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Sourceless Abelian gauge string in an expanding universe
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A model consisting of a sourceless Abelian gauge string in an expanding spacetime background is ex-

amined. Exact solutions are found which describe a radial inflow of gauge field energy that can be asso-

ciated with the creation or destruction of a sourceless gauge string. The time rate of change of the string

flux depends upon the expansion rate of the universe.

I. INTRODUCTION

It is well known that an Abelian gauge theory charac-
terized by the inclusion of a complex-valued scalar Higgs
field along with an assumption of cylindrical symmetry
admits a solution describing an infinitely long straight
cosmic gauge string centered along the symmetry axis
[1—4]. Such a cosmic gauge string acquires structure
from the Higgs field and possesses the salient feature that
there exists a cylindrical region of nonvanishing "mag-
netic" Aux. On the symmetry axis the phase of the Higgs
field becomes undefined, forcing the Higgs field to vanish
there. Allowing the modulus of the Higgs field to ap-
proach a constant value asymptotically induces a break-
ing of the U(1) gauge symmetry. The string solution has
a relatively large energy density near the core, and de-
scribes a localized, nonperturbative, topologically non-
trivial soliton state. Enlarging the gauge group can give
rise to further interesting solutions, such as supercon-
ducting cosmic strings [5].

Various aspects of string solutions have been studied
extensively [6—12], but the system of equations describing
a single string can be sufficiently complicated that
without simplifying assumptions analytical solutions are
often difficult to obtain. Thus it is often necessary to
resort to numerical studies and simplified scenarios in an
attempt to gain some insight regarding the behavior and
properties of strings.

The model presented here is that of a sourceless Abeli-
an gauge string with the complex-valued Higgs field be-
ing completely removed. The removal of the Higgs field
has some obvious effects, which include the removal of
structure from the gauge string, making it singular, along
with the dismissal of a symmetry-breaking mechanism so
that the gauge field remains massless outside of the
string, and no topologically conserved winding number
exists. Although in the limit of vanishing Higgs fields the
model is rendered artificial as a description of realistic
cosmic strings, a mathematical advantage is gained in
that exact mathematical solutions can be obtained. Such
a procedure has been used to study non-Abelian solitonic
gauge field configurations [13—16].

In Sec. II the model is presented, and solutions are ob-
tained in Sec. III. Both static and time-dependent solu-
tions exist. Associated with the time-dependent solution

II. THE MODEL

A U(1) gauge field with cylindrical symmetry is as-
sumed to exist within a fiat Robertson-Walker (RW)
background described by the line element

ds =dt a(t)(dr —+r dqr +dz ) . (2.1)

The Lagrangian for the gauge field is

L =&—g ( ,'F""F„„),——

where

&—g=a r3

and the gauge field tensor is

F„=B„A —8 3„.
The gauge vector field 3„is parametrized by

(2.2)

(2.3)

(2.4)

(2.5)

where P(r, t) is the gauge field structure function. The
equation of motion for the gauge field is given by

V F"'= 8 (& gF"')=0, —1

P Q g
(2.6)

where V„ is the covariant derivative.
The nonvanishing components of the gauge field tensor

are listed for reference:

PF F&0'=— P
ea r

(2.7a)

is the radial inflow of "electromagnetic" radiation which
changes the string's magnetic" field and Aux. A sum-
mary is presented and conclusions are drawn in Sec. IV.
It is concluded that the time rate of change of the string
Aux depends upon the rate of expansion of the Universe
when the cosmic scale factor is assumed to have a
power-law behavior, a(t)-t (0(cr(1). Specifically, it
is determined that the smaller the value of a, the greater
the time rate of change of the string Aux. Such a string
could therefore form more rapidly during a period of ra-
diation dominance (a= —,

'
) than during a period of matter

dominance (a =—', ).
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F„=P'

PF e'

p/

ea4r' '

P
ea r

(2.7b)

(2.7c)

