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Non-mean-field exponents in strongly coupled quenched QED
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We study quenched quantum electrodynamics (QED) on a lattice in the noncompact formula-
tion. Near the chiral critical point, we avoid critical slowing down using fast-Fourier-transform
methods which allow us to obtain critical indices with good accuracy. Using lattices of 16 and
24 sites and masses between 0.025 and 0.0007 (lattice units) we found that the critical behavior
of QED is described by power laws with critical exponents diA'ering from mean-field results. The
critical coupling is P, =0.257+ 0.001, the exponent 8 is 2.2~0.1, and the magnetic exponent P
is 0.78 ~0.08. A physical explanation of our results is presented.

Recently, the study of quantum electrodynamics
(QED) in the strong-coupling region has attracted consid-
erable attention. ' Lattice simulations of noncompact
QED with almost massless fermions clearly showed the
existence of a critical charge beyond which chiral symme-
try is spontaneously broken. The phase transition is con-
tinuous (unlike the case of compact QED) opening the
possibility of studying the continuum limit of this model
near the chiral critical point. The issue of whether the
cutoA of QED can be removed in strong coupling without
finding the triviality problem that is believed to exist in
weak coupling (Landau pole) is one of the main motiva-
tions for this analysis. Independent studies using the for-
malism of Schwinger-Dyson (SD) equations in the
quenched approximation suggested that interesting phe-
nomena may take place near that critical point. Of par-
ticular importance is the possibility of finding renormaliz-
able four-Fermi interactions in its vicinity. This would
be useful in technicolor models providing an interesting
physical application of the strong-coupling phase of QED.
Other realizations may exist and have been considered by
various authors.

While the SD equations approach involves the arbitrary
truncation of Feynman diagrams to the quenched ladder
subset, a lattice simulation considers all diagrams in a
nonperturbative way and, thus, it can determine to what
extent the SD results are accurate. Early exploratory lat-
tice studies of QED showed that if the chiral condensate
was extrapolated linearly to zero bare mass (m), then the
phase transition was described by the essential singulari-
ty predicted by Miransky et al. in the "collapse of the
wave function" scenario. In addition to its economic ad-
vantage, a linear extrapolation is correct in the case when
the order parameter develops an essential singularity.
However, further analysis showed that the assumption of
linearity of (i)tilt) with m is not correct near the critical

point " for the lattices and masses previously analyzed
numerically. Even more, recent additional studies of
quenched lattice QED claimed' that if the chiral critical
coupling is assumed to be P, =0.2478, then equally com-
pelling fits to mean-field behavior near the critical point
could be made suggesting that QED has a trivial continu-
um limit similar to that of Xp theories in four dimensions.
This apparent ambiguity indicated that an accurate esti-
mate of the critical coupling and an unbiased mass ex'ra-
polation were needed. The first step in this direction was
done in Ref. 12.

However, it is important to note that away from a criti-
cal point a mean-field description of the data is usually ac-
curate. This is a general result in critical phenomena and
was observed in the first simulations of quenched lattice
QED (Refs. 1 and 2) where a mean-field critical coupling
PMF-0. 24 was reported. The chiral condensate follows a
mean-field behavior at strong coupling up to the immedi-
ate neighborhood of the critical point. Only in the vicinity
of this critical point can genuine asymptotic scaling be ob-
served and the issue of triviality be properly analyzed.
The size of the scaling "window" is a dynamical question
dificult to determine a priori and thus very extensive
simulations are needed to fully understand the critical be-
havior of a theory. As discussed below, and previously in
Ref. 12, we believe that noncompact lattice QED in its
present form has a very small scaling window and thus it
is necessary to work close to the critical coupling P, and
near the chiral limit m =0 to observe the actual continu-
um limit. It is the purpose of this Rapid Communication
to provide a numerical study in this region of physical in-
terest. We show below that quenched QED has non
mean-field behavior and, thus, it is a strong candidate for
a nontrivial nonasymptotically free theory in four dimen-
sions.

The action of noncompact QED on the lattice is defined
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as

S= — pep+ —, gq„(x)(y„e " y„+„—y, +„e " y )+m~~y y„,JS 2 I — lap( X) — leg(X)

P X,P X

where the notation is standard. ' The fermionic fields y„
are staggered fermions and tl„(x) is the only remnant of
the Dirac matrices. 8„(x) is the gauge field and P is the
inverse of the electromagnetic coupling eo, i.e., P = I/eo.
In Fig. 1 we show (@IIII) vs m for diH'erent values of the
coupling constant P using lattices of 16 and 24 sites. '

As a numerical technique we used an algorithm"' where
Gaussian fields are generated in momentum space and
then transformed to coordinate space by a fast-Fourier-
transform (FFT) subroutine (after an appropriate multi-
plication by the lattice photon propagator). ' The algo-
rithm avoids correlations between successive configura-
tions and does not suA'er from critical slowing down. Of
course, this technique works only in the quenched approxi-
mation for noncompact actions. Using this method we
generated enough independent gauge configurations (typi-
cally between 100 and 150) to obtain accurate results for
masses as small as m =0.0007 (in lattice units) that were
not reached before in lattice simulations with fermions (to
the best of our knowledge). We have studied the chiral
condensate (yy) with the conjugate-gradient (CG)
method using a set of random Gaussian numbers as
source. For the smallest masses many thousands of CG
iterations are needed to achieve convergence. As a cri-
terion for convergence in the CG algorithm we require the
parameter r (residual) to be r, (0.001JV (V is the num-
ber of sites) for m =0.01, checked explicitly that the re-
sults for the chiral condensate were accurate enough at
that mass, and then rescaled r, linearly with m for other
masses. We checked in several cases at m =0.00125 that
this criterion produces a very accurate condensate. By ex-
plicitly applying the Dirac operator upon the output of the
CG subroutine we also checked that the inverse was being
produced correctly.

