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A covariant formalism is developed for describing perturbations on vacuum domain walls and strings.
The treatment applies to arbitrary domain walls in (N + 1)-dimensional flat spacetime, including the case
of bubbles of a true vacuum nucleating in a false vacuum. Straight strings and planar walls in de Sitter
space, as well as closed strings and walls nucleating during inflation, are also considered. Perturbations
are represented by a scalar field defined on the unperturbed wall or string world sheet. In a number of
interesting cases, this field has a tachyonic mass and a nonminimal coupling to the world-sheet curva-

ture.

I. INTRODUCTION

Vacuum domain walls and strings could be formed as
topological defects at a phase transition in the early
Universe [1]. Walls could also appear at the boundaries
of true-vacuum bubbles nucleating in a false vacuum at
first-order phase transitions [2], and strings could appear
at the boundaries of circular holes nucleating in metasta-
ble domain walls. Moreover, it has recently been shown
[3] that spherical domain walls and circular loops of
string can spontaneously nucleate during the inflationary
epoch in the early Universe. The physical properties of
strings and walls have been extensively studied in recent
years and still remain a fascinating topic of research.

The purpose of this paper is to study the dynamics of
small perturbations on strings and walls. It will be as-
sumed that the thickness of the defects is small compared
to all the other relevant dimensions, so that they can be
treated as infinitely thin lines and sheets. We shall see
that in this case the perturbations can be described by a
scalar field “living” in the (1+1)- or (2+1)-dimensional
world sheet of the defect. Somewhat surprisingly, this
field generally has a tachyonic mass (in some special cases
the mass is equal to zero) and a nonminimal coupling to
the world-sheet curvature. For vacuum bubbles and for
strings and walls nucleating during inflation, the unper-
turbed world-sheet geometry is that of de Sitter space,
and the field equation for perturbations can be solved
analytically.

The evolution of perturbations on walls and strings can
be important for cosmological applications. For in-
stance, closed loops of string formed during inflation
would all eventually collapse to black holes if they
remained exactly circular. However, quantum fluctua-
tions cause some deviations from circular shape, and by
studying the dynamics of these fluctuations one should be
able to determine the probability of black-hole formation.

Turok [4] has argued that quantum fluctuations on
long strings during inflation can lead to a rapid growth of
string energy and suggested the possibility of a self-
consistent solution in which inflation is driven by fluc-
tuating strings. To make his approach more rigorous one
has to develop a covariant theory of perturbations on
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strings and then to devise a covariant regularization
scheme for the string energy-momentum tensor. Here,
we shall implement the first part of this program.

Another interesting problem is the evolution of pertur-
bations on expanding vacuum bubbles. The question is
whether or not perturbations on the bubble wall grow, so
that the wall becomes more and more nonspherical as it
expands. We shall see that the answer depends on whom
you ask: different answers will be given by an external ob-
server and by an observer “living” inside the wall. Evolu-
tion of perturbations on vacuum bubbles has been previ-
ously studied by Adams, Freese, and Widrow [5]. We
agree with their conclusions and will comment on the re-
lation of our work to theirs in Sec. V.

Our emphasis in this paper will be on developing a co-
variant classical theory of perturbations on strings and
walls. Quantization and possible cosmological applica-
tions will be left as topics for future research.

The rest of this paper is organized as follows. In Sec.
IT we derive the action and the equation of motion for a
domain wall separating regions of space with different
vacuum energy densities. We do this for a wall moving in
(N +1)-dimensional Minkowski space, so that for N =2
our results are applicable to a string bounding a hole in a
planar domain wall. The equation for linearized pertur-
bations on an arbitrary domain wall is derived in Sec. III.
Solutions of this equation are obtained and discussed in
Sec. IV for a planar domain wall and in Sec. V for an ex-
panding vacuum bubble. Effects of gravity are ignored in
Secs. II-V. In Sec. VI we study perturbations on walls
and strings in an inflationary universe. This treatment
applies to walls and strings nucleating during inflation, as
well as to perturbations on straight strings and planar
walls.

Our conclusions are summarized in Sec. VII. The va-
lidity of the linearized theory of perturbations is dis-
cussed in the Appendix.

II. THE ACTION AND THE EQUATIONS OF MOTION

In this section we shall derive the equations of motion
for a domain wall of arbitrary shape separating two re-
gions of space which may have different values of the vac-
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uum energy density. As was mentioned in the Introduc-
tion, we shall work in the approximation in which the
domain wall is infinitely thin, carrying an energy density
per unit surface equal to its surface tension. We shall
also ignore the effects of gravity.

