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We consider the possibility that higher-dimensional theories may, upon reduction to four dimen-

sions, allow extended inflation to occur. We analyze two separate models. One is a very simple toy
model consisting of higher-dimensional gravity coupled to a scalar field whose potential allows for a
first-order phase transition. The other is a more sophisticated model incorporating the effects of
nontrivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that
yield a nontrivial potential for the radius of the internal space. We find that extended inflation
does not occur in these models. We also find that the bubble nucleation rate in these theories is time
dependent unlike the case in the original version of extended inflation.

I. INTRODUCTION

InAation' has been widely accepted as the solution to
the problems which plague the standard hot big-bang
cosmology, namely, the homogeneity problem, the Aat-
ness problem, and the structure formation problem.
Many realizations of the inAationary scenario have been
discussed in the literature. However, all these models
themselves seem to give rise to new problems. For exam-
ple, old inAation has the "graceful exit" problem, while
new inAation and variants such as chaotic inAation re-
quire fine-tuning of the microphysical parameters of the
theory.

Extended inAation has revived, in the context of
Jordan-Brans-Dicke gravity, the basic idea of old
inflation, namely, that inflation is induced by a field
configuration trapped in a metastable state from which it
escapes via bubble nucleation. La and Steinhardt
showed that because the inAation that resulted from this
theory was a power law rather than an exponential, the
true vacuum phase could indeed percolate, and thus the
graceful exit problem of old inAation could be evaded.
Unfortunately, the euphoria of finding such an interesting
way of implementing inAation was short lived. Wein-
berg and La, Steinhardt, and Bertschinger found that
the requirements that the energy in the bubble walls be
thermalized before any cosmologically sensitive times
such as nucleosynthesis or recombination and that a glo-
bal Robertson-Walker frame be reestablished in the bub-
ble cluster that will become the observable Universe re-
quire an upper bound on the Brans-Dicke parameter co.

This in itself is not a surprise, since we know that in the
co~ ~ limit, Jordan-Brans-Dicke inAation becomes old

inAation. The problem occurs with the actual value of
the upper bound. Weinberg shows that this bound is of
order 20. However, the experimental lower bound is
co) 500. ' Thus, if we wish to make use of extended
inAation, we must find ways of avoiding this problem.
There have already been some attempts in this direc-
tion " however, it may be that more natural ways of
implementing extended inAation exist, and these should
be searched for.

One such possibility for successful extended inflation
might be multidimensional theories such as Kaluza-
Klein' theories. After all, the major motivation for the
renewed interest in scalar-tensor theories such as the
Jordan-Brans-Dicke theory is that an effective low-energy
theory of the Jordan-Brans-Dicke form follows naturally
in superstring, supergravity, and Kaluza-Klein theories.

Upon reduction to four dimensions, theories originally
formulated in higher dimensions take on a Jordan-
Brans-Dicke form, with a function of the scale factor of
the internal dimensions, b ( t)l, acting as the Jordan-
Brans-Dicke field. Thus, it is important to investigate
whether these theories can lead to successful models for
extended inAation. The aim of the work is to investigate
this possibility in some detail via the construction of
some Kaluza-Klein models which, we believe, contain all
the relevant physics.

The outline of this paper is as follows. Section II con-
tains a description of the time dependence of the bubble
nucleation rate, together with a discussion of the percola-
tion problem for a class of models that generalizes the
original extended inAation model. In Sec. III we intro-
duce our first model, consisting of higher-dimensional
gravity coupled to a scalar field whose potential allows
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for a phase transition to occur via bubble nucleation.
This theory is then dim ensionally reduced, and the
inflationary properties of this theory are investigated. In
Sec. IV we consider more complicated models, leading to
a stabilized potential for the radius of the internal dimen-
sions obtained by means of nontrivial field configurations,
such as monopoles, fermion bilinear condensates, or the
Casimir effect. Section V contains a summary of this
work.

We were not able to successfully implement extended
inflation in the models we examined, and our conclusions
are that it is very difficult for Kaluza-Klein theories to
implement the extended inflation scenario. The problem
stems from the fact that the potential for the internal ra-
dius b (t) does not allow for enough inflation to occur be-
fore b (t) reaches its minimum value.

Before launching into our calculations, we must estab-
lish notation. We will assume that there are N=4+D
dimensions. Quantities in the multidimensional theory
will be denoted by tildes (R, G, g„,etc. ). In the dimen-
sionally reduced four-dimensional world, we will work in
either of two conformal frames: the Jordan conformal
frame or the Einstein conformal frame. (The definition of
these two frames is given in the next section. ) Quantities
in the Einstein conformal frame will be denoted by over-
bars (R, G, g„,etc. ), while quantities in the Jordan con-
formal frame will not carry any special decoration.

