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We examine the question of the validity of the minisuperspace approximation using the example of an

interacting (A,N ) scalar field in a closed Robertson-Walker universe, where the scale factor and the
homogeneous mode of the scalar field model the minisuperspace degrees of freedom. We explicitly com-

pute the back reaction of the inhomogeneous modes on the minisuperspace sector using a coarse-grained
effective action and show that the minisuperspace approximation is valid only when this back reaction is
small.

I. INTRODUCTION

In the past few decades there has been considerable
effort in the direction of building an as yet elusive quan-
tum theory of gravity. A we11-known approach is via the
canonical framework in which one considers the three-
geometry as a canonical coordinate and its time rate of
change, the extrinsic curvature, as the conjugate momen-
tum. On quantization, the three-geometry and its conju-
gate momentum are promoted to the status of operators
obeying the usual canonical commutation relations and
one implements the classical Hamiltonian and momen-
tum constraints as operator equations acting on the
"wave function of the Universe" %(h,",P)—a functional
on superspace. Thus the problem of quantum cosmology
manifests itself through the solution of the above equa-
tions with appropriate boundary conditions.

The quantum version of the Hamiltonian constraint,
the Wheeler-DeWitt equation obeyed by %', is an infinite-
dimensiona1 partial-differential equation on superspace.
Apart from various difIicult conceptual problems that
arise regarding the interpretation of 4' and the problem
of identifying time among the various dynamical vari-
ables, solving the infinite-dimensional Wheeler-DeWitt
equation in general poses a formidable technical problem.
To make the problem more tractable one turns to minisu-
perspace quantization [1]. This refers to the technique of
restricting the quantum theory of gravity to spacetimes
possessing a given symmetry. In the most common ex-
amples, the assumed symmetry is spatial homogeneity,
which has the advantage of reducing the infinite-
dimensional superspace to a finite-dimensional minisuper-
space, and hence giving a finite-dimensional Wheeler-
DeWitt equation. Minisuperspace quantization was first
introduced by DeWitt [2] as a method of quantizing the
Friedmann universe, and was then extensively explored
by Misner [1] and others [3] in the context of homogene-
ous anisotropic cosmologies. It was also applied to a few
inhomogeneous examples [4].

With the recent revival of interest in quantum cosmol-
ogy associated with new [5] proposals for boundary con-
ditions for the wave function of the Universe, minisuper-

space quantization has also received renewed attention
[6]. Though the boundary conditions are formally stated
in a general context, they have been implemented pri-
marily in the context of rninisuperspace models since
these offer a situation where analytical calculations can
be performed. However, we must assess what price we
have to pay for this tremendous simplification. Since in
the process of this transition we are truncating an infinite
number of modes, we are ignoring nonlinear interactions
of the modes among themselves and with the minisuper-
space degrees of freedom. It is also well known that this
truncation violates the uncertainty principle, since it im-
plies setting the amplitudes and momenta of the inhomo-
geneous modes simultaneously to zero. Moreover, by
making the transition from infinite to finite degrees of
freedom we are unjustifiably circumventing the issue of
divergences that are inevitably tied to a system with
infinite degrees of freedom.

It would therefore be interesting to understand what
inAuence the truncated degrees of freedom have on the
minisuperspace degrees of freedom and find out under
what conditions it is reasonable to consider an auto-
nomous evolution of the minisuperspace wave function
ignoring the truncated degrees of freedom. People work-
ing in the field of quantum gravity and quantum cosmolo-
gy have been aware of this problem for a long time [1].
However, the first attempt to actually assess the validity
of the minisuperspace approximation was made by
Kuchar" and Ryan [7,8]. In Ref. [7] they studied this
question in the context of examples taken from ordinary
quantum mechanics and field theory, and in [8] they con-
sidered the quantum cosmological example of a Taub
universe embedded in a mixmaster universe. We will try
to address the same question, i.e., under what conditions
is it justified to neglect the inhuence of the truncated de-
grees of freedom, from a slightly different point of view.

The model we will consider is that of a self-interacting
(A,4 ) scalar field coupled to a closed Robertson-Walker
background spacetime. The scalar field can be expanded
in terms of harmonics Q&" (x) on S:
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where n = 1,2, 3, . . . , l =0, l, . . . , n —1, m = —l, l
+ 1, . .. , I —1,1. The coefficients f„im are time-dependent
functions for homogeneous spaces. "Superspace" in this
case consists of the scale factor a of the background
geometry along with the infinite number of modes f„i of
the scalar field. Reduction to rninisuperspace in this case
is realized by truncating all the n ) 1 modes of the scalar
field, retaining only the lowest mode that is compatible
with homogeneity. Notice that for the gravitational part,
we have considered a minisupersp ace truncation from the
very outset; i.e., we have considered a homogeneous
three-geometry.