For the sake of generality and also for its pos-
sible relevance in lower-dimensional problems we shall
consider domain walls evolving in (N +1)-dimensional
Minkowski space. As the wall evolves in time
it will span an N-dimensional timelike hypersurface
(world sheet) = which can be parametrized
by coordinates £°(a =0,1,...,N —1). Denoting by
8a(a,b=0,1,...,N —1) the induced metric on =, one
can think of the history of the domain wall as a Rieman-
nian manifold (Z,g,,). It is this manifold structure that
we wish to emphasize throughout the present paper.

The action for a thin domain wall is [1]

S,=—o [ V=gd", (1)

where g =detg,, and o is the surface tension. To this we
should add the vacuum action. Since the vacuum La-
grangian is just a constant potential energy density p,, its
contribution to the action is given by

S,=—efdr] d". @)
Here, e=p?—p!) is the difference of vacuum energy
densities between the two sides of the wall, and the N-
dimensional integral extends over the region occupied by
the vacuum with p, =p!?. Clearly, the boundary of that
region is the domain wall itself. We can use this fact to
write (2) as an integral over the boundary 2, by introduc-
ing in (2) a factor of 1=9,x*/(N +1) and then applying
Gauss’s theorem. Upon so doing we find

€ _xtn, |dY. (3

N +1 #

o—

$=S,+S,=— le/—_g

Here, n" is the (spacelike) unit vector normal to = (our
sign conventions are such that n* points in the direction
of the region with p, =p'?).

The quantities in (3) should be expressed as functions
of £ There, x* is the position vector on the surface of
the wall

xH=xHg%) . (4)

The normal vector is characterized by the equations

n,nt=1, n,3,x¢=0, (5)

and the induced metric is given in terms of x*(£°) as
gab=aax”abxﬂ . (6)

The action (3) is invariant under reparametrizations of =
(x* and n, are scalars under reparametrizations).

Let us now consider the variation of the action with
respect to small changes in the world sheet,
x#—xH+8x*. Since only motion transverse to the wall
is physically observable, we can write

Sxt=¢nt . (7)
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Here ¢ is assumed to be small, but is otherwise an arbi-
trary function of the coordinates £°.

With the help of Egs. (5) and (6) one can find the corre-
sponding variations in the quantities appearing in the ac-
tion. For instance, the new metric will be
8ap =04 (xH+¢n#)d,(x, +¢n,) and to linear order in ¢,
we have

8gab = —2¢Kab ’ (8)
8V —g =3V —gg8g, =—¢V —88"Koy »

where K, =n,0,0,x"=—09,n,03,x" is the extrinsic cur-
vature of = and g is the inverse of g,,. Similarly one
finds

Snkt= —g"b¢,baax” . 9
Using Egs. (7)—(9) the variation of the action is

€
N+1

ss=[v—¢ (=84, ,3,%")

+ |o— xtn, |¢6g”K, |dVE .

€
N +1

(10)

After an integration by parts we obtain the apparently
complicated expression

5s=f2\/iE(ag“bKab+e)¢dN§

+f2‘/__gNil

xPg(V,3,x, —Kan, )b d € ,

(11)

where V, stands for the covariant differentiation operator
corresponding to the metric g,,. However, the second in-
tegral in (11) vanishes identically because

VbaaX'uEKabn” s (12)

as can be shown by explicit evaluation of the left-hand
side (LHS) and using the relation d,x,3°x,=n,,—n,n,,
where 7, is the Minkowski metric.

So we are left with just one term in (11) and, from the
variational principle 8S =0, the equation of motion for
the wall is

€
g”bKabz_‘a‘ . (13)

For the particular case that e=0, Eq. (13) reduces to the
well-known result that minimal surfaces have vanishing
mean curvature [6].

III. LINEARIZED PERTURBATIONS

In this section we shall prove the following result. Let
x* be a known solution of the equations of motion (13).
Then, the theory of linearized perturbations to x* is
equivalent to the theory of a scalar field in the curved
spacetime (2,g,,) corresponding to the unperturbed
world sheet. We shall determine the mass of this field
and its coupling to the world-sheet curvature.
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Let us denote by X # the perturbed solution. Again,
only perturbations perpendicular to = need be con-
sidered:

Xbt=xt+dn# . (14)

Equation (14) is formally the same as Eq. (7), but now we
are dealing with physical perturbations rather than
mathematical variations. Here ¢ represents the proper
magnitude of the perturbation, i.e., the deviation from
the unperturbed solution as measured by an observer
moving with the wall. (This can be easily seen by using a
local inertial reference frame in which the unperturbed
wall is at rest. In this frame the temporal component of
n* vanishes.)