Consider Fig. 1 which shows (pry) vs m for various cou-
plings P. The data at P=0.250, which extend down to

I

m =0.0007, show clearly that (Py) is nonzero in the
massless limit and, contrary to claims in Ref. 10,
P = 0.250 is not the critical point. The data at P =0.250
cannot be fit by a mean-field power law Am '~ . Our accu-
rate small-mass results are crucial for this conclusion —if
we only had CG data for m ~ 0.005 it would be impossi-
ble to determine P, well enough to rule out a mean-field
(6 =3) fit at P =0.250. Note that the 24 data at
P=0.250 lie slightly above the results for the 16 lattice.
Then, even the small finite-size eff'ects in our simulation
support the contention that P =0.250 lies within the
chiral-symmetry-broken phase of the model. These con-
clusions also agree with our past Lanczos calculations of
the eigenvalue spectrum of the Dirac operator. In fact, all
the results discussed in this Rapid Communication agree
with Ref. 12 but rely only on the CG algorithm. Since
this technique is essential for the unquenched QED case,
this paper lays the groundwork for quantitative simula-
tions of full QED.

Other interesting features of Fig. 1 are the following.
(i) For small masses a linear behavior of the condensate
can be observed even very close to P, . In the bulk limit we
expect to find deviations from a linear behavior (yy)-m
near m =0 only at P=P, . Then, the assumption of
linearity of the condensate made before' was conceptual-
ly correct although not applied in the proper region of pa-
rameter space. (ii) Note also that there are no strong
finite-size effects in the results. For example, at P =0.250
only for masses m =0.00125 and 0.0025 it is possible to
distinguish between results for 16 and 24 lattices. This
indicates that the correlation lengths typical of the prob-
lem are growing slowly with P, —P and only very close to
P, do they become comparable to the lattice size and satis-
fy asymptotic scaling. We present a physical explanation
of this behavior below. In Fig. 1 we observe that for
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FIG. 1. (y'y) vs m at diAerent values of the coupling constant

P. CI (R) denote results using a 16 (24 ) lattice. The diff'erent
sets of numerical data correspond to (starting from the top)
P =0.23, 0.235, 0.245, 0.25, 0.26, and 0.27, respectively.

FIG. 2. (gyral (S) extrapolated to zero bare mass vs P. The
thick solid line is the best fit of the data (y7y) =2 88
x (0.257 —P) 0 8. The thin solid line is the best mean-field fit as-
suming a magnetic exponent P =0.5. cl denote Lanczos results
(Ref. 19) from Ref. 12.
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P =0.260 the chiral condensate extrapolates to zero in the
massless limit and thus we have an upper bound on the
critical coupling, i.e., 0.250 & P, ~ 0.260.

The extrapolation to zero mass of the results shown in
Fig. 1 can be done safely using (i) an eyeball extrapola-
tion or (ii) a more sophisticated extrapolation using the
equation of state of the model. ' ' Both techniques give
similar results. The extrapolated condensate is shown in
Fig. 2 as a function of P. We estimate the critical cou-
pling as P, =0.257 0.001. The thick solid line in Fig. 2
is the best least-squares fit of the form (Py) =A (P, —P)
which defines the "magnetic" critical exponent P (not to
be confused with the coupling constant). The fit is very
accurate and from it we obtain P =0.78~0.08 where
the error bars come mainly from the uncertainty in the
determination of P, . The thin solid line of Fig. 2 is an at-
tempt to fit the data assuming P =0.5 (i.e., the mean-
field exponent) showing that it does not describe the nu-
merical results properly.

In Fig. 3 we present (yy) vs m at P, =0.257. The con-
tinuous thick line denotes the best power-law fit of the nu-
merical data using a standard least-squares subroutine as-
suming (/Iver) =Am'/. The fit is very good (it provides
stable results in all the range of masses we studied) and
the best value for 6 is 2.2. Considering the error bars in
the determination of P, we conclude that 8=2.2+'0. 1.
Note also in Fig. 3 that a mean-field attempt to fit the
data fails. The crucial point in the proper calculation of
critical exponents is the accurate determination of P, .
Once that is achieved (and very small masses are neces-
sary for that) the critical exponent 8 can be obtained ac-
curately even using results for larger masses.