At this point we would like to stress that the scalar
field here should not be thought of as providing a matter
source for the Robertson-Walker background metric,
since in that case varying the action with respect to the
scale factor will not give the full set of Einstein equations.
In particular, the Gj KTj equations that constrain the
energy-momentum tensor via T; =0 for i%j will be miss-
ing. Instead, we would like to think of the scalar field as
rnirnicking the inhornogeneous gravitational degrees of
freedom in superspace. We are motivated to do this be-
cause linearized gravitational perturbations (gravitons) in
the synchronous gauge can be shown to be equivalent to a
pair of minimally coupled scalar fields [9]. Thus our "full
superspace" degrees of freedom can be thought of as
satisfying the Einstein equations in the sense of linearized
perturbation theory on a RW background, with the inho-
rnogeneous modes of the scalar field acting as single po-
larization gravitons. We deal with the scalar field rather
than the gravitational degrees of freedom due to the sim-
plicity it affords and because it is easier to include in-
teraction. The extension to the case of gravitons should
not be too difBcult once we have understood this case be-
cause of their forrnal similarity with scalar field men-
tioned above. An interacting scalar field was chosen in
order to be able to see how nonlinearity and- mode cou-
pling affect the back reaction of the higher modes on the
lower modes.

The paper is organized as follows. In Sec. II we derive
an effective Wheeler-DeWitt equation for the wave func-
tion of the minisuperspace sector, and then by assuming a
WKB form for the wave function we obtain an effective
Hamilton- Jacobi equation for minisuperspace from it.
The minisupersp ace dynamics is seen to be modified by a
term arising from the back reaction of the higher modes
on the minisuperspace sector given by the vacuum expec-
tation value of the Hamiltonian for the higher modes.

I

Section III is devoted to the explicit calculation of the
back-reaction term using a coarse-grained in-in effective
action. The minisuperspace approximation is seen to be
justified only when this back reaction is negligible corn-
pared to the minisuperspace potential. Finally, in Sec. IV
we summarize the conclusions and discuss further impli-
cations .

II. EFFECTIVE WHEELER-DeWII I' EQUATION FOR
MINISUPERSPACE

=l a (dg —dQ ) (2 1)

where d Q represents the line element on S
l~ =2 /3~m& is included in the metric for simplification
of computations, and g = fdt /a is the conformal t™e.
The gravitational and matter actions are given by

T

&2

S =
—,
' f dg a 1— (2.2)

S = ——' f&—g d x @ @+—'m C&'+ —@4
171 4T

+ —,
' gR 4& (2.3)

where is the Laplace-Beltrami operator on the metric
g„, m is the mass of the scalar field, /=0 and —' corre-
spond to the minimal and conformal coupling respective-
ly. Expanding N in scalar spherical harmonics on S

@0(t)
, „,+ & &nimQim«»

(2m. )
(2.4)

where Qi~ (x ) are scalar spherical harmonics on S3,

n=2, 3, . . ., ~, 1=0,1, . . . , n —l, m= —1, —1+1,. . . , 1—1,1, . . . Using the following transforrnations and
redefinitions, C'o =go/(ao ), f„=f„/(ao ), m ~m ~/g ',
A.~A. /2m, the matter action for conformal coupling,
g =

—,', can be written as

Let us start with the classical action of the gravitation-
al and matter fields. Our system is a self-interacting sca-
lar field coupled to a closed Robertson-Walker back-
ground. The metric is given by

dg = I (dt —a dII )

d 2
m= f d 9(Xo '—m a Xo) ——yo ——gf +I, f ——gm a'f

d YJ k

X++k+4X ~kl f kf if + &Pki f kf if f „'
k kin klmn

(2.5)

where

akim = f d ~x &detQQi(x )Q (x )Qk (x),
(2.6)

Pklmn f d'X ««~Q, (X)Q. (X )Q, (X )Q„(X),

I

detQ is the determinant of the metric on S and we have
taken the single subscript on the Q's to collectively
denote the quantum numbers ( n1m ). From now on we
will drop the tildes on the f's to simplify notation. From
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BI
Ba'

= —a',
(2.2) and (2.5), the canonical momenta are given by

(2.7)

(2.8)

q (a,Xo,f„)=q o(a, Xo) ~e„(a,Xo,f„), (2.15)

with

to write the wave function as a direct product of wave
functions for individual f„'s:

L =f',
n

(2.9) V(a, Xp,f„)=, QXpf„'+ —g(m'a'+n')f2
n n

where L is the Lagrangian defined by f drlL =S +S
and the prime denotes differentiation with respect to g.