The equation for the linear perturbations can be ob-
tained by applying Eq. (13) to the perturbed solution.
Writing g,, =g, +6g,, and K,, =K, +8K_, for the per-
turbed quantities we have

g°%%K ,, +K,,6g°°=0 . (15)
From (8) one has

8g b= —ggbsg , =26K . (16)
Similarly, using (9),

SKa,,=—aa(gc"qﬁ’cadx“)a,,x“—¢>aan"abnﬂ . (17)
With the help of (12) we can write

3, (8% 0,x")3px,=V,0,¢ , (18)

and it is also easy to check that
9,n*d,n,=K;K, . (19)

Using Egs. (16)-(19) in (15), the equation for the pertur-
bations reduces to

O¢+K*®K,,6=0, (20)

where O stands for the covariant d’Alembertian in the
N-dimensional curved spacetime (0=g?V_V,. Equation
(20) can be put in terms of intrinsic quantities on the
world sheet by using the contracted Gauss-Codazzi rela-
tion (see Ref. [7] for instance)

R=(g%K,, ) *—K*K,, , 21

where R is the world-sheet Ricci scalar. Using (21) and
(13) we can finally write
2
€
ﬁ —_——
o?

—O¢+ $=0. (22)

Equation (22) is the equation for a scalar field in a curved
N-dimensional spacetime. The direct (nonminimal) cou-
pling to the scalar curvature 72 is of the standard form
ER@ with £=1 [conformal coupling corresponds to [8]
E=(N —2)/4(N —1)]. If €0 then the field has a nega-
tive mass squared which, in principle, may lead to insta-
bilities. As we shall see in the following sections, this
may sometimes be a matter of interpretation.
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IV. LINEAR PERTURBATIONS ON PLANAR
DOMAIN WALLS

The simplest case where one can apply the above for-
malism is the case where we have a planar wall perpen-
dicular to, say, the z axis (we use Cartesian coordinates
(t,z,x") in Minkowski space, i =1,...,N —1). Its trajec-
tory will be given by some function

z=z(t), (23)

which can be determined from Eq. (13). For this we need
the induced metric

dsi=—(1—2%dt + 3 (dx')?, (24)

which is obtained by substituting (23) into the usual
(N +1)-dimensional Minkowski line element. We are us-
ing (¢,x') as our coordinates on X and overdots stand for
derivatives with respect to . Now Eq. (5) can be used to
find the normal vector
—z 1

=, n,=——=, n;=0. (25)
Vi-22 7 V=2
The only nonvanishing component of K, is [see after Eq.

(8)]

no

Koy=n,dxt=—>2 (26)
Therefore, from (13), one finds the equation of motion
Z €
=z = 27
(1—2232 o @7
which has the first integral
o
—————e€z=const . (28)
Vi1-z:2

Note that Eq. (28) is just the energy-conservation equa-
tion, which could as well have been used as the starting
point: the vacuum energy swept out by the domain wall
(which is ez per unit area) is entirely converted into kinet-
ic energy of the domain wall [o(1—22)"!/2 per unit
area]. The solution to Eq. (28) has different qualitative
behavior depending on whether or not € is vanishing.

For €=0 the solution is Z=const and we can simply
write z =0 by going to a suitable Lorentz frame. This is
just the planar static domain wall. It is easy to study
linearized perturbations to this solution. For this we note
that (24) is flat space, so & =0 and Eq. (22) reads

0¢=0, (29)

where the box stands for the ordinary d’Alembertian in
N-dimensional flat space. The mode solutions to (29) are
plane waves of small amplitude propagating on the wall
at the speed of light.