II. BUBBLE NUCLEATION AND PERCOLATION
IN GENERALIZED EXTENDED INFLATION

2—gpv=& Npv

&—g =n'& —g,
R =A 2R —6A 3 0,

(2.2)

where II =16irG+N. Defining a new field it via the re-
lation

g—:it 0ln(16ir G~iIi ), (2.3)

with $0—= (3+2co)/16~Gz, the action of Eq. (2.1) in the
Einstein frame is

Here we have written the action in the Jordan conformal
frame, where Newton's constant Gz is replaced by the
JBD field 4 in the curvature term. The field o. is the
infiaton field, and its potential has a metastable (false-
vacuum) minimum at cr =cr „v.

Although the Jordan conformal frame is often useful to
calculate the classical equations of motion, it may not be
the appropriate frame for semiclassical calculations. The
problem is that the second term in Eq. (2.1) is not the
complete kinetic term for N, since an integration by parts
of the first term in Eq. (2.1) will make a contribution to
the N kinetic term. For semiclassical calculations involv-
ing the JBD field, it is more appropriate (and often easier)
to use the Einstein conformal frame, where the gravita-
tional couplings are the standard ones, and then trans-
form back to the Jordan frame. The transformation to
the Einstein frame is accomplished with a redefinition of
the metric tensor via the conformal transformation

a„ea.e
S = f d x&—g —4&R+cug~'

+(16~G e)"—'g~ a„~a.~
2

—(16vrG~@) V(cr ) (2.1)

Our first task is to understand how to calculate the
bubble nucleation rate in the generalizations of the origi-
nal extended inflation scenario we shall encounter below.
The problem here is that the formalisms developed to
perform these calculations (i.e., the Euclidean bounce
method of Coleman and Callan' and its generalization
by Coleman and DeLuccia to include classical gravity")
are not immediately applicable to the problem at hand.

The main difference between standard vacuum tunnel-
ing calculations and what is required in extended
inflation models is due to the time evolution of the
Jordan-Brans-Dicke (JBD) field 4& and its nontrivial cou-
plings to the inflaton. The main effect of time evolution
is to make the false-vacuum "roll" during the bounce.
Some work trying to understand how to generalize the
above-mentioned formalisms to this case was done by Ac-
cetta and Romanelli, ' with some success. In this paper,
however, we will use a method developed by us' which
allows us to systematically "freeze-out" gravitational
effects in the bounce.

Consider the following generic JBD action coupled to
an inflaton scalar field:

S= J'd x&—g — + g& a„qa,q—4 R 1

16~G~ 2

+ exp g"'c}„crB,cr-(n —1)g 1

0 2

—exp V(cr ) . (2.4)
(m —2)

All metric quantities (such as the curvature scalar, etc.)

in the Einstein frame will have bars over them to distin-
guish them from their counterparts in the Jordan confor-
mal frame.

From the action written as above in the Einstein frame,
we see that if we want to freeze-out gravitational effects,
we must also freeze-out the evolution of the g field during
the bounce. This is due to the fact that we are taking the
Giv~O limit and $0~ G&

' . Corrections to this approx-
imation can also be considered. We expect, using the re-
sults of bubble nucleation calculations in standard gravity
as a guide, that our approximation will be reliable when
the effective Planck mass induced by the JBD field is
much greater than the mass scales associated with the o.

field. In theories where N increases with time, the ap-
proximation will work best at late times. We point out
that in our first toy model the @ field rolls to zero (which
is one of the reasons why this is a toy model), and so this
approximation will break down at late times for this
model.

Ignoring gravity and treating g as constant during the
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S,= f d'x [g"-'-,'a~~ a„~+g--'V(~)],

where g—:exp( it) /go ).
The calculation of the rate of bubble nucleation

(2.5)

bounce yields the following truncated Euclidean action
for the inAaton o.:

four fewer eigenvalues than det[ I (i.e.,
det'[ .

I =g ' " 'det[ .
] ) and the ratio of the

determinants is taken to the —
—,
' power, the part of 2 in-

volving determinants is a factor of P( " ' times the
value with g= l. Putting both these results together, we
have

(2.6)
g4n

—2m (2.1 1)

(A, is the nucleation per time per three volume) involves
calculation of the bounce action B and evaluation of the
prefactor A.

Let us first consider the bounce action in our truncated
action of Eq. (2.5). The bounce action B =Sz(oi) ) is
found by a simple two-step process. First, since g is con-
stant in the truncated action, Sz can be written as

g g2n
—m f d4 [gm

—n —1 ) gp, g +g2(m —n —i) V(

(2.7)

Now let us rescale the coordinates in Eq. (2.7) to
x =g( " "~ x . In terms of these coordinates, the ac-
tion takes the form

S,=g'"--f d4X[-,'0'~$„~+V(~)] . (2.8)

Evaluating this action for the bounce solution gives the
bounce action

B (g') =g' " Bo [g'=exp(itt/f )], (2.9)

where Bo is the (g-independent) bounce action calculated
for the theory with /=1 (/=0). Thus the coupling of g
into the action of Eq. (2.5) leads to a bounce action that is
a factor of exp[(2n —m)lt /itjo] times the bounce action in
the absence of the coupling (i.e. , itt=0).