Using Eqs. (2.7), (2.8), and (2.9) the Hamiltonian can be
written as

= QV. (Xof. a) (2.16)

The idea is to obtain from (2.14) an "effective" Wheeler-
DeWitt equation for the minisuperspace wave function of
the form

H= ——a'+ —Xp'+ —gf„'+ Vp(a, Xp)+ V(a, Xp,f„),
2 2' 2. " (Hp+ bH )'Pp(a, Xp) =0, (2.17)

where

(2.10) where Ko represents the minisuperspace Hamiltonian
given by

Vp(a, Xp)= ——a +—m a Xp+ —
Xp

1 2 1 2 2 2 ~ 4 (2.11)
1 8 1Ko= — —— + Vo
2 ga2 2 g~2

(2.18)

and

V(a Xo f )=
~

QXofk+
t

grzki fkfrf Xo
6A,

) ) n 4i 4-'kI

+—g(k +m a )fk
1

k

and AK represents the influence of the higher modes. If
the second term in (2.17) were absent, one would have an
autonomous evolution of the minisuperspace wave func-
tion unaffected by the presence of the other modes. Ex-
amination of this term will therefore enable us to com-
ment on the validity of the minisuperspace description.

The Laplacian on minisuperspace is given by

+
g~ g I klmnfkfifmfn

klmn

(2.12) +
Ba Bgo

(2.19)

The Wheeler-DeWitt equation for this Hamiltonian is
given by

K% =0 (2.13)

where the momenta are replaced by the operators in the
usual way. This leads to

1 ()2 1 ()2 + Vp+ V 'P(a, Xp,f„)=0 .
2 Ba2 2 BX2o 2 „Bf2

(2.14)

There is, of course, the usual factor-ordering problem in
making the transition to quantum mechanics. We will
choose a factor ordering such that the kinetic term ap-
pears as the Laplace-Beltrami operator on superspace.
We have chosen the special case of conformal coupling to
simplify the structure of the Wheeler-DeWitt equation,
but it is not difficult to extend this to arbitrary g [10]. We
will make some approximations on the above equation.
The first one consists of dropping the akim and /3k& „
terms, assuming them to be small and retaining terms
only up to quadratic order in the f„'s. Previously most
authors [11,12] have considered models with free scalar
fields on a Robertson-Walker background. In those cases
there is no interaction between the lowest mode of the
scalar field and the higher modes. In our case this in-
teraction is present even with the above approximation.
Retaining only the quadratic terms in the f„'s allows us

The Wheeler-DeWitt equation (2.14) can therefore be
written as

1 1——V ——g + Vp(a, Xp)+ QV„(a,Xp,f„) 4=0 .
2 2 „/f2

(2.20)

The first approximation many authors have made is to as-
sume that 4'„varies slowly with the minisuperspace vari-
ables. Following their derivation ([13]—[16]) and using
(2.23) in (2.20) one can arrive at

[ ——,'V'+ V, (a,X,)]%,= — g (H„&%', (2.21)

and

V4, .Ve„=(H„—(H„&)q „, (2.22)

0 =e ' ' Q% „(a,X„f„), (2.23)

which can be used in regions of superspace where the
wave function oscillates rapidly. Using (2.23) in (2.22)

where Kn corresponds to the Hamiltonian for the nth
mode and the expectation value (H„&= f df„qI„*H„ql„.
The second approximation consists of specializing the an-
satz (2.15) to the case where %p has the WKB form, i.e.,
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and (2.21) we then get

—(VS) + VD= —g (H„)1

n

and

i(VS) Vq „=(H„—(H„))e„.

(2.24)

(2.25)

Defining "time" along the classical WKB trajectories
via VS.V'= d /d il, equation (2.22) can be written as

(2.26)

This represents a Schrodinger equation for the wave
functions %'„modified by a back-reaction term. The
problem of determining the appropriate vacuum state for
the field is equivalent to finding a solution to (2.26) with
appropriate boundary conditions. We will concentrate
mainly on Eq. (2.24), which can be interpreted as the
Hamilton-Jacobi equation for the minisuperspace vari-
able with a back-reaction term. Identifying BS/Ba =~,
and BS/Byo=rrz, Eq. (2.24) reads

it O

2', ———,'i' + Vo(a, yo)= —g (H„) . (2.27)

Substituting for the canonical momenta we get

—,
'a' —

—,'yo'+ Vo(a, yo) = —g (H„) . (2.28)

I.et us now compare Eq. (2.28) with (2.17). Without the
back-reaction term Eq. (2.28) is equivalent to the classical
Hamiltonian constraint equation for a conformally cou-
pled homogeneous scalar field yo in a closed Friedmann
universe with scale factor a. The back-reaction term
g„(H„)= fd xQh, (Too)"can be identified with that
appearing in the time-time component of the usual semi-
classical Einstein equation. The origin of this term is in
the quantum Auctuations of the higher modes in super-
space. In this restricted framework, by choosing the
WKB form of the minisuperspace wave function we are
examining the inAuence of the higher modes on the min-
isuperspace sector in the limit that the minisuperspace
modes behave classically. This equation has also been
considered in Refs. [13]—[19], but the focus there was
not the question of justification of the minisuperspace ap-
proximation. The back-reaction term has been calculated
explicitly to our knowledge only in Ref. [14] for the case
of a free spinor field in a de Sitter background for a de
Sitter-invariant vacuum state implied by the Hartle-
Hawking boundary conditions.