As is well known [1], nonlinear plane waves of arbi-
trary profile propagating on the wall at the speed of light,
such as

z=f(t—x"), (30)

are also solutions to the equations of motion (13) for
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€=0. However, a superposition principle for such non-
linear waves does not apply. If the wave (30) is made to
collide with some other nonlinear wave described by
z=g(t+x!) they do not simply pass through each other
but some complicated interaction between them takes
place. In other words, z=f(t —x!)+g(t+x!) is not a
solution of (13). This raises the question of the stability
of the nonlinear wave (30), that is, whether or not it will
be seriously affected when it collides with a small distur-
bance traveling, say, in the opposite direction. This ques-
tion can be answered by using our Eq. (22) in the space-
time corresponding to the wave solution (30). It is easy
to check that this spacetime is, again, flat spacetime. So
linearized perturbations to (30) will obey the wave equa-
tion (29), for which there are no growing mode solutions.
Therefore the nonlinear traveling wave is stable against
small perturbations.

Let us now examine the case €70. In this case the
solution to Eq. (28) is the hyperbola

o?

z22—t2= 5 (31
€
where we have eliminated the integration constants by
shifting the coordinates z and ¢. The induced metric (24)
for this solution is also the flat-space metric, since it can
be written as ds3 = —d*+ 3 (dx‘)?, where

(32)

o .
7= —arcsinh
€

is the proper time measured by an observer moving with
the wall. The perturbations as measured by this observer
will obey the equation [see (22)]

2
—O¢—S¢=0, (33)
g

whose mode solutions are
—ilwyT—k'x)
$pxe T , (34)
with 0, =+V'k*—e*/o?.
Due to the presence of a negative mass squared in (33),
we have exponentially growing modes for k% < €% /0%

¢k=AeAreik'x , (35)

where A=[(€*/02)—k?]'/? and 4 is the initial ampli-
tude. Equation (35) suggests that the solution (31) is un-
stable, since the amplitude of the proper perturbations in-
creases with time while the wavelength remains fixed.
Thus, the wall becomes more and more wiggly as it
evolves.

It is amusing to realize that the magnitude of the per-
turbation as seen by an ‘“‘outside” inertial observer at rest
(at z =0, for instance), which to linear order is given by a
Lorentz contraction factor times the proper perturbation,

Vieg=—_¢
1-2%% cosh(er/o) ’ (36)

actually decreases with time. To linear order the per-
turbed solution as seen by this observer becomes closer
and closer to the zero-order solution.
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Note, however, that the linear approximation will
break down at some point and the question of whether we
can expect significant departures from the zero-order
solution can only be settled by considering nonlinear
terms in ¢. In deriving Eq. (22) we have neglected
(among others) terms such as (€/0)¢ .¢°, which become
as important as (€2/02)¢ when the amplitude of the per-
turbation reaches a value of order ¢ ~o /€. Beyond that
the linear approximation is not expected to hold. After a
time ¢ ~02/ A€ higher-order corrections will be impor-
tant and, since for the comoving observer the domain
wall appears to become wiggly, it is likely that nonlinear
structures (such as cusps, for instance) may develop.

V. PERTURBATIONS ON SPHERICAL
VACUUM BUBBLES

As mentioned in Sec. I, false vacua in field theories
whose effective potentials have nondegenerate minima
may decay through first-order phase transitions. These
proceed via quantum nucleation of spherical bubbles of
true vacuum in the “sea” of false vacuum [2]. The true
and false vacua are separated by a spherical domain wall.

After nucleation, the bubble evolves classically and the
domain-wall trajectory is given by [2]

R2—t*=H"?, (37)

where R is the radius of the bubble and H =e/No. The
bubble nucleates at t =0 with a finite radius Ro=H !
and zero velocity R =0. Then it starts expanding with
constant proper acceleration, asymptotically approaching
the speed of light. The thin-wall approximation applies
provided that the thickness of the wall is small compared
with R .

One can readily check that (37) is a solution of the clas-
sical equation of motion. Imposing spherical symmetry
in (13) we obtain, after one integration, the energy-
conservation equation [analogous to Eq. (28)]

RN-1g(N-1),
V1-R?

where S¥ ™1 and V¥~ stand for the surface and the
volume of the unit (V —1)-sphere, respectively. The first
term in (38) is the energy of the domain wall, while the
second term is the energy removed from the sea of false
vacuum by cutting out a spherical piece of radius R. In
fact, the constant in RHS must be equal to zero since en-

ergy is conserved by the nucleation process. Using
SWN=1y(N=D= N we can rewrite (38) as

RV 1—R*=H"!, (39)

which is readily satisfied by (37).