But the flux N associated with the field F&, in (2.7b) is

@(r,t)= f f F „dr dqr
0 0

(2.15)

F' =—p/

ea

p/

ea r
(2.7d)

= —F FP = —FP
pv vp~ v v (2.7e)

Combining (2.5)—(2.7) results in the partial differential
equation

Since P(O, t) need not be identically equal to unity [20],
from (2.14) and (2.15) it follows that @%AT in general,
implying the existence of a singular string field F&„with
an associated string Aux

@,(t) =C T(r, /) 4(r,—r)

~ ~ ~ 1 1P+HP — P"——P' =0,
a

(2.8) [1—P(0, /)] .
e

(2.16)

where an overdot represents differentiation with respect
to t, a prime represents differentiation with respect to r,
and H=a /a is t'he Hubble "constant. "

The energy-momentum tensor is given by [17]

(2.9)

Since

@,(t)= f f F'„„drdy

= f f [1 P(r, t)—]5(r)5(y)dr dp,
o o e

(2.17)

1

2e2Q 2r2

T/'i'
g

1I 1

2e 2Q 2r2
—P—'2 P/

with the nonvanishing components [18]
I '2

p/
Ttt P +

a
(2.10a)

(2.10b)

it follows that

F' „= [1 P(r, t)]5—(r)5(y) .
e

(2.18)

The total field therefore consists of a string field F &„and
an external (nonstring) field F&„.

1

2e Q r
P—'2

2
p/

2

(2.10c)

III. SOLUTIONS

The partial differential equation (PDE) (2.8), subject to
the asymptotic boundary conditions

TZZ —
g

ZZ 1

2e 2Q 2r2

p/p2+ (2.10d) P(r, t)~const as r~~,
P(r, t)~const as t~ ~,

(3.1a)

(3.1b)—PP'
e2Q4r 2

(2.10e) can be separated into a radial differential equation (DE)
and a temporal DE. Let

The "ordinary" "magnetic" field is described by [19]

8,= 1

+grrgqq
F,= F,=—1 P'

a2r + ea2r

dA =Qg„,g& dr dp=a r dr dy, (2.12)

Consider the area element of a small disk of radius r, per-
pendicular to the z axis,

P(r, t)=F(r)G(t) .

The PDE (2.8) then separates into

F"——F' —k F=0,1

r

kG+HG — G =0,
Q

(3.2)

(3.3a)

(3.3b)

and the length element around the disk's periphery

dl =Q —g dq&=ar dp . (2.13)

Aside from the "magnetic" field of (2.11), in general the
sourceless U(1) gauge theory possesses an additional
singular gauge string with a "magnetic" field B„with an
associated field tensor component F &„ restricted to the z
axis. To see this, write the total "magnetic" Aux through
a circular element of area with radius r, perpendicular to
the z axis, as

4T(r, t)= f f F „dr dp=f A.ydl
o 0

with the boundary conditions

F(r)~const as r

G(t)~const as t~~ .

(3.4a)

(3.4b)

The separation constant k may be negative, zero, or pos-
itive. Each case can be examined separately.

A. k~(0

For the radial DE (3.3a), define kr =ikr =—ip Equa-.
tion (3.3a) then becomes

= —g A~dp= [1 P(r, t)] . —2%
(2.14)

dF 1dF
dp p dp

(3.5)
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Upon de6ning the function

u(p)= F(p)
P

(3.5) reduces to

d2u 1 du

dp p dp
1

0 =0,
p

(3.6)

(3.7)

dv 1dv 11+ v =0,
g2

(3.17)

F(g)=gK, (g), g=kr . (3.18)

which is solved by the hyperbolic Bessel functions of or-
der one, I, (g) and K, (g). By (3.4a) and (3.16) the physi-
cally admissible solution is

solved by

u (p) =cJ,(p)+dpi(p), (3.8)

where c and d are constants, and J, and X& are the Bessel
and Neumann functions of order one. From (3.6) it fol-
lows that (3.5) is solved by

(3.19)

By (3.18) and (3.19) one therefore has

For a (t) —t, 0 ~ a & 1, (3.3b) is solved (see the Appendix;
I = const, to= an "initial" time) by

r r

I tG(t)=exp. 1—
1 —a to

F(p)=p[cJ, (p)+dX, (p)] . (3.9) P(r, t) = P, kr Ki( kr)

This solution is compatible with the boundary condition
(3.4a) only if c =d =0. It therefore follows that Xexp .