At this point we would like to make some comments
on the derivation of the above semiclassical Einstein
equation from the Wheeler-DeWitt equation. We used
the WKB approximation to approach this limit, merely
for simplicity of description. However, it has also been
pointed out [16,18] that this approach, adopted by
several authors [12]—[17], does not lead uniquely to the
standard back-reaction term in Eq. (2.28). This term ap-
pears to be among many choices allowed by the deriva-
tion. This is related to the ambiguity in dividing the total

phase of the wave function into the part associated with
the minisuperspace wave function and the part associated
with the higher modes [16,18].

It was then suggested [16,19,30] that the appropriate
way to derive the back reaction in a unique way starting
from the Wheeler-DeWitt equation was to construct the
Wigner distribution function for the WKB wave function
and notice that it is peaked around the trajectories in
phase space given by the standard semiclassical Einstein
equations. More recently these derivations were criti-
cized in [20,21], and it was realized that the issue of re-
covering the classical behavior in certain degrees of free-
dom is far more subtle and requires additional considera-
tions of destruction of interference via "decoherence. " In
a more complete and consistent approach one can recov-
er the semiclassical Einstein equations under more re
strictive conditions from the peak of the WKB Wigner
distribution function constructed from a reduced density
matrix incorporating decoherence [21]. Since this more
correct approach is based on a reduced density matrix for
the minisuperspace variables, in the strictest sense it is
probably inappropriate to discuss this issue using pure-
state wave functions for the minisuperspace sector. For
our purpose here we will assume that the Eq. (2.28) is val-
id and can be justified on a more rigorous basis separate-
ly.

With these cautionary notes we see that Eq. (2.28) can
be put in one-to-one correspondence with Eq. (2.17) with

replaced by the WKB wave function and AH
identified with g„(H„). We would now like to calculate
this back-reaction term explicitly in order to examine the
validity of the minisuperspace approximation.

III. BACK REACTION OF HIGHER MODES ON THK
MINISUPKRSPACK SECTOR

In this section we will explicitly calculate the back re-
action of the higher modes on the minisuperspace sector
as given in Eq. (2.28). We will do this using an effective
action for the rninisuperspace variables where the higher
modes are integrated out. Since in choosing which fields
are to be integrated out in the path integral we use a
high-low "rnornentum" splitting rather than the back-
ground field versus fluctuation field splitting used in the
usual effective action, we refer to this as a coarse-grained
effective action. We notice that the right-hand side of
Eq. (2.28), which we wish to evaluate, involves an expec-
tation value of the Hamiltonian. In particular, we will be
interested in obtaining the expectation value in a vacuum
state of the field. The specific vacuum state is determined
by the boundary conditions on the Schrodinger equation.
It has been shown [22] that in order to generate vacuum
expectation values from the effective action (rather than
in-out matrix elements) one should use closed-time-path
(CTP) in-in version of the effective action rather than the
better known in-out version. We will therefore be using
an in-in coarse grained effective action. The reader is re-
ferred to Ref. [22] for details of the CTP formalism and
to [23] for an introduction to the coarse-grained effective
action.

The coarse-grained effective action is defined as
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exp[iS,s(a+,go+, fk+)] = f 2)fk X)fk expIi[S(a+, yo, fk+) —S*(a go fk )]]
= f2)fk g)fk expIi[So(a+, fk+)+S;„,(a+,go+, fk+) —So (a,fk ) —S;*„,(a,yo, fk )]],

where
1 dSo= —X fdnfk, +k' fk

k . dn'
and

S~-~= —
2 f"n ~'a'fk

g, 6XXPfk+4 X+klmfkfifm+ X 13klmnfkfrfmfn
k klm klmn

(3.l)

(3.2)

(3.3)

a11d

6S,~
+ a =a =aoa

XQ XQ IQ

=0 (3.4)

=0,
a =a =a

XQ itQ XQ

(3.5)

where S,z=S,~+S ++S + and S + and S + are the
Xp XQ

classical actions for the gravitational and lowest-mode
matter fields, respectively. Since we are interested in
deriving these equations of motion, we need to compute
only those terms in the effective action that involve the
positive fields. Terms containing only negative fields will
not contribute to the equations of motion.