Let us proceed to study linear perturbations to the
zero-order solution. This problem has already been ad-
dressed by Adams, Freese, and Widrow in Ref. [5] (for
N =3). These authors use a noncovariant formalism in
which the trajectory of the perturbed solution is
represented as

r(t,0,p)=R (¢)+A(1,0,9) , (40)

—RNy W =De=const , (38)
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where r is the distance to the origin of coordinates, 8 and
@ are the usual polar and azimuthal angles, R (¢) is the
unperturbed solution (37), and A is the perturbation.
They find a differential equation for A and solve it numer-
ically for a number of different modes.

In our covariant formalism the perturbation is taken
not at a fixed moment of time, but in the direction normal
to the world sheet. The covariant perturbation ¢ is relat-
ed to A by a Lorentz factor (to linear order in A)

A

¢ V'1—-R?
To derive an equation for ¢, we first note that the unper-
turbed world sheet (37) is a hyperboloid embedded in
(N +1)-dimensional Minkowski space, and therefore the
induced metric on the world sheet is that of N-
dimensional de Sitter space. This metric is obtained by
writing the Minkowski line element in spherical coordi-
nates and then substituting » =R (¢) as given by (37). The
result is

dSi=—dr*+H 2coshXHr)dQ¥N "V, (42)

where 7=H ~arcsinh(Ht) and dQV ™1 is the line ele-
ment on the (N — 1)-sphere.

The Ricci scalar in de Sitter space is =N (N —1)H?
and Eq. (22) for the perturbation ¢ takes the form

—O¢—NH?$p=0 . (43)

(41)

The theory of perturbations on vacuum bubbles is thus
reduced to the theory of a scalar field in de Sitter space
with a negative mass squared m?=—NH?2.

The analytic solution of Eq. (43) in the metric (42) has
been found by Chernikov and Tagirov [9]. The field ¢
can be represented as

¢= 2 ¢L(T)YLM ’
LM

where Y;,, are the usual harmonics on the (N —1)-
sphere. They satisfy AY;,, = —JY ,,, where A is the La-
placian on the unit (N —1)-sphere and the eigenvalues
are given by J=L(L +N —2) with L=0,1,..., .
The index M runs from —L to L. The equation for ¢; is
then

d’¢; dé;
72 +(N —1)H tanh(H7) ar
J 2
—————N|H%,=0. (44
cosh’(H ) l g @

In terms of the new variables

Z=tanh(H7) ,

(45)
XL =(1 __ZZ)(I—N)/4¢L ,
Eq. (44) is the associated Legendre equation
2
(1—Z2)x} —2Zx, + lv(v+ 1)_T—&E7 XL=0. (46)

Here v=L +(N —3)/2, u=(N+1)/2, and a prime

denotes derivative with respect to Z. Its solutions are
linear combinations of the Legendre functions P#(Z) and
Q¥(Z), and we can write

¢, =(1—22N=VA4C PH(Z)+C,QH(2Z)] , (47)

where C, and C, are arbitrary constants. The argument
Z, defined in (45), runs from O to 1. It is perhaps easier to
think of it as Z =t /R.

For the lowest modes L =0 and L =1 the above ex-
pression is not the general solution to Eq. (46) because for
these modes Q% =0 if N =2 and P% =0 if N =3. Never-
theless, for arbitrary N, we have the solutions
¢r—0=(1—Z*7'2Z and ¢, =(1—Z%)"!/2. These
correspond to a time translation and a space translation
of the unperturbed solution, respectively. Given that we
know one solution for each L, a second one can be found
by quadratures. For N =2 we have

b1 —o=(1—2Z2)"12[C,Z +Cy(ZarcsinZ +V1—2Z2)],
6., =(1—Z2)"12[C,+C,(arcsinZ +ZV'1—2Z?)] ,
and for N =3 we have
br—o=(1—ZH712[C,Z+Cr(1+2Z7)],
b, =(1—ZH7VC,+C,(3Z-2ZY)].

As in the case of a planar wall, the negative mass
squared of the field ¢ gives rise to solutions growing with
time. In the limit of larger 7, Eq. (44) takes the form

d’¢, dé,

272 +(N—1)H ar
The mode solutions in this limit are ¢; ~exp(H ) and
¢ ~exp(—NH7T). The corresponding solutions for the
variable A defined in Eq. (40) can be found using the rela-
tion (41) between A and ¢. For the growing modes this
gives A; ~const. Since A represents the perturbation as
seen by an external observer, we conclude that at large
times the amplitude of the perturbation “freezes” and the
relative perturbation A/R rapidly goes to zero. Hence,
to an external observer, the wall will appear more and
more spherical as it expands [10].