1 —e
1—

tp

'1—a
k'&0,

P(r, t}=0 for k (0 . (3.10)
(3.20)

That is, only the trivial solution is admitted, so that by
(2.16) and (2.18) a static string solution is described.

F(r)=Cr +F0, (3.1 1)

where C and I"
o are constants. Application of the bound-

ary condition (3.4a) forces C =0, so that (3.11) reduces to

F(r)=FO . (3.12)

The temporal DE (3.3b) can also be solved by integra-
tion [using a ( t) —t, 0 ~ a ( 1] to yield

G(t)= +Go,Dt
1 —aa t

(3.13)

where D and Gp are constants. When subjected to the
boundary condition (3.4b), (3.13) reduces to

B. k =0

The radial DE (3.3a) can be solved by integration to
give

where P, is a constant. From (2.16) and (2.18) this solu-
tion is seen to describe a time-dependent string solution.

P (r, t) =Po+P, krK, (kr)exp . I
1 —a

Po+P, F(r)G (t—)

t1—
tp

(3.21)

where Po and P, are constants. Using the fact [21] that
gK, (g)~1 as $~0, one finds

P(O, t)=PO+P, exp. r 1—
to

1 —a

D. General solution

The general solution to the PDE (2.8) and the bound-
ary conditions (3.1) is a linear superposition of the partic-
ular solutions (3.10), (3.15), and (3.20), and can be written
as

1 —a

G(t)=GO, (3.14)
=Po+P, G (t) (3.22)

so that by (3.12) and (3.14)
so that with the aid of (3.22), (2.16) gives a string "mag-
netic" Aux

P (r, t) =FOGo:Pp =const for k =0 (3.15)
4, (t)= [1—[Po+P, G(t)]] . (3.23)

Again, by (2.16) and (2.18) a static string solution is ob-
tained.

C. k')0

Thus for P, =0 the gauge string is static, while for P, AO,
the gauge string is nonstatic with a time-dependent Aux.
Upon noting that G(to)=1 and G(~)=0, then in the
limit that t ~ ~ one has @,(t)~N, ( ~ ), where

Taking k &0 for definiteness the radial DE (3.3a) can
be solved by defining the variable g

=kr and the functio—n
@,(~)= (1—Po) .2& (3.24)

F(g) (3.16)

Equation (3.3a) is then transformed into the modified
Bessel DE for v,

Depending upon the values of the constants Pp and P&,
4, can be an increasing or a decreasing function of time.

For example, for Pp=0 and P, =1, where tp is some
initial time at which cosmic expansion begins with the be-
havior a (t) t, then P-(0, to }=1and P(0, oo ) =0, so that
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@,(to)=0, @,(pp )==2~ (3.2S)

C,(to)=, N, ( op )=0,=2" (3.26)

corresponding to the annihilation of a preexisting string
with one quantized unit of Aux.

It is also interesting to note that by (2.10e) and (3.21)
the radial component of the Poynting vector
[S„=(—g„„)'~ T'"=aT'"] is proportional to [22]

PP'
e'a4r2

k4P',
Ko(kr)Ki(kr)G (t),e'a' (3.27)

corresponding to the creation of a gauge string with one
quantized unit of Aux.