The second part of the calculation of the nucleation
rate involves the determination of the prefactor. Recall
that the full expression for the prefactor associated with
the action of Eq. (2.8) is

det'[g' "
[ — + V"((22) )] j

~det[g'" [
— + V"((rpv)]]

1/2C„
2n

(2.10)

Here o.„vis the false-vacuum configuration, o.~ is the
bounce solution, and det' indicates that the functional
determinant is to be evaluated in the subspace orthogonal
to the four translational zero modes. The C„arenormal-
ization factors of the zero modes of the operator

[
— + V"(cri) )], defined so that the properly nor-

malized modes are C„' B„cri) (p = 1, . . . , 4). Thus
C'z= Jd x($„oi)) (no sum over p implied), and for an

0(4)-symmetric bounce the C„areall equal.
To calculate the g dependence of A, we first note that

since the bounce configuration satisfies (()„oi)) = V((72) ),
C =Bo does not depend upon g. Furthermore, the ei-
genvalues of the operator g

"
[
— + V"(o 2) )] are

times those of the operator evaluated at /=1.
This implies that since det' [

.
I contains the product of

where Ao is the (g-independent) prefactor calculated for
the theory with g= l. Therefore, in terms of the rescaled
coordinates, the tunneling rate is

g4n
—2m (B g2n

—m
)d4~ (2.12)

Equation (2.13) can be used to obtain directly the tun-
neling rate in the Jordan frame. Recall that
exp(itrlitjo) = 16vrG&&1&, and the nucleation rate in the Jor-
dan frame is related to that in the Einstein frame by

dP
d'x &—g

dP g ~ 4~
d'x& —g ~—g

=(16irG~C') Ao(16irG)v&P) "

&(exp[ —Bo(16nG)v@) "
]

= Ao(167rG~@) "exp[ —Bo(16irG)vC)) "
] . (2.14)

Ap and Bp are N independent and depend only upon the
inAaton potential. Bp is dimensionless, while Ap has
mass dimension 4.

In the original extended inAaton model m =n =0, and
in the Jordan frame the nucleation rate is time indepen-
dent, although it is time dependent in the Einstein frame
(as discussed in Ref. 17). However, as we shall see, in di-
mensionally reduced theories the generic form has m and
n different from zero. We see from the above equation
that, if 2n —m&0, the time dependence of the nucleation
rate can be exponentially strong through the time depen-
dence of (Ii (or equivalently, g). If 2n —m =0, but n&0,
the nucleation rate is still time dependent in the Jordan
frame and time dependent in the Einstein frame if n W 1.

We emphasize that this calculation is an approximation
to the actual result that should be good as long as gravi-
tational corrections can be neglected. The correct calcu-
lation to do, of course, is one in which both the Brans-
Dicke field and the inAaton are accounted for in the tun-

where P is the bubble nucleation probabilty.
Our penultimate task is to transform the tunneling rate

in the scaled coordinates (x ) to the Einstein frame. This
is most easily accomplished:

4wdP
g

d X gg2(m —n —()
d4x d'x

= Hog
" exp( —Bog "

)

= A oexp[(2n —2)g/fo]exp [
—Beopx[(2n —m )g/Po) I .

(2. 13)
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neling process. Unfortunately, this problem is still
beyond our abilities to solve completely.

The nucleation rate is crucial in extended inffation,
since the parameter that determines the percolation prop-
erties of the model is

R
X

16~G
1) B„bd b

16~G

S= dx —g xQ~b t

E(t) = A, (t)
H'(t)

(2.15) +—g g~,B y —U(g~)
Pa 1

16' Gb

where H(t) is the Hubble parameter of the model. This
quantity essentially measures the number of bubbles nu-
cleated within a Hubble volume H (t) in a Hubble time
H '(t). The graceful exit problem of old infiation can be
phrased in terms of e as follows: In order for inffation to
occur long enough to be useful, we need e~4X10
while in order for the Universe to be percolated by bub-
bles of true vacuum the condition e ~ t c~ must be
satisfied, with ecR lying between 10 and 0.24. Whereas
in old inffation both k and H are constants, the beauty of
extended inffation is that it allows for the possibility that
one or both of these quantities can vary in time. Thus e
can start small enough to satisfy the inffation requirement
and then grow to satisfy the percolation conditions.