Thus the effective action essentially involves function-
ally integrating over the k ) 1 modes. As we brieAy men-
tioned before, this is different from the conventional
background-field effective action. In that case the field is

I

S* indicates that in this functional integral, m carries an
ik term. a+,yo, fk+ are the fields in the positive time
branch running from g= —~ to + ~ and a,g, fk
are the corresponding fields in the negative time branch
running from g=+ ~ to —Oo. The path integral is over
field configurations that coincide at t = ~. Xlfk symbol-
izes the functional integration measure over the ampli-
tudes of the higher modes of the scalar field. We will
eventually be interested in obtaining effective equations of
motion from this effective action which can be put in
correspondence with the Einstein-Hamiltonian-Jacobi
equation derived in the previous section in the limit
where the scale factor and the zero mode of the scalar
field becomes classical. The effective equations of motion
will be given by

split into a part representing a classical background and
another part representing the quantum fluctuations about
this background. The effective action is then calculated
by functionally integrating over the fluctuation field
which contains the full spectrum of momentum modes.
Since the background field is taken to be classical and
fixed, the full generating functional does not contain an
integration over the background field. In our case, how-
ever, the full generating functional contains a functional
integral over the lowest mode of the field, but since in ob-
taining Eq. (3.4) and (3.5), we are considering extremal
configurations of the field, this corresponds to the limit in
which go is regarded as a classical field. This is
equivalent to evaluating the functional integral in the
saddle-point approximation, which is the appropriate ap-
proximation to consider if we want to compare results
with Eq. (2.25). The action has been split into the So and

S;„, in this particular manner because we will regard So
as the free action and S;„,a small perturbation on it. We
will calculate S,~ perturbatively regarding m and A, as
small parameters. We have assumed conformal coupling
here for simplicity, but one can also regard (g —

—,') as a
perturbation parameter and consider small deviations
from conformal coupling. From the definition of the
effective action, we have

iS,s.=in(exP[iS;„,(a,go+, fk+ ) iS;*„,(a— ,yo, fk )]),
(3.6)

where the vacuum state considered in the expectation
value is the conformal vacuum defined when the mass
and coupling constant are switched off in the infinite past.
The vacuum here refers only to the higher modes. Equa-
tion (3.6) can be expanded in a perturbation series in the
following manner:

S s=(» ~(a go fk )~ (» ~(a go fk )~+—(S;„~(a+,go+, fk+) )+—(S;„,(a go fk ) ~lnt 2

'(S ~( go fI, )S ~(a go fk )~+'(S r(a go fk )~(S ~(a go fk )~

——(S;„,(a+,y,+,f+))'——(S;„,( ay, ,f ))'+. . . (3.7)

where the * superscripts are omitted for compactness.
The second, fourth, and eighth term need not be calculat-
ed for the reasons given before. Our approximation
scheme will be to truncate the series at one-loop order

and retain terms up to second order in coupling con-
stants. The higher mode coupling terms involving akl
and pk& „will not appear to one-loop order. This is con-
sistent with the linearized approximation introduced in
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the Hamiltonian in the previous section. We should men-
tion here that though we are restricting ourselves to a
one-loop truncation for simplicity, the effective-action
formalism allows an extension to higher-loop calculations
in a systematic approximation scheme. The aI „and
Pl, & „ terms will contribute to these orders the effect of
nonlinear mode couplings, which was the main motiva-
tion for using this model. It is, however, not very clear
how these higher-loop approximations translate to the
Hamiltonian scheme described in Sec. II.

Since we have used conformally related fields in a con-
formally static spacetime, the free propagators can be
read off from the quadratic part of the action. In the
CTP effective action, in addition to the Feynman propa-
gator, the Dyson and Wightman propagators appear. We
have

. ~kk' fd~
2m CO k +lE

(3.8)

effective action given in Eq. (3.7) to quadratic order. By
Wick's theorem only the connected Feynman diagrams
will contribute. We will consider the contributions to Eq.
(3.7) term by term using Eq. (3.8). The first term gives

&S;„,(a+,Xo,fj,+)
&
= f dr)tm+ (g)+ —,'AXo }

d co 1

~2 —$2+ l g

(3.9)

where the lowest mode is omitted in the sum and
m =m a*. Note that the superscripts + belong to
a, Xo,fj„m,M, and should not be taken as their ex-
ponents. Evaluating the sum using g-function regulariza-
tion gives

&S;„,(a+,X ofq+) &
= f dri[m + (g)+ —,'AXo (r))]+ + +

(3.10)

X [2mi6(co .k)8(c—o)] .

