sin(P —0) sin(P + 0)

(Ai —o)BR,
cos 0(tan P —tan 0)

(819)

and by inserting these relations into Eqs. (A13), (A14),
and (4.11), we obtain the dimensionless parameter A2

that describes the speed v~ of the ball between its en-
counters with the collision

coss P cos2 0

2 sin(P —0) sin(P+ 0)
( 2cosg=

~
1+ 2 2 B 1(Ai —o) . (820)

We shall use Eqs. (82) and (812) as our approximate,
coupled equations for P and s'. Since ane is quadratic and
the other is linear, they can be combined to form a single
quadratic equation for P or for s, but the coefFicients
in that quadratic equation are so complicated that we
shall not write it down explicitly except in special regimes
where the coeKcients simplify.

The coeFicients in our quadratic and linear equations
(82) and (812) change drastically (because R « 1 and
B &( 1) as one approaches the edges of the dangerous
triangle (Fig. 12), P —0 ~ 0, P + 0 ~ B, P ~ x/2.
Correspondingly, the structures of the solutions change
drastically as one approaches the edges. In Appendix
8 2 we shall consider the central region (extending out to
the right edge), and in Appendix 8 3, the upper-left-edge
region. Near the lower left edge and the left corner, z

Equations (817)—(820) are the simple form of the so-
lutions for self-consistent collisions of class I (s = +1,
rr = 0) and class II (s = —1, o = 1), which we quoted
and discussed in Sec. IV 8 [Eqs. (4.14) and (4.15)].

3. Solutions in the upper-edge region

p =—(P —0)/B . (821)

We turn, finally, to the upper-left-edge region of the
dangerous triangle, 0 ( P —0 ( B; and in order to obtain
valid solutions with )P) (( 1 and (s~ (( 1, we bound
ourselves away from the triangle's left corner —i.e. , we
assume that P )) B. In aur formulas we shall characterize
the difFerence P —0 by a dimensionless parameter
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As in the preceding subsection, our constraints on P
and 8 make the s and P terms in Eq. (B2) negligible
compared to the first-order terms; but now the Ps term
is not a priori negligible. As a result, Eq. (B2) takes the
form

k, P ~ kzs+ ksPs = 0,
where

(B22)

kq —— pB —+ 2sR sin P —B sin P cos

k2 ——B sin P cos (B24)

k3 ——1. (B25)

Our other, linear, equation for s and P [Eq. (B12)] also
simplifies; its coefFicients become

p = 2tan /[2(Ar —o) —s sing]R
—(sill P cos 2P —p tan Q)B (B30)

q = —4BRsin'y(A, —o.) . (B31)
In discussing the solutions of this quadratic equation we
shall restrict attention to the region 0 ( Aq ( 1 of dan-
gerous initial trajectories.

By examining the signs of the coefficients in Eq. (B29),
it is easy to see that when s = +1 (class-I collision) there
always exist two real solutions for P, one positive and
thus acceptable; the other negative and thus spurious
(recall that P & 0 for class I and P & 0 for class II; cf.
Fig. 3). On the other hand, when s = —1 there is always
a range of P where p~/4 —q & 0 and there is no solution.
For R « 1 and p « 1, this no-solution region is P vr/4.

Focus attention on the always existent class-I solution,
s = +1 (and o = 0). Since q & 0 in this case, the solution
is

Q = —2cos

S = 2sin

P = —8Rsing(A& —o.) .

(B26)

(B27)

(B28)

P = -p/2+ Vp'/4- q (B32)
When one continuously varies P in the range of our analy-
sis, &P » B, p passes through 0 at some point and changes
sign. Since q is second order in the small radii B and R,
while p is first order, there is a sharp change in the form
of the solution (B32) at that point:

By combining our two equations and eliminating c, we
obtain the following quadratic equation for P:

—qlp if p» lql,
~

~

(B33)

P'+ PP+q = o,
with

(B29) When R tan~ P && B and p tan P && 1, the change of sign
for p occurs very close to n/4, and the solution (B33) on
the two sides of n /4 is

and

cos 2P cos
P = sing cos2$B, s' = . B if P —x/4 « —RAq,

sin P

4 sin P
P = s = — RA, if P —~/4 && +RA& .

cos 2P

(B34)

(B35)

Notice that in (B34) P and P are independent of Aq, while in (B35) they are proportional to it. These are the solutions
quoted in Eqs. (4.14) and (4.15).
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