The variable ¢ describes how the perturbed wall would
appear to an observer sitting on the unperturbed wall.
To find out how the perturbation is seen by an internal
observer “living” in the world sheet, we have to examine
the world-sheet metric perturbation that corresponds to
the scalar perturbation ¢. For the hyperboloid (37) we
have n#=Hx". (This is more easily seen by going to Eu-
clidean space, where de Sitter space is a sphere of radius
H™!) Therefore, the perturbed trajectory will be
x#=(1+H¢)x", and the perturbed metric will be given
by the simple expression

—NH?%$, =0 . (48)

Bap =0,X H3,%,=(1+H¢) g, +¢ .0, - 49)

We shall restrict our analysis to linear order. Then we
have

8 =0% »
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with Q=(1+H¢), and we can use the relation [8]
R¢=Q7R{+(N—-2)Q7'V,9,(Q g
—(N—=2)"'a7 MO 2)8¢
to find the perturbed Ricci tensor
R,=H*N —1)g,, —H$(N —2)g,, —H(N —2)V,3,¢ ,
(50)

where we have used (43). Note that for N <3 all the in-
formation about the curvature is contained in the Ricci
tensor. In fact, for N >3 this is also true, since the
metric is conformally flat and therefore the Weyl tensor
vanishes.

An interesting feature of (50) is that the perturbed
Ricci scalar is equal to the unperturbed one,
R=H>N(N —1). For N =2 this readily implies that the
“perturbed” space is also de Sitter space of the same cur-
vature. Therefore we conclude that an internal observer
on the perturbed wall does not “see” quite as much as
one can see from the outside. In particular, for N =2 the
internal observer does not “feel” any linear metric per-
turbations at all.

Finally, we discuss the validity of the linear approxi-
mation in ¢. We saw that the tachyonic mass of the field
¢ brings about exponentially growing modes, and it is not
surprising that eventually the linear approximation
breaks down. We verified that this is indeed the case by
comparing the terms in Eq. (43) to the nonlinear terms
neglected in this equation. What is surprising is that one
can define a new variable

o= 2+tHS
2 1+H¢

for which the linear approximation is valid all the way to
t— . For small ¢, |¢| <<H !, ®=~¢, but when ¢ gets
large this relation is replaced by ®~=~¢ /2. The linearized
equation for @ is the same as for ¢, Eq. (43), but, as it is
shown in the Appendix, nonlinear corrections in this case
remain small if they were small initially. The variable ®
is related to A defined in Eq. (40) by a simple formula

A

Vi-Rr?’

which agrees with (41) when ¢ is small, but remains valid
even when ¢ gets large.

b=

VI. PERTURBATIONS ON STRINGS AND WALLS
IN DE SITTER SPACE

So far we discussed topological defects evolving in flat
spacetime. In this section we shall consider perturbations
on strings and walls in an inflationary universe. We begin
with the case of a string loop nucleating during inflation.

Mathematically, an inflating universe is described by a
de Sitter space, which can be represented as a hyper-
boloid embedded in a five-dimensional Minkowski space

—(XOP+H (XX (X3 +H(X*2=H 2. (51)

Here, H is the expansion rate of the inflationary universe
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and X% (a¢=0,...,4) is the position vector in Min-
kowski space. Then, the world sheet of the string after
nucleation is given by [3]

__(XO)2+(X3)2+(X4)2=H-2 ,

(52)
x'=x*=0,

which is a (1-+1)-dimensional hyperboloid of maximal
“radius” H ! embedded in the hyperboloid (51). Its
internal geometry is that of (1+ 1)-dimensional de Sitter
space.

We shall use the following coordinatization of the
four-dimensional spacetime:

t=H 'In[H(X*+Xx%)],

. ) (53)
x'=H 'X{(x*+x°)!
(i =1,2,3.) The line element then takes the form
ds?=—dt*+a*(t)(dx)?, (54)

where a(t)=exp(Ht). In these coordinates, a t =const
slice of the world sheet (52) looks like an infinite straight
string along the z axis (we use the notation x*=z). The
coordinization (53) differs from that in Ref. [3] by an in-
terchange of the variables X* and X!. There, the con-
stant time slices of the world sheet (52) are circular loops
of string, while the four-dimensional line element still
takes the form (54).