Using these propagators we can evaluate the terms in the
I

The second term in (3.10) is the analog of the topological
mass terms found by Ford and Toms [24]. This term is
characteristic of the nontrivial topology and vanishes in
the limit of fIat spatial sections. We next consider the
contribution from

I&S (a Xo+ fa+) &
—[&S,„,(~ Xo+ fa+)&] ]

A,
2

f dnidriuo+'(rii)Xo '(n2)+ f deed—rI2m+'(ni)Xo+'(nz)+ —f dnidnzm +'(ni)m +'(7)z)
4

X . GCO ~~ I, 'g 'g l l1 2

2&

and the contribution from

k
f

�6
CO

(co"—co) —
A: +ie

1

CO k +l6
(3.1 1)

g(&+ Xo+ fa+)S(~t(& Xo fa ) &+i &S' t(&+ Xo fa+) &&Si~ (& tXo fu ) &

3A2=2 f dry, dg2Xo (gt)Xo (r/z)+ f dg, dr/z[m+ (gi)Xo (gz)+m (rii)Xo

+—f (dg, dg2m+ (r), )m (g2)
8

rtl

X f e ' ' 8(co") i g f [2~i5(co k)8(co'—)][2vri5((co —co') —k )]2' k 277

(3.12)

These are the only terms that will contribute to the part of the effective action that is required to derive the equations of
motion. The details for evaluating the integrals using appropriate regularization schemes is given in the Appendix.
The integrals are evaluated by rotating cu to Euclidean space and rotating back to physical space at the end. On carry-
ing out the integrations, Eq. (3.11) can be written as

—[&S;„,(a+,X+,f„)'&—(& S(a+, Xf+)&)']

m+"(g)+ Xo+ (g)+ m+ (g)Xo (ri) + f driM+ in@a
1

+ f drj, dri2M+ (r), )K(rj, —g2)M+ (g~),
1 (3.13)
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where M* =m * + —,
'

A,go, and the first three terms
represent the divergent contribution as n ~4 which is to
be absorbed in the renormalization of the classical action.
The counterterms required for this turn out to agree with
those calculated by previous authors [25]. p is a quantity
of mass dimension representing the scale at which quanti-
ties are renormalized. K(gi —g2) represents the finite
nonlocal contribution and is given by

K(ri, —g~)

where the coupling constants have their renormalized
values. S + represents the classical gravitational part of
the action. We have not included the contribution of the
trace anomaly terms since they do not appear to this or-
der of approximation. We are now in a position to derive
the effective equations of motion from this effective ac-
tion. Following Eqs. (3.4) and (3.5) these are given by

1a"+a —m ago+ —,'m a(m a+ —,'logo)in@a+ M

d CO i ri)(&I pp)

2~'
2

1
4m'+

4 co 4
and

m+ f dulia(g)%'(g —gi)M (rii)=0 (3.21)

(3.14)

oo (1+it )
24 —i dx4
t~

C. C.
[(1+it )

—co x(1 —x ) ] ~

go'+m a go+ —go — go ——M golnpa
13K,

f dniro(n)~(n —ni)M'(ni) =o (3.22)

x
277't

(3.15)
where M =m a +—'A,go, and

K(co) = 4 2—ln + J4(co)
4 co 4

(3.16)

The contribution from Eq. (3.12) can be written as

i (S;—„,(a+,X+,f„+)S;„,(a,yo, fk ) )

+(S;„,( +,y+, f+))(S;„,(,y,f ))

where

f drt, dpi, M+'(rl, )K(rt, rl, )M (—ri, ),
(3.17)

The kernel reduces to the fiat-space counterpart calculat-
ed previously [26] in the limit a —+ oo. Using the Cutkow-
sky rules as in Ref. [22] we find that the oi integral in Eq.
(3.12) including the i factor is simply twice the imaginary
part of the co' integral in (3.11). Using this fact and
defining from (3.14),

%'(g —g, )=K(ri r,l)+—K(g —g, ) . (3.23)

13K. 2 13 2 2 1

96 48 16

It can be demonstrated using Eqs. (3.14), (3.18), and
(3.19) that%' is real [22]. So the equations of motion gen-
erated from this effective action are real. Note that Eqs.
(3.21) and (3.22) are very similar to the equations ob-
tained by Hu and Zhang [26] in their section B(c). The
differences come from the terms that are special to the to-
pology of the three-sphere here and the nonlocal terms
that were truncated in their case. The lowest mode field

go plays a role similar to the background field though the
interpretations are different as discussed before. Follow-
ing Refs. [26] and [27] one can obtain a first integral from
(3.21) and (3.22) since the effective Lagrangian has no ex-
plicit dependence on g. This is given by

—a ——go +—m a go ——a +—yo
&2 1 2 2 2 1 2 ~ 4

K(g, —g2) =2 f e ' "' ImK(co)8(co) (3.18) + f dg, M (ri)%'(q rl, )M (g, )=E—,
1

(3.24)

aIld

ImK(co) =F8(co 4) . — (3.19)

S.ir=S, ++—f dn(Xo' +'Xo+') ———f dn Xo
'

+ fd M++ fd M+
48 16

+ f drl, dpi M (ri, )K(rl, ri )M+ (q )—1

+ de id ri2M (rl, )K( vl i vl2)M ( ih), —
32

(3.20)