(3.4)

Here pub is the Ricci scalar of the internal space [i.e. ,
constructed from y „(y) alone]. [pn has the value
D (D —1) for a D-sphere. ] Also, Ig ] are the coordinates
in the four-dimensional space, and g„,(x) is the metric on
this space. Note that the kinetic term for the b field has
the wrong sign. We will now rewrite S using the
definitions

f d'y&1 (y)

=2m' +"~ /1 [(D+1)/2] for a D-sphere,

QI bo 1

16~G~

III. HIGHER-DIMENSIONAL GRAVITY
COUPLED TO A SCALAR FIELD cr =—(0, b )'

Here we consider our first model. It consists of
higher-dimensional gravity coupled to a scalar field y
with a potential U(f) allowing for a metastable vacuum
state as well as a completely stable one. The action for
this theory can be written as

S= d4+~u —g

x — R +—g™B~gB~g—U( f ) . (3.1)
16~G 2

Here D is the dimension of the internal space (which we
take to be a D sphere S ), Ittt ] represents the full set of
coordinates on the (4+D)-dimensional spacetime, and all
the quantities with tildes refer to objects living in the full
(4+D)-dimensional spacetime. We now assume that the
spacetime line element ds takes the form

V(cr)=:(Aobo)U
( fl b D

)
1/2 (3.5)

to be the effective JBD field, we have

S=f d x&—g(x)

B„NBN
X —NR —cog" " +aN'

+(16~G~@) —g"'0 o 0 o. —V(o. )
1

where G& is the four-dimensional Newton's constant.
Note that o is a canonical scalar field and V(o ) is its
four-dimensional potential. Finally, defining

e=- b
(3.6)

0

ds =dt2 a2(t)d03 b(t—)dQn, — (3.2)
(3.7)

where dQ3 is the line element corresponding to a maxi-
mally symmetric three-space and dQL, is that of a unit
D-sphere. Denoting by yo the zero mode of g (i.e., the
part of the harmonic expansion of y which is independent
of the coordinates [y ] of the D-sphere), ' we can rewrite
Sas

S= f d y&y(y) S, (3.3)

where y „(y)is the metric tensor of the D-sphere and S
is the effective four-dimensional action, given by

with co =—1 —1/D and a =po ( 16~G~ ) b o . Note that
a has mass dimension 2( 1+2/D). We have thus recast
the Kaluza-Klein action into a JBD form as expressed in
the Jordan frame. There, are, however, some important
diA'erences: (a) 4& has the "wrong" sign for a standard ki-
netic term, (b) there is a nontrivial self-interaction term
for N, namely, aN '~, and (c) there are also @-o. cross
terms.

For completeness we may also express the dimensiona1-
ly reduced action in the Einstein frame via the conformal
transformation g„=(16mG&N) 'g„, in terms of the
field g= goin(16nGz@):
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5 = Id X V —g — + g—" B„QB 1J'j
4 R 1

16~G~ 2

.08

PD 2
exp — 1+—

16+G~b() D Qo

1+ —g" 0 o- 0 o-
p v

—exp V(cr ) (3.8)

where here, because of the sign of co in Eq. (3.7),
1'()

= ( 3 —2' ) /16m. G~.
We may now use the action of Eq. (3.7) to arrive at the

Friedmann-Robertson-Walker (FRW) equations for this
system. Setting 0 =oFv, its value in the false vacuum,
and defining V(o Fv) =—p(, and A—= 8vrG&p1„we have the
following equations of motion in the fiat-space (k =0)
limit:

0
I

.2 .5

FIG. 1. Graph of the potential 8 (C) of Eq. (3.12) for D =6.

We can perform an analysis of what happens if the C field
is placed, not at the exact maximum, but near it. Thus
we write

a
a

2

a N 1+ ——=
CO

a 4 6

2

1 2/D A——n@ +—
6 3

(3.9)

C(r) = C(1 [1—b, (r)],
A (r)=exp(Hor)[1+5(r)]

(3.13)

q) 1 —2/D+
1+2/D

In order to analyze this system, it proves convenient to
rescale the variables and fields so as to obtain dimension-
less quantities. Thus we define

r =&At, (2 (t)—:a (0)2 (r), +(t)—:+(0)P(r), (3.10)

[where b, (r) )0 for r) 0], and insert these expressions
into our equations for 2 and C. Keeping only those
terms linear in the perturbation 6 and 5, we find the fol-
lowing equations for these quantities:

5"= —3H06'+ 4
D+2

where N(0) is arbitrary. If we also define
z =—(a/A)4(0) ~ and C(r):—z ~ P(r)
—= (a/A) N(t), then our equations become

1, 1

2 3HO(D +2)

(3.14)

I

C"+3 C'=—
aC '

2 2' C' 1 C'
C 6 C

(3.11)
——'C-" +—',

6 3
'

where primes denote ~ derivatives and the "potential"
8'(C) is given by

IV(( )
— ( 2(1 —1/D) ( 2 (3 12)

2(1 —1/D) 1+2/D

We have assumed that D&1 here; we will make this as-
sumption throughout. Figure 1 shows the scalar poten-
tial IV(C) for the special case D =6. Note that for C
greater than the value corresponding to the maximum of
the potential, defined as Co, IV(C) is unbounded from
below.