From the preceding remarks it is clear that the straight
string considered by Turok [4] and the circular loops con-
sidered in Ref. [3] are simply different slicings of the same
hyperboloid (52), and for our present purposes they can
be given unified treatment.

Using the conformal time 7= —H ~'exp(—Ht) and z
as the coordinates on the unperturbed world sheet, we
can write the perturbed solution as

Th=(r,a " '¢,a " ¢,2) . (55)

Here a(7)=—(H7) ! and ¢ ,( A4 =1,2) are (small) arbi-
trary functions of 7 and z which represent the proper dis-
placements in the two directions normal to the string.

Let us now derive the effective action for such pertur-
bations. The perturbed metric will be given by

B =aX(TIm, X H X", , (56)

with 7,,=diag(—1,+1,+1,+1). Denoting by g the
determinant of g, ~and using the relation
8V —g =(1/2)V/—gg®sg,, it is straightforward to

show that, to second order in ¢ 4,

Vog=v—g+lv—g

g% 07, —H¢ 9"

g2 Q44
HTdT(¢¢ )], (57)

where g, is the unperturbed [(1+1)-dimensional de Sit-
ter] metric and summation over the indices 4 is under-
stood.

Inserting the last expression in the Nambu action
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S=—nf V' —gd* we obtain, after an integration by
parts,

S=SO—%f\/_—g(¢A,a¢A,a_NH2¢A¢A)dN§ , (58)

where S, is the action of the unperturbed solution and
N =2 for strings (u is the string tension). For domain
walls nucleating in de Sitter space we can follow a similar
argument and we find the same expression (58) with
N =3 (and with u replaced by the surface tension o). In
this case one has only one normal direction and the index
A can be suppressed.

From Eq. (58) we see that each one of the ¢ behaves
like a free scalar field with a tachyonic mass m?=— NH?
in N-dimensional de Sitter space. This is the same mass
that we found for the perturbations to vacuum bubbles
discussed in the previous section.

VII. CONCLUSIONS

We have developed a covariant formalism for describ-
ing perturbations on topological defects, such as vacuum
domain walls and strings. Perturbations are represented
by a scalar field ¢ which “lives” on the unperturbed
world sheet of the defect and has the meaning of a nor-
mal displacement of the world sheet.

For domain walls in Minkowski space the field ¢
satisfies the Klein-Gordon equation (22) with a non-
minimal coupling to the world-sheet curvature and with a
tachyonic mass proportional to the difference of vacuum
energy densities on the two sides of the wall. (The field ¢
is massless if the two vacua are equivalent). The same
equation applies to strings bounding the holes in a planar
domain wall.

In a number of cosmological applications the unper-
turbed world sheet has the geometry of a de Sitter space.
The most interesting examples are vacuum bubbles nu-
cleating during a first-order phase transition, closed
strings and walls nucleating during inflation and straight
strings and walls in inflationary universe. We have
shown that in all these cases the effective mass of the field
¢ (the combined contribution of the mass and curvature
terms) is

m?=—NH? .

Here, N =3 for domain walls, N =2 for strings, and H is
the expansion rate of the de Sitter space. For vacuum
bubbles H is determined by the wall tension and false-
vacuum energy, while for strings and walls in inflationary
universe it is equal to the expansion rate of the universe.

Quantization of perturbations on strings and walls will
require a careful treatment of zero modes [11]. These
modes correspond to space-time translations of the world
sheet in the case of nucleating bubbles and to de Sitter
transformations in the case of defects nucleating during
inflation. We shall discuss the quantum theory of pertur-
bations in a separate paper.
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APPENDIX

In this appendix we discuss the validity of the linear
approximation for perturbations on vacuum bubbles. In
this approximation, the perturbations for large 7 behave
as ¢ ~exp(H) (r is the proper time measured by an ob-
server moving with the unperturbed world sheet, see Sec.
V). In deriving Eq. (22) we have neglected, among others,
terms such as H¢? compared to H2¢, so we expect that
the linear theory will break down as soon as ¢~H !,
We shall see, however, that it is possible to define a new
field ® for which the linear approximation holds all the
way to 7— 0.

The unperturbed world sheet of the vacuum bubble
wall is given in spherical coordinates by

x*=(t,r,0,p)=(H ~'sinh(H7),H 'cosh(HT),6,p) .
(A1)

The normal vector is n*=(sinh(H),cosh(H7),0,0) and
the perturbed world sheet can be expressed as

XH=xt+¢nt=(H '+¢)sinh(H7),(H '+¢)

Xcosh(H7),0,9) , (A2)

with ¢=¢(7,0, ).