The contribution from (3.12) does not modify the diver-
gent terms but contributes only to the finite nonlocal
part. So the full renormalized effective action (omitting
terms that involve negative fields only) can be written as

where E is a constant. We assume E=O, which is
equivalent to having no quanta of higher modes in the in-
itial state. Equation (3.24) is then equivalent to the
effective Goo Einstein equation or the Einstein-
Hamilton-Jacobi equation plus back reaction that we de-
rived in the previous section. Comparing Eqs. (3.24) and
(2.28) we can identify the back-reaction piece as

g(H„) = — go — m a — M Inpa
13k 2 13k, 22 1 2

n

f dq, M (ri)A(rt ri, )M (ri, ) . (3.2—5)

Since & is real the back-reaction term given above is real.
This also indicates that it represents a genuine expecta-
tion value in the "in" vacuum state rather than an in-out
matrix element generated using the in-out effective ac-
tion. In the above derivation we have obtained the expec-
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tation value of the Hamiltonian from the coarse-grained
effective action. This quantity is the same as the one that
would be obtained in (2.28) by a self-consistent solution of
(2.26) and (2.28) using the boundary conditions on the
wave function appropriate to that for a conformal vacu-
um "in" state. In the case of a massless free field with a
small nonconformal coupling in a Oat Robertson-Walker
background, it has been explicitly demonstrated [22] that
( T„) in the conformal in-vacuum state computed from
the CTP effective action is indeed equivalent to that cal-
culated using a self-consistent equation of motion ap-
proach [28] up to local terms. The efFective action seems
a more efficient tool for generating the nonlocal back-
reaction term.

Since Eq. (3.24) is the "eff'ective" Wheeler-DeWitt
equation for the minisuperspace sector within our ap-
proximation scheme the condition for validity of this ap-
proximation can be stated as

(3.26)

where by the left-hand side we mean the regulated value
given by (3.25). The third term in Eq. (3.25) involving the
nonlocal kernel has been demonstrated as signifying dissi-
pative behavior in closely related models [29]. This dissi-
pative behavior in turn has been related to particle pro-
duction by the dynamical background geometry in semi-
classical gravity models which provides a systematic
damping of the source [30]. In our case this can be inter-
preted as scalar particles in the higher modes being pro-
duced as a result of the dynamical evolution of the min-
isuperspace degrees of freedom. These generate back re-
action that modifies the minisuperspace evolution. We
can therefore think of this term as introducing dissipa-
tion in the minisuperspace sector due to interaction with
the higher modes that are integrated out. One can
justifiably think of autonomous minisuperspace evolution
only when this dissipation is small. Since we have used
the scalar field modes to simulate higher gravitational
modes these considerations can also be directly extended
to include gravitons. A similar idea has been discussed
by Padmanabhan and Singh [31] in a linearized gravity
model where they claim that in order that the minisuper-
space approximation be valid, the rate of production of
gravitons should be small,

IV. DISCUSSION

In this paper we have discussed the issue of the validity
of the minisuperspace truncation in the model of a mas-
sive X4 scalar field conformally coupled to a closed RW
background. We calculated the back reaction of the
higher modes on the midisuperspace sector and found
that the minisuperspace truncation can be justified only
when condition (3.26) is satisfied, i.e, when the minisuper-
space potential dominates the back-reaction term. Thus
the oftentimes expedient way of treating the minisuper-
space degrees of freedom as a closed system is incom-
plete, and in the more general cases incorrect.

There are still several questions to be resolved. We
originally motivated to find the inAuence of the truncated

modes on the quantized minisuperspace sector. However,
in the calculation we invoked the ansatz (2.23) and car-
ried out the analysis in the WKB limit and considered the
situation where the minisuperspace variables behave clas-
sically. The WKB approximation is of limited validity
and it is important to go beyond it to be able to analyze
the full quantum behavior of the minisuperspace sector
where there is no time defined in general. One will prob-
ably also have to go beyond the effective action technique
in that case since there will be no classical background
available. One possible approach is that taken by Kuchar
and Ryan in [7] where they analyze a lower-dimensional
minisuperspace model embedded in a higher- (but finite-)
dimensional minisuperspace model in a regime where ex-
act solutions for both models exist. But one would also
like to understand the effect of discarding an infinite
number of inhomogeneous modes, which is the actual sit-
uation in full quantum gravity. In this context it may be
interesting to analyze some midisuperspace models such
as the Gowdy model [4] which contain infinite degrees of
freedom, but for which known solutions exist.

Even within the framework of our approximation
scheme we had mentioned in Sec. II some limitations of
the derivation of the effective Hamilton Jacobi or semi-
classical Einstein equations from the Wheeler-DeWitt
equation using the WKB ansatz. To obtain classical be-
havior in the minisuperspace degrees of freedom one also
needs "decoherence, " which requires working with re-
duced density matrices rather than pure state wave func-
tions. It would be interesting to see if the criterion for
validity of the minisuperspace approximation can be for-
mulated in the framework of reduced density matrices
from an effective master equation rather than a Wheeler-
DeWitt equation. This may also clarify the role of the
back reaction as a dissipative effect on the minisuper-
space sector.