In general, no power-law solutions to our equations ex-
ist, in contradistinction with the original extended
inAation scenario. However, since the equation for the
rescaled JBD field is just that for the scalar field C in a
potential IV(C), the usual techniques for analyzing this
situation can be applied. It can be seen immediately that
an exact solution exists when we set the field C equal to
its value at the maximum of the potential,
Co=[(D +2)/2D] ~ . Here the scale factor expands ex-
ponentially, A (r) =exp(How), with Ho =2/3(D +2).

These equations are easy to solve and yield exponentially
growing and decaying modes exp(r+r) and exp(r r), re-
spectively, where r+ —=Ho[( —3+&33)/2]. From this we
see that we only count on the exponential expansion for
A~-r+' or Hoh~-0. 729. But, in order to get all of the
required 65 e-folds of inflation during this time, we must
require that Hoh~) 65. We thus see that there is never
enough inflation before C is driven to zero. This con-
clusion is independent of the value of D and cannot be
saved by any amount of fine-tuning.

Although this is not a promising model for inAation
(extended or otherwise), we can learn some things to
guide our thinking for the construction of a successful
model. First, a potential of the form of Fig. 1 will not
work. There must be a long, Aat region in the potential
so enough e-folds of inAation may occur before the JBD
field is driven to its minimum. Second, the potential is
sick for small N —there is nothing to prevent the extra
dimensions from shrinking to zero —the minimum of N
is at +=0. Both of these problems have been previously
recognized, and several solutions have been proposed.
These solutions will be discussed in the following section.

Before proceeding onto a more promising model, we
can ask if the first-order phase transition will be complet-
ed before N evolves to its minimum. In order to do that,
we must calculate A, (t) and H (t), and determine
e(t) =k(t) /H4(t).
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We may calculate the nucleation rate in this model fol-
lowing the analysis in Sec. II. We see from a comparison
of Eqs. (2.1) and (3.7) that the parameters m and n in Eq.
(2.14) are both unity, so that the nucleation rate is given
by

A, = Ao(16~G~@) exp( B16o~G~—N) . (3.15)

In the above equation, Bo is the bounce action calculated
from V(o ), and P =4/4(0) is the dimensionless JBD
field.

Plots of C(r), H(r), and e(r) for D =6 (Co =0.296)
are given in Figs. 2—4, respectively, for the numerical
solutions to the equations of motion. Figures 2 and 3
show C(r) and H(r) for the initial conditions
C(0)=0.302, 0.29, 0.2, and 0.1. Of course, if C(0) )Co,
the field will grow without limit. For C(0) exactly equal
to Co, the field is classically static, but unstable to small

0 I I I I I I I I I I « I I I

0 5 / 10 15
T =A'"t

FIG. 3. Evolution of the Hubble expansion rate for the
di6'erent initial conditions of Fig. 2. From top to bottom, the
initial conditions are C(0)=0.1, 0.2, 0.29, and 0.302. Note that
for the physically allowed solutions, 0 increases in time.

FIG. 2. Evolution of the Jordan-Brans-Dicke field as a func-
tion of time for the model of Sec. II for D =6 for various initial
conditions for the field. Note that C=0.296, denoted by the
straight line, corresponds to the maximum of the potential of
Fig. 1. For initial values larger than this value, the field grows
without limit and, hence, are not physically allowed.

FIG. 4. Evolution of the eKciency of nucleation, @=A,/H as
a function of time for the initial condition C(0)=0.29 for vari-
ous values of Bo [see Eq. (3.15)].

perturbations. Note that even for C(0) =0.29 (very near
Co), insufficient infiation occurs before C(r) is driven to
zero. Figure 3 shows the evolution in time of the expan-
sion rate H. Note that it increases in time, which is oppo-
site to other extended inflation models. Of course, as we
have emphasized, the relevant parameter is not H, but
rather @=A,/H . In order for extended inAation to work,
e must increase in time. Figure 4 shows the evolution of
e(r) for the specific case C(0)=0.29 for various values of
Bo. It can be seen t iat even though H increases with
time, e can in fact increase with time because of the time
dependence of A, . Hence it is in principle possible to have
successful models of extended inAation, even if H in-
creases with time.