An interesting check of the numerical results presented
in this paper consists in the search for universal "scaling"
plots. As in any second-order phase transition, we expect
that results obtained in the "vicinity" of the critical point
of QED (i.e., inside the scaling window) will satisfy
universal relations. In particular, we know that in the
presence of a symmetry-breaking external field m, the

chiral condensate and m are related by
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where 6 and P are the critical exponents, hP =(P, —P),
and f is a universal function. ' In Fig. 4(a) we present re-
sults assuming P, =0.257, 8=2.2, and P =0.78. They
clearly show that numerical data obtained in a wide range
of values of couplings and masses can be collected togeth-
er in one single scaling plot if the above-mentioned pa-
rameters are assumed. For fixed P, we observed that
changing the critical exponents the good scaling behavior
of the data disappears. At this point it is important to re-
mark that in Fig. 4(a) we have not assumed any hyper-
scaling relation ' ' among the critical exponents. If these
relations are satisfied, then P =y/(b —1), where y is the
susceptibility exponent which is predicted to equal one by
the SD analysis. ' From our numerical data where 8 and

P have been obtained independently, we find that this re-
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FIG. 3. (yy& vs m at P, =0.257. Cl (a) denote results using a
16 (24 ) lattice. The thick solid line corresponds to the best
power-law At of the numerical data using 8=2.2. The thin solid
line denotes the best At using the mean-field exponent 8'=3.0.
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FIG. 4. (a) (ryy)/m'~' vs AP/(Pyl (8=2.2, P =0.78).

The different symbols correspond to different values of the cou-
pling constant p and for each one we plot the available masses in

the interval 0.0007 ~ m ~ 0.025. (b) (I7iyl/m '~ vs hp/(I7iyl,
i.e., similar to (a) but assuming mean-field exponents. The no-
tation is the same as for (a). I denotes results for P =0.253, II
for P =0.250, and III for P =0.2475.
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lation is correct within statistical errors. In fact, if the ex-
ponent P is assumed to be P =1/(2. 2 —1)=0.833, then
the new universality plot is very close to that presented in
Fig. 4(a). In Fig. 4(b) we show the same universality plot
but now assuming mean-field exponents 8 =3.0 and
P =0.5 and a critical coupling' P, =0.2478. Note that
there are clear deviations from the universal curve for
couplings close to the critical point and small masses. As
emphasized before, this region is the crucial one to distin-
guish between mean-field and non-mean-field behavior.

After presenting this numerical evidence it is reason-
able to ask why QED has a power-law behavior rather
than the essential singularities of Miransky scaling. Con-
sider the lattice photon propagator we use in the genera-
tion of configurations, i.e., 4 —g„cos(ak„), where a is the
lattice spacing. For small ak„we recover the correct con-
tinuum propagator, but for ak„—x the propagator be-
comes flat and lattice fermions exchange heavy modes of
mass —1/a. In the continuum formulation, high-
momentum terms in the lattice action would be represent-
ed by four-Fermi interactions so the lattice theory critical
behavior would have to be parametrized in the two-
dimensional space consisting of a bare fine-structure con-
stant ao and a bare four-Fermi term of strength Go. SD
studies of the physics in this plane have shown a fixed line
of critical points extending from a Nambu-Jona-Lasinio
point at a0=0, GO=4 to a Bardeen-Leung-Love-Miran-
sky point ' ' at an=a„Gn=l (tz, =tr/3). The theory's
critical indices and anomalous dimensions of composite
fermionic operators vary continuously along the line. ' '
Comparing the critical exponents we have found numeri-
cally with those calculated with the SD formalism' ' we
conclude that our results correspond to the point
P = (ao, Gn) = (0.44a„3.06). In Ref. 12 it was found that
the scaling window around P is very small in agreement
with our numerical results. It is also important to remark
that in addition to explicit contact interactions in the lat-
tice action, we may have dynamically generated four-
Fermi interactions in the low-energy effective theory of

the model producing the same eA'ect as described above.
Of course, we have not excluded the possibility that the

SD equations results are incomplete and that, in fact, we
have found an isolated fixed point of the theory rather
than one particular point on a line of fixed points. This
hypothesis can be verified if we obtain the same critical
exponents in simulations using diAerent forms of the lat-
tice action (keeping the naive continuum limit un-
changed).

What are the consequences of our study for unquenched
simulations? We have found that in quenched simulations
it is necessary to work very close to the critical point and
with small masses to observe the actual critical behavior
of the model. Introducing fermionic loops it is reasonable
to assume that the scaling window will be even smaller
due to screening efI'ects. Then, simulations performed for
masses larger than m ~ 0.025 cannot determine the criti-
cal behavior of QED with NI&0. If data for m ~ 0.025
are used then we expect that mean-field exponents will fit
the numerical results but will not correspond to the
asymptotic scaling regime.

Summarizing, we have presented numerical evidence
that quenched QED on a lattice has non-mean-field criti-
cal exponents. Although Miransky scaling was not found,
the correspondence of our results with SD analyses sug-
gests that the dynamics is qualitatively similar to that
originally proposed by Miransky and co-workers. ' By
varying the lattice action the Miransky point may yet be
accessible to lattice simulations. To study this possibility
very exact and quantitative work is required in the small-
mass region near the chiral critical point of the theory.
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