On the other hand, for Po = 1 and P I
= 1, then

P(O, to) =0 and P(0, pp ) =1, so that

APPENDIX

Equation (3.3b) for the function 6(t) is

kG+HG — G =0
Q

(A 1)

and can be solved for the k & 0 case by defining a func-
tion q (t) so that 6 (t) can be formally written as

power-law behavior a -t, 0&a&1. By (3.23) the time
dependence of the string Aux depends strongly on a. The
smaller the value of a, the faster @, changes at small
times in an approach to its asymptotic value. Therefore a
sourceless Abelian gauge string would be created at a fas-
ter rate during an epoch of radiation dominance (u= —,')
than during an epoch of matter dominance (a= —,'), and
would be created at its fastest rate in the Minkowski limit
(a=0).

indicating that "electromagnetic" gauge field energy
flows radially inward toward the string. [The fact that
d(gK, (g))/dg= —g'Xo(g) has been used [21] in obtain-
ing (3.27).] The physical interpretation is that the radial
inAow of gauge field energy can create a string, cancel a
preexisting string, or in some intermediate fashion
change the Aux of the string.

6 (t) =exp f dx
~ q(x)

tp a(x)

where a (x)-x, 0 & a & 1. Then (A 1) becomes

q(t) — =0 .
k2 —

q (t)
a'(t)

If q =0, then one obtains the simple solution

q= —k (k&0),

(A2)

(A3)

(A4)
IV. SUMMARY AND CONCLUSIONS

A model of a sourceless gauge string in an expanding
spacetime has been examined where, as a first approxima-
tion, the singular gauge string is embedded within a fixed
space-time geometry described by a flat Robertson-
Walker metric, with no back reaction of the gauge field
upon the spacetime being considered. In this way an
effort has been made to study the effects of the space-time
expansion on an Abelian gauge field. By removing the
Higgs field from consideration and holding the space-
time geometry fixed, the equation of motion for the gauge
field can be solved exactly. It is hoped that the exact
analytical nature of this model might illuminate the un-
derstanding of some aspects of gauge field behavior in
more realistic models, although the simplified sourceless
U(1) model has its own interesting characteristics.

The gauge field structure function P(r, t), given in gen-
eral form in Sec. III, indicates that the singular gauge
string has an associated "magnetic" Aux which can be ei-
ther static or time dependent. For the time-dependent
solution the radial component of the Poynting vector,
proportional to T", is nonvanishing and directed radially
inward, allowing gauge field energy to collapse upon the
symmetry axis. In this way a string can gradually be
created, or a preexisting string can gradually be de-
stroyed. The fact that T" is nonzero also shows that the
spacetime becomes anisotropic at a higher level of ap-
proximation wherein back reactions upon the spacetime
are considered (or in a fully general-relativistic theory), as
pointed out by the authors of Ref. [23].

It has been assumed that the scale factor a (t) has a

allowing 6(t) to conform to the boundary condition
(3.4b). For qXO (A3) is solved by

1

k
—arctanh ——,k & q

I 2 2

k k

1—arccoth ——,k (qq 2 2 2

k k k

(AS)

where c, and c2 are integration constants. Upon defining

I (x)=I dx,k
a (x)

the solution to (A3) can be written as

k tanh [I(x)+c,], k & q

k coth [I(x)+c2], k &q
q(x)= '

(A6)

(A7)

which indeed solves (Al) if b =(1—a) '. Implementa-
tion of (3.4b) demands that A = B—:—G„so that, —
from (A8),

G (t) is then given by (A2) and (A7).
Computer-aided evaluations of 6(t) for particular

values of parameters allowed the inference of a general
solution expressible as

G(t)= A sinh +8 cosh
bkt bkt
a t a t
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—ktG(t)=G, exp
1 —aa t

(A9) a(t)=a(t )0
0

and defining

a

(A 1 1)

Note that this coincides with the simple solution given by
(A2) and (A4), with the provision that (A12)

kto

(1—a)a(to)

Writing (with to an "initial" time)

(Alp) G(t) can be displayed as

G (t) =exp I
1 —cz

1 —a

(A13)
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