IV. STABILIZED POTENTIAL MODELS

The model considered in the previous section, while
simple, suffered from two fatal Aaws. First, the potential
for the internal radius only had a minimum at zero.
Clearly, some additional effect(s) must stabilize the inter-
nal space. Proposals have included models where an X-
dimensional cosmological constant, together with the
curvature stress from the compact internal space, is bal-
anced against a stress either due to a classical back-
ground field in the internal space' or due to the Casimir
effect of fields on the curved internal space. We will
shortly study such a model and discover that it does not
mitigate the second Aaw in our model. This Aaw can be
seen in the potential for the scalar field illustrated in Fig.
1. Even if one imagines that somehow a minimum is
developed before C =0, the potential is unstable in the
sense that for large initial values of C the field will grow
without limit. Although this is not necessarily a fatal
Aaw for constructing a sensible particle physics model,
we will see that it does not allow for enough inflation.
Therefore, for extended inflation to have a chance to
work, we must find models with a minimum at CWO
which will allow enough inflation to occur before C clas-
sically evolves to the ground state.

Before embarking upon the analysis of the baroque
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model discussed below, it is useful to study a trivial ex-
tension of the model of the previous section that results
in a minimum away from +=0. This will illustrate some
computational procedures we will use and demonstrate
the problem of insufficient inAation we will encounter.
The extension involves considering a six-dimensional
model that contains a Maxwell field, in addition to the
fields in the action of Eq. (3.1).' Anticipating that the
only dynamical role the multidimensional scalar field g
plays in the equations of motion is through its contribu-
tion to the cosmological constant, the action for our new
model is most simply expressed as

1 A

16mG 8' 6

xgF F . (4.1)

Having already established that upon dimensional
reduction the theory will resemble a JBD model and
learned the prescription for identifying the JBD field with
the radius of the internal space, we may now proceed to
find the equations of motion directly from Einstein's
equation:

d b —fo A
3—+2—= —2~G +—,

a b b4

a a a b —fo A—+2 +2——= —2mG +—,
a a' ab 4 (4.4)

+ N '(16~G~@)

@1 2/D+
a 1+2/D

(4.5)

b b a b —fo A 1—+ +3——=6~G +——
b b a b b 2

We can find the static value of b, defined as b0, directly
by setting the right-hand side (RHS) of Eq. (4.4) equal to
zero. In doing so we find 8nGf o =ho and 4 = 1/2bo.

We may now make direct connection with the exercise
of the previous section by taking linear combinations of
Eqs. (4.4) and recalling the definitions of &0, co, and a
from the previous section [cf. Eq. (3.9)]:

2 2
a a W 1 N 1 2/D A+ Q7 QN +
a a N 6 N 6 3

1
RM~ —8wG TM~ —

gM~ TpD+2

2 A

D+2 8~G' (4.2)

R ij
a a a b—+2 — +2——g,a a2 a

(4.3)

With the choice of R'XR XS for the symmetry of
the vacuum state, the relevant components of the Ricci
tensor in the six-dimensional model are ( mn are indices
in the internal space and t,j are indices in the external
space)

a b
R = —3——2—,00

+ (167rG~4 )

The effect of the Maxwell field is completely contained in
the last terms of Eqs. (4.5). This new term has little eFect
upon the evolution of the system for 16m.G&N)) 1. For
instance, if we form the dimensionless potential W(C) as
in Eq. (3.12), we find

W ( C ) =C —
—,
' C —

—,', ln( C), (4.6)

where the last term from the Maxwell field has little effect
at large C where inflation occurs. This potential is shown
in Fig. 5. Clearly, it is similar to the potential of Fig. 1

except for the fact that there is a (local) minimum at
C =

—,'. The system will evolve to the ground state
without sufficient inflation as the simple model of the pre-
vious section. The problem is that at large C (large @)
the potential becomes negative.

b b a b 1R, = — —+ +3——+ gmn
b b2 b b2 mn

I I

J
I I I I

(
I I

With the choice of the metric in the form of Eq. (3.2), the
stress tensor may be expressed in terms of an energy den-
sity p, an external pressure p and an internal pressure

Tx =d'ag(p
For the Maxwell field we take the "Freund-Rubin" an-

satz' ' '
FM& =&yeM&f (t) for M, 1V in the internal space

and zero otherwise. This choice automatically satisfies
the field equation for FM&, and the Bianchi identities can
be used to relate f (t) to the radius of the internal space b:
f ( t) =fo /b ( t), where fo is a constant.

For the Maxwell field, TM~ =FM&F~—(1!4)gM&FP&F ~, and the equations of motion for a
and b are

D=2

CO=0.25

.5 1.5

FIG. 5. Graph of the potential 8'(C) of Eq. (4.6).
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Next, we examine a model that has been proposed to
lead to both a static ground state and yields a potential
that does not turn over for large N. The models starts
with the (bosonic part of the) ten-dimensional Chapline-
Manton action. This action is believed to have many of
the features expected in superstring models. A crucial
difference between this model and the one just discussed

I

will be the role of the dilaton field.
Taking GM~ as the Yang-Mills field strength, HM~p as

defined in terms of the Kalb-Ramond and the Yang-Mills
and Lorentz Chem-Simons three-forms, and y and A, as
the gluino and subgravitino fields, respectively, we can
write the bosonic part of the ten-dimensional action as
(setting 8~6 = 1)

g= —
—,
' fd' w)/ —g' '(w)I —R+ —,'exp( —cr)IHM&p —exp(o/2)(Tel ~&pg)]

+ —,'exp( —o. /2)(TrG~&G )+—,'BMo' 8 o'+(TrII ~~pg)(&r &) I (4.7)

Here, as before, capital Roman letters take on values in the entire space, R is the ten-dimensional curvature scalar, and
o is the dilaton field. For simplicity, the Yang-Mills field will be set to zero. Using the o equation of motion (with
o =const), exP( —o )HM+pH =exP( —cr/2)HM&p(Trgr™Pg), and redefining a new efFective Kalb-Ramond field

&~~p exp( rr /2 )H~—~p, Einstein's equations become

R» ———,'&»,&,"'—', %~»& 'g»+9&„'(Ter,„,y)+-', (Ter~»y)'g»+-, '(Trgr~»y)(Xr 'A, )g»
——,'(Ter~»g)(Trgrs y) —3(TrfI g»p)(Xrs 1) . (4.8)

g (1) g (2)
U=V +

b4 b4
1 2

(4.9)

where 3" are constants depending upon the field con-
tent of the theory. With the choice of two three-spheres
for the internal space, the stress-energy tensor is of the
form

T~x =diaS( p,pg„„p'"g—„,p' 'g „). (4.10)

Thus the energy densities and pressures due to the
Casimir effect are

In addition to the classical background-field
configurations, we wish to include the quantum Casimir
effects of the curved internal space. The inclusion of
Casimir effects is known for odd-dimensional spaces.
Hence the ansatz will be made that the extra six dimen-
sions will consist of two S -dimensional spheres (where
D =3) of radius bi and b2. The spacetime line element
ds takes on the form ds =dt a(t)d A—

3

b, (t)d f)D —b~ (t)—d AD.
For a particular case of odd-dimensional internal

spaces, in the limit where a approaches infinity, and zero
temperature, the Casimir effect on the free energy takes
the simple form

where e, is the totally antisymmetric Levi-Civita ten-
sor which takes on the values +1. Similar expressions
can be written for gM&p and AM~p ~ Using this with the
Bianchi identities &M». g+&g~~. p+&pgM. ~ 0 (and
similarly for gM» and XM»), we can express the h's as a
function of the internal radii b, (t):

h (t)=ho/b (t), ho=const . (4.13)

Similarly, the associated constants for yM&p and XM~p
are g~ and k0, respectively. Taking the simplest case of
b(t)—:bi(t)=b2(t) and adding in the Casimir effects
(with A—:A "' = A ' '), we obtain the equations of motion

(no sum over i implied), where i =1,2 for each of the
internal spheres, and VD" and VD

' are the volumes of the
two internal D-spheres.

We will also employ the generalization of the "mono-
pole" ansatz discussed above for AM~p g~~p and A,M».
For &~~p, this is

+g ' "'e „„h( t ) for each internal D -sphere,
~MNP

0, otherwise,

(4.12)

U
V(1)V(2)

g (1) g (2)
+

b4 b4

a b
3—+6—=—

a b

2

2A'
b10

c
7

I'c = 1 BU a a—+2
a a

+6-0
a

b

b

2A'

b 10
c

(4.14)

+
b1 b2

(4.11)
2

b b a b 2 4A' c'—+5 — +3——= — + +

() 1 BU
c DV V(1)V(2) t ()b

4
D V(1) V(2) b 4

D D i

where A '= A /(4' ), and the constants c and c' are given
by
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c—:3( T~h o 6h ohio+ T~go++OAO )

(4.15)

60

50—

Again, substituting in the effective JBD field and using
the definition of a (remembering that we have a product
of two three-spheres so that the e8'ective pD =12), we ob-
tain the equations of motion

2 2

Q a 4 1 4 ].+ — co 0!N
a a N 6 N 6

40—

Cl 30—
C3

CD 80—

2 c4 @
—5/3

3bo (16irG~)

(c'+c/3) +
bo16~G~

(4.16)

0
0

FIG. 6. Graph of the potential of Eq. (4.17).

I

@2/3 + @ 2/3

bo (16~G~)'
6c'

ho 16aG~

where co=1—1/2D =
—,'. We can see that the equations

of motion are nearly the same as in the simpler Kaluza-
Klein model Icf. Eqs. (3.9) and (4.5)], except that now we
do not have the cosmological constant term, but rather
have two extra terms which stabilize the potential for
small N.

Setting the RHS of the second equation in Eq. (4.16)
equal to —BV/0+, we obtain the driving potential for
I&(~t):

v(e) = v(0)+ c'"
5bo(16irG~)' '

24M '
1/3 6c'

b o ( 16irG~ )
~ b o 16'G~

(4.17)

The minimum for this potential occurs for
No= 1/(16irG~), which implies that

1/2

ho= —+ —c' +4
c' 1 t2 32''
4 4 3

(4.18)

2W'=cb4, . (4.19)

A plot of the potential for C&(t) is shown in Fig. 6 for
c ' =2c /3 =b o. Thus, if we start at large values of N, N
will eventually decrease to its minimum value. The idea
then is to have enough inAation occur before N reaches
~'o

We can now ask if these equations will lead to
inflationary solutions. We will consider two regimes,
determined by the value of N. For large

Taking the second derivative of V(4), we see that the po-
tential is stable for ho+2M'/3&0. And since there can
be no effective cosmological constant at the minimum,
the RHS of the first equation in Eq. (4.16) must be equal
to zero. Therefore, we have the condition that
—6bo+2A'+3(c'+c/3)ho=0. Combining this with

Eq. (4.18), we find that

(16irG~iIi ))1), the equations of motion become
2 2

a a W 5

a a N 36

—+3——-0
a

(4.20)

Letting a-exp(H, t) and b —exp(Hbt), the second equa-
tion gives H&= —3H„and putting this into the first
equation, we get that —

—,'H, =0, which implies that
H, =0. Thus no exponential solutions exist for a(t).
Letting a —t' and N —t, we find that consistent solu-
tions occur for n =

—,
' and I = ——', or for n = —

—,
' and

m =2. (The first describes an expanding universe, while
the second describes a shrinking universe. ) Since it is
necessary for n & 1 for inAation to occur, neither solution
works. Hence, for large 4(t), there are no inflationary
solutions.

Now consider the possibility for inAation at intermedi-
ate values of 4, 4&) 1. Combining Eqs. (4.18) and (4.19),
we find that bo =c/3+c'/2. Since both c and c' can be
as large as bo, we will set c -c'. Then, for 16~G&N ~ 1,

2 2
a a 2+ +
a a @ 6 4 b,'(16irG~C)'~'

'

a
a

(4.21)
12

b (16irG~4)'~

By inspection no exponential solutions work. Looking
then for power-law solutions, we see that power-law solu-
tions exist with C ~ t, but they do not correspond to
inflating solutions for a (t) In fact, simp. le numerical in-
tegration confirms the suspicion that no inAationary solu-
tions exist; i.e., the increase in the scale factor is sublumi-
nal, and the evolution of N to the ground state is rapid.

Suppose we explicitly break the supersymmetry of the
model and try adding a potential for the dilaton field (or
equivalently, a cosmological constant). This would allow
for inflationary solutions for a(t) when @(t) is large.
However, as we saw before in Sec. III, adding a cosmo-
logical constant destabilizes the potential for large N.
One might attempt to adjust the cosmological constant
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(A) to be very tiny so that the potential would only be
destabilized for very large N) 1/(bt16mG&A ). In this
case, however, we would only have a small amount of
inAation occurring when 0& —I/(bo16nG+A ); when &0

decreased from this value, this cosmological constant
term would again become unimportant, and the curva-
ture term would quickly come to dominate in the second
equation of Eq. (4.21). As we have seen already, howev-
er, no inAation occurs in this regime.

V. CONCLUSIONS

What conclusions can we draw from our analysis? It is
clear from Secs. II and III that the percolation parameter
can be made such that the true vacuum phase will, in
fact, percolate. In fact, this quantity tends to have an ex-
ponential dependence on the Jordan-Brans-Dicke
which leads to interesting behavior for e. Note that this
is quite diA'erent from what happens in the original ex-
tended inAation model. We note again that the calcula-
tion performed in Sec. II was an approximation to the
correct result, valid only when gravitational corrections
can be neglected.

The main problem with the higher-dimensional models
studied here, in terms of their extended inAation proper-
ties, is that they cannot be made to inAate enough. The
generic situation, even after the potential for the internal

radius has been stabilized, is that b(t) is driven to its
minimum far too quickly for any significant inflation to
occur. It is not clear to us whether or not a potential can
be designed that is stable (i.e., d V/db )0) at large b, has
a minimum at a nonzero value of b, and yet is Oat enough
to allow for sufficient inflation to occur. Even if such a
potential can be constructed, such "designer potentials"
are reminiscent of the unnatural adjustment of pararne-
ters needed in most models of rollover inAation. The
motivation of extended inflation is to remove these un-
natural parameters. Our final conclusion must then be
that, unlike various claims in the literature, and despite
the fact that higher-dimensional theories do yield
eAective four-dimensional theories that are similar to
Jordan-Brans-Dicke, these models do not seem to be suit-
able candidates for extended infIationary models. Other
models, perhaps involving extra fields such as the dilaton
of string theories, may fare better.
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