Before proceeding further, we should mention a limita-
tion of the covariant formalism in the present case.
Since, from Eq. (A2),

ri—t’=(H"'+¢)*>0, (A3)
the covariant description is not suitable for regions of the
perturbed world sheet that lie inside the light cone from
the origin. Note also from (A2) that the perturbation
may reach the light cone r =¢0 only for 7— o (if at
all) though this may correspond to finite  and t.

We shall use the coordinates

7=H larctanh(¢ /r) ,

— (A4)

E=H 'In(HV'r*—t?).
Notice that both on the unperturbed and the perturbed
world sheet, this definition of 7 reduces to the one used
before for parametrizing these surfaces [see Eq. (A2)]. In
terms of the coordinates (A4) the Minkowski line element
reads

ds?’=e?H —d?+dE*+H 2cosh(hr)dQ?], (AS)
with d Q?=d 6?+5sin’6d ¢>. The unperturbed world sheet
is located at £=0 (constant £ surfaces are three-
dimensional hyperboloids), and its induced metric is
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ds} =g, dx%dx®
=d7*+H %cosh®(Hr)dO? . (A6)

The position of the perturbed world sheet is described as
a function £=£&(7,0,¢), and its induced metric can be

written as
Hg(gab—l—g,ag,b) (A7)

Let us now derive the exact effective Lagrangian for
the field £. The action can be written as (see Sec. IT)

S=—af2\/—gd7'd6d<p+efvold4x )

=~ —,2
8ap—€

where the second integral extends over the interior of the
perturbed bubble and d*x stands for the four-dimensional
volume element. It is straightforward to show that

\/:_g' zvj“g‘ezﬂg(1+gab§’a§,b)1/z )
From (A5) the four-dimensional volume element is
e*SH "2 cosh®(Hr)sinfdrdEdOd g ,
SO we can write
S=—o [N =g (1+g%¢ £ ,)*drd0dg
+e [ etV —gdgdrdody .

In the first integral of the preceding expression
£=E&(7,0,9), while in the second integral £’ is an integra-
tion variable that runs from &= — o (the light cone) to
&'=E&(T,0,p) (the position of the wall). It should be noted
that by using the coordinate £ we are neglecting the
volume of the interior light cone from the origin. This is
just an infinite constant which does not contribute to the
equations of motion. Since g does not depend on £ we
can integrate over d £’ to obtain

S=—o [V =g (’HV 1+g% £ ,—3e*)drdOdp ,

(A8)
where we have used H =¢€/30 [see after Eq. (37)].
Let us introduce a new variable
®=H 'sinh(HE) . (A9)
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From Egs. (A4) and (A3) we see that the new field ® is re-
lated to the “o0ld” ¢ through the equation

_¢2+H¢
2 1+Hp (A10)
In terms of ® the action (A8) reads
S=—0o [V=g [V 1+g%D @ ,(F')
—3e¥ldrdode (A11)
with F =arcsinh(H®) and F'=(1+H®2?)" 2, From

the variational principle we find the nonlinear equation of
motion

O®+3H[H®G +(G —1)V 1+ H?*®?]

—g%® ,9,InG=0, (Al2)

with G =(1+H>®*+g® ,® ,)'/? and O=g“V,V, as
usual. The linearized form of this equation is

—0®—3H*®=0, (A13)
as expected, since ® and ¢ agree to linear order [see
(A10)]. What is surprising is that the nonlinear terms
that we have neglected in going from (A12) to (A13) do
not become dominant as 7— co, but they remain small
compared to the linear terms if the perturbations are
small initially. To realize that this is the case it suﬁices to
note that for 71—, 5p)exp (HT), so
G=[1+H*A4)*+HXA,) 2(smo) 2]1 2and 3 G—»O

Finally, we should comment on the relation between P
and the variable A used in Ref. [5]. From (40) and (37),
r —A=(r>+H ~?)2, Squaring this equation and assum-
ing (A/r)<<1 (this turns out to be a self-consistent as-
sumption) we find

A

Vi’ (19

®d=cosh(H7T)A=

where we have used (A2) and (A10), and R =dR /dt is the
unperturbed velocity. Therefore, the comments in Sec. V
about the behavior of A at late times can be made more
rigorous by using ® instead of ¢ and Eq. (A14) instead of
(41).
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