In the Hamiltonian derivation of the effective
Wheeler-DeWitt equation we assumed that the %'„'s vary
slowly with the minisuperspace variables. It is not clear
how this approximation translates to the effective action
calculation. One would also like to know how to incor-
porate the boundary conditions proposed in [5] in our
effective action framework. Another important question
is related to the regularization and renormalization of
divergences. We have regulated and renormalized the
divergences in a covariant manner in the effective action
after the limit that the scale factor behaves classically has
been taken, i.e., in the usual framework of quantum field
theory in curved spacetime. However, since the radiative
corrections introduce new dynamical variables in the
Wheeler-DeWitt operator [32] it is not clear that there is
a smooth transition between handling divergences at the
level of the Wheeler-DeWitt equation and in the semi-
classical limit. This question has also been raised in Ref.
[14] and it has been indicated that the naive noncovariant
regularization and covariant regularization results do not
agree.

Finally, it would be interesting to see the connection
with the work of Ryan and Kuchar" for quantum-
mechanical examples [6]. Their condition of vanishing
transition matrix elements seems closely related to our as-
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sumption of slow variation of the higher mode wave func-
tions with the minisuperspace variables.
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APPENDIX

The following integral appears in E. (3.11):

On rotating q„g2, m, ~' to Euclidean space, we can write

de t~ (&1 g2)2~'
de)
27r [(co" co)—+rc ][co +ic ]

(A2)

where co"=co+co'.
Let us continue to n dimensions replacing dm/2m by

d" k/(27r)" where finally we will take the limit
n ~4. Notice that we are adding Bat rather than curved
dimensions but this choice is left arbitrary in dimensional
regularization.

Let

tdc' ucO;(~+~ )(~ ~ )e
277 2'

CO K +lE' CO K +lE'

d" k
I1

[(k —k') +1c ][k2+a. ]

(Al)
Using Feynman parameters we can rewrite I, as

(A3)

1 d" k
(27r)" 0 [k +1c +k" x(1—x)]

&( —,
' —n /2) 2

(4 )7nr—3/2 0 [&2+k~~2x(1 x )]7/2 —n/2
dx

[1+k~~2x(1 x )]7/2 —n/2 (A4)

The second term in (A4) is just the lowest mode contribu-
tion subtracted out. Let us concentrate on the first term
and evaluate the sum contained in it. In the appendix of
Ref. [33] we have the sum

Io(cr ) =i I dt (1+it) c.C.[(1+it) +u
1

2wt

(A8)
00 2

=Z(r, o) .
, (ic +cr)" (A5)

2Z jZ( ,'n/2, o ) —=— +Zo(O, o )+O(n —4)4 —n
(A6)

where cr =k" x(1—x ). Z 1 and Ao are given as

1Z, (O, cr)= —,
( ) 1

1+ 1+cr 1

&1+o.

+ 1 +Io(cr ),2(1+o )

where

This function has poles at r =
—,
' —n', where n'=0, 1, . . . .

This can be put in one-to-one correspondence with the
sum in the first term in (A4). In this case one has a pole
at n =4, about which we have the following Laurent
series expansion following Ref. [33]:

1++1+co x (1—x )

0 2
(A 10)

dx
0 +1+co x(1—x)

(A 1 1)

The Z
&

piece contains the divergence at n =4. After
absorbing the divergence by renormalizing the coupling
constants one sets n =4 in the finite part. As we can see
from (3.11), the factor containing I is common to three
terms. The divergences in the first, second, and third
terms are absorbed in the renormalization of A. , m, and
the cosmological constant A in the standard manner. Us-
ing the value of Z 1 from (A7) it is seen that the counter-
terms are exactly the same as previously obtained in Ref.
[25]. The contribution from Z, is local. Let us next
consider the contribution I to the first term in I from the
Z0 piece. This is given by

t/ ~ rrI=—
1 e ' ' J dx Zo(O, co x(1 —x)) . (A9)

8 2m 0

In addition to the contribution in (A9), there is also the
lowest mode contribution in I& to be subtracted out.
Defining
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1 dx
o 2[1+co x(1—x)3i ]

(A12)

24= I dx Io(o ), (A13)
0

and noticing that the zero-mode contribution is precisely
2J3, we can write the full contribution of the Zo term to I
as

In order to evaluate the integrals in (3.11) we had been
working in Euclidean space, but in the fina step we must
rotate back to physical spacetime after performing this
rotation, the nonlocal kernel A'(r), —g2) in (3.13) is given

by

X(g, —rI2)

1 d co i co(gI —g2)e
8 2m

4+ co

4+co 4

(A14)

—ln +2„
4 co 4

(